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Abstract:

The k-spectrum of Korteweg-de Vries turbulence is computed exactly. It
consists of a superposition of Lorentzians in k. It is determined by both
the steepening and the dispersive term. Application to drift waves in a

tokamak shows qualitative agreement with measurements.




Exact k-spectrum for the KdV Equation: Application to Drift Wave Turbulence

H. Tasso, K. Lerbinger

Max-Planck=-Institut fur Plasmaphysik

EURATOM Association, D-8046 Garching

Abstract: The k-spectrum of Korteweg-de Vries turbulence is computed exactly.
It consists of a superposition of Lorentzians in k. It is determined by both the
steepening and the dispersive term., Application to drift waves in a tokamak

shows qualitative agreement with measurements.




A method of studying KdV (Korteweg-de Vries) and drift wave turbulence
was given in a previous note [1] . This approach based on thermo-
dynamics of continua and borrowed from solid-state physics is pursued here.
It allows one to find the k-spectrum explicitly and to compare it with

experimental measurements.

As in 1] , the starting point is the KdV equation, but written here
with coefficients C] and C2 which characterize the physical system of
which the KdV equation is supposed to be an approximation or a model .,

If 1.? is the physical variable, we have
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where Clgr and —=— have the dimension of a velocity. Equation (1)

length
can be written in canonical form:
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with

“= S%C\ (.Q!’dx + S %' CQ_ Q:. dx (3

As mentioned in Y_]l , the Hamiltonian (3) cannot be interpreted as an
energy because of the cubic term. Instead a non-canonical Hamiltonian

can be used:
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To obtain a canonical variable with this Hamiltonian we transform as in [1] :
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where v is a new dimensionsless variable and A and B are determined

below. After substituting eq. (5) in eq. (1) one obtains
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then
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is a solution of eq. (6).

Inserting eq. (5) into eq. (4) the new Hamiltonian is
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A is now defined such that Hamiltonian (9) produces eq. (8) in the form
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We find A = _6_]_ and B = qCZ from eq. (7) and
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or for later convenience
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with -_g- = ?‘)-_ ) -:g = -2—- and the length ‘S

will be defined later.




The partition function is meaningfully defined as a functional integral

over the field phase variable v(x) as
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The method of integration is given in \._21 , where v is supposed to
have periodic boundary conditions on a distance L. Z is first written
in discretized form:
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with L = N Ax
The integration can be done successively using the integral transfer
operator
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In the limit of @Ax2%9 eq. (15) can be written as a Schrédinger-like
equation:
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where ﬁ;] = b and 3 has been chosen equal to ﬁ- . From eq. (17)

one can obtain the eigenvalues En and eigenfunctions ¢n(v). It has

been solved numerically using finite elements, which allows the lowest
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eigenvalues En and corresponding eigenfunctions to be determined with

high accuracy. The partition function is hence completely known.

To obtain the k-spectrum of the turbulence, we compute first the space

correlation function
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where (SQ X\ = Q(&\ - <‘?(X\> and the brackets mean
averages over the canonical distribution. C(x) is hence a functional

integral of the type
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which can be computed in a similar manner to Z by using the transfer

integral operator technique. Using the very accurate approximation
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where the brackets mean integration in Hilbert space of the ¢(v)

Finally, the spectrum is given by
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where
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Application to Drift Waves Turbulence

As discussed in [11 , we take as simplest model for the nonlinear
drift wave equation the KdV equation where the steepening term is
taken from [3] and the dispersive term is representative of finite
ion gyroradius effect, although this term is not exactly derived (an
exact derivation would lead to 2-dimensional equations and would

exceed the scope of this contribution). This leads us to take
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where primes denote derivatives with respect to the radial direction

and x will be identified with the poloidal direction (which is un-

usual). This means that
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If we assume a fluctuation level %**nlo , then {3-1 can be
g '
taken of the order of S 16}( . For a typical tokamak discharge

we may assume B %= 104 Gauss. Ti & Teﬁ 107 degrees,



L= 2wR ~ 120 cm, P—\ % 2 cm, -_.:-:lﬁ 2 cm. Then all quantities in the

n
spectrum can be computed, yielding the curve S(k) versus k/|::2 -

see figure - whose width is essentially, but not completely, determined

by the inverse of the ion gyroradius.

This is qualitatively (and quantitatively up to a reasonable factor) in
agreement with the measurements [41 done on Alcator. A better

agreement cannot be expected because the theory is incomplete in the
physics and in the number of dimensions. It shows, however, the importance
of the temperature gradient leading to the steepening term and the finite ion

gyroradii.

It would be interesting to apply the spectrum found here (eq. (21)) to other
areas in physics to which the KdV equation applies and where turbulence is

observed.
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