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INTRODUCTION TO THE THEORY OF RF PLASMA HEATING AND CURRENT DRIVE

E. Canobbio

Max-Planck-Institut fiir Plasmaphysik
EURATOM Association, D-8046 Garching

We consider time periodic em- pumps acting upon a stable plasma,
so that all field quantities except the internal energy density are
supposed to be periodic functions of time.

Irreversible heating (or cooling) is represented by the time aver-
age of the rate of change of the internal energy density:

U= 5{>/9_ =Z$-(us = ""S”"SC"_?S -7_?')79 g
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where subscript s refers to the particle species, fs' Ngs Mg and 35
are respectively, the distribution function, the number density, mass,
and bulk velocity of the s-particles, V. =F _n m V./p is the

center of mass fluid velocity, o ='2:s ng m is the mass density of

the plasma, and w 1is the coordinate of the velocity space.

. From Poynting theorem
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P EFBgn +17E +div-(cEx 5/@.—_—0,
(2)

and conservation of energy

. AR = o5
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where €Lin is the total kinetic energy of the plasma and akin the



total kinetic energy flow, it follows that
w5 =¥ 2 -
_S‘d,\/j E = Ci/%)%sw@sﬂhs%/z_—[-ug (4)

provided the integration volume V - the plasma or a periodicity

volume - be enclosed by a surface through which -Gzin vanishes.
In time average
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.
while the Tocal j:.E-value may be different from the 10ca12§ 5 HUS7Ht
value.

Notice that Egs. (2) to (5),appliec to the system consisting of
the RF source, the transmission line and the plasma, state that the
heating power deposited into the plasma is some fraction of the
integral jdv _J)? extended to the, volume of the RF source.

It can be shown /1/ that the quantity p g-5/3 which to within
an unimportant constant represents the entropy per particle (which
is constant during adiabatic compression) is given by the equation

(zv/2) dlps ™ Dt = - awr?f*'
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Here'ﬁaak—is the flux density of kinetic energy in a frame moving

with the fluid (the heat flow vector),.ga'*—is the conduction current
: . . T =2 =

density (in a quasi-neutral plasma j ~ = J) and 51 is the trace-less

stress tensor ari ing as a result of the deviation of fs from spheric-

al symmetry:
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Equation (6) shows that at low frequencies when the plasma is
frozen to the B-lines of force, heating can either be produced
Ohmically, by the f'component parallel toT? or by magnetic pumping
through the viscous term -7ﬁigg4317‘/49>fgs . Assuming 1n
slab geometry'V? —é(x), the latter term is essentially 120 (dv /dx) /3
with g 2 nTiJ/(() +Cd ), where () ijs the collision frequency and
(v theé wave angular frequency. This can be easily proven by solving
the simplified Boltzmann equation

Qfl/% + M’[ﬂl%@) = -Oéﬂf{?m) ) (8)

where fM is the Maxwellian, with the Ansatz f = exp(-iwt). Since

div V'= -n/n = 0, the B-lines are also compressed and Be< n . The

RHS of Eq. (6) then becomes

ST LCE/BY". (9)

s
For a small amplitude periodic pump

B/Bo=[+kmmnnt 5 lbl<|/ (10)

Eq. (6) is a linear ordinary differential equation with a time
periodic coefficient of the Hill-Mathieu type. It has "unstable"
solutions of the form p(wt). expszt where p(wt)

is a periodic function with the same period as the pump and the
constant growth ratezy' provides the gyrorelaxation heating rate /2/




= (5/5) 9/(4+Q/co < Lfo/tg (11)

In this case heating relies upon inducing a pressure anisotropy
. 2
due to the constancy of the magnetic moment 1 = MS’IU_T_S/ZE}
between two consecutive collisions, which is then relaxed by the
Coulomb collisions.

Higher heating rates require essentially space dependent pumps
with frequencies well above the collision frequencies.

2 Wave-Particle Resonant Interactions

2.1 Single particle aspects

Single particle motion in a toroidal configuration can be de-
composed into two parts, average motion at a uniform speed along
certain trajectories and oscillatory motion about this average. The
first 1nc1udes the motion of pass1ng particles along B and the
vertical B -curvature and grad B drift. The second 1nc1udes Larmor
gyration, trapped part1c1eb0unch1ng along B in the Bébc R-1 well,
and the passing particle oscillations produced by this same B0
modulation.

Resonance occurs when the wave-frequency perceived in a frame
performing the average particle motion is commensurable with at least
one of the eigenfrequencies t&)cg of the periodic oscillations:

M (W—t‘ﬁ) ::zg N@ CUC_& . (12)

Obviously not all integers M and Ne are equally important. The har-
monics of the Doppler shifted applied frequency are unimportant

if the single particle displacements driven by the pump are small
compared with the local wave length of the em-field, while the har-




monics of the eigenfrequencies are unimportant if the elongation of
the unperturbed single particle oscillations is small compared with the
wave length. This statements follow from the Bessel function identity

e/c)&CﬂﬁX :2 JMC,)\> 6LM¥ i~
!

applied to the space dependence of the em-pump: expikz = expi(kZ+
kz ., ). In the former case z .. o< cos (Lt)t-k.é), in the

latter Z s o< €OS Ludt.

For vanishing N's, Eq. (12) is Cerenkov condition, which is ex-
ploited in Landau-damping. When W o= ¥ Wy,
the longitudinal adiabatic-invariant J, is no longer a constant, while
—7 TR =3 .
when E:. w == kWY (subscript | refers to a di-
rection perpendicular to B )s the third adiabatic invariant is

)
destroyed /3/.

If only the coefficient of the gyrofrequency is different from

zero, Eq. (12) reduces to the gyroresonance condition \
w-Lw = Nweg (Wes = e-SBo/"MSc/ .

Waves satisfying this condition destroy the invariance of /us and are
used in cyclotron heating. Notice that N can be positive or negative.
The_ latter case is referred to as anomalous Doppler effect: the ab-
sorption of a wave by a particle is accompanied by an increase in the
longitudinal (parallel to-gz) energy of the particle and by a decrease
in its transverse energy (nearly elastic scattering).

2.2 Velocity Space Aspects: qualitative description

When o >> Veoll® @n irreversible and steady energy flow from a
monochromatic em-wave to the resonant plasma particles occurs as long
as there are more particles capable of absorbing energy from the wave
then particles giving energy‘to the wave. This is the case when
Coulomb collisions are frequent enough to prevent the formation of
a plateau in the time-averaged velocity distribution function, <f>,
in the phase-space regions where particles are trapped in the through of




the wave (which we suppose of small but finite amplitude). For instance,

because of the constancy of p, a wave with a g—component parallel to E
Biu=- bB,cos(kz-wt), traps a particle with we >> w in the Tow jB 4-31u|*
regions when Iw..--w/kl2 < 2bWL : here the star indicates values at the

points where.|BO+-B,“| is minimum. In the phase plane of Fig.l the trapped

particles trajectories appear as nested closed orbits while the untrapped
particle trajectories appear as long wobbly lines. The border between

trapped and untrapped trajectories is called the separatrix. The phase-
plane region enclosed by the separatrix is called island. In the absence
of collisions a steady-state <f > must be constant along particle
trajectories. The time scale of the plateau formation is the bounce

time 15 of the trapped particles. In the above example 14 =21/ |w-KuWau |
= 21r/k..vt \/?5? On the other hand, the time for restoringgaMaxwel]ian
slope over the velocity range Aw, = vt\/§5<<vtis the reciprocal of the
effective collision frequency, Voff = VAw,? for scattering particles

out for Aw,. Since the dominant contribution to scattering in velocity
space is made by the small-angle distant encounters rather than by close
encounters which completely change the particle velocity but are much less
frequent, the collision operator (af/dit)coH has the Fokker-Planck form
describing drag and diffusion in velocity space /4/ as

. <
(6F/8t) gqq = - dive (dﬁ/dtf—D&radzf‘) (14).
> P o
Here dw/dt = coll® W and-D, = v +(AW)(Aw)/2 = Veo11 Y¥/2> where

Yeoii is the frequency of a 90° def]ectlon resu]tlng from long range
Coulomb encounters. Thus, with Yaps © co]1(vt/Aw“) the time-average
distribution function <f> of the previous example will remain close to
a Maxwellian (even whenEq (12) helds true) provided that 8 Veff >1.i.e.

Veo11 > kuvyb¥? =v". Then, if the wave amplitude is small, (f-<f>)
is small quant1ty changing rapidly compared to T coll ° it obeys, there-
fore, a formally collisionless linearized equation.

In the Timit Yerlk] S vx,'i.e. when resonant particles remain
trapped in the potential well of the wave, collisions have to be
retained explicitly in the equation. Indeed, if there would be no
collisional detrapping at all, the distribution function of the
resonant particles along w, would be perfectly symmetric with respect

X) where vt2 =2 T/m.



to the w,-value given by Eq. (12) and there would be no undirectional
energy flow from the pump wave to the plasma. The quantitative treat-
ment of the Ve = v* case was carried out for the first time by
ZAKHAROV and KARPMAN in a fundamental paper /5/. The resulting be-
haviour of the heating rate as a function of Veoll is plotted sche-
matically in Fig. 2 where the three regimes, collisional-nonlinear,
collisioniess-1inear, and collisional-Tinear are exhibited as v
increases.

coll

An important aspect of the wave-particle interaction when wave
trapping is negligible 1is that <f> evolves according to a diffusion
equation of the Fokker-Planck type also for what concerns the inter-
action with the em-field /6/:

fa<\ﬂ>/af; = W@S:S(Az;'f)’)g\w(-@ ‘\Q‘) +
+eEoc <fo/m} +(E<RYSE)

(15)

where the tensor<6i the so-called quasilinear diffusion coefficient,
is propertional to A2, the square of the amplitude of the em-wave /7/.
This is because in the presence of a wave packet, the particles ex-
perience a non-vanishing force only on those parts of their unperturbed
trajectories where the wave phase they see is slowly varying (or
stationary) and because collisions not only contribute to control the
resonance duration but also ensure that the particles "forget" the
wave-phase when leaving resonance. If TT,is the time between two
successive resonances of a particle and Aty is the irreproducibility
in 7 due to Coulomb scattering, requiring that the particles forget
the wave phase just says that BTy * Wage > 1.

This randomisation criterion ensures that at each resonance the

particle receives incoherent velocity increments.

A remarkable new result is that an equation of type (15) also
describes ion heating by a coherent Lower-Hybrid wave (w >> wci)'
propagating perpendicularly to a uniform magnetic field if the ampli-
tude of the wave exceeds a threshold /8/. On a time scale between
the wave period and the cyclotron period the ion behaves as though in




a zero magnetic field so that the wave-particle resonance condition is
essentially w = K. W. Supposing K = gy’ since OiJVy|§YL’ only ions
with Vi>m/ky (i.e. those with sufficiently high perpendicular energy)
pass through resonance, v, = w/ky (twice per cyclotron orbit). The
force they receive here can be approximated by a §-function (the re-
sonance duration is much shorter than w;%). Now any mechanism which is
capable of decorrelating the ions and the wave at least once per
cyclotron period causes the wave to be ion Landau damped (notice,
incidentally, that here the resonant particles are much more numerous
than those satisfying the Landau condition along y in the absence

of Eo y because the magnetic field sweeps the vector WL through all
angles). Collisions are unsufficient to destroy phase coherence at these
high frequencies. Instead, it has been found that phase coherence is
destroyed when the electric field is so large that the kick received
by the ion on one transit through resonance is sufficient to change
the phase that the particle sees when next in resonance on the average
by at least n/2. This is so since the magnitude of the kicks received
at resonance is a sensitive function of the phase at the beginning of

the resonance.

If we look at the phase space we discover that a such field
amplitudes (which are easily encountered in heating experiments) a
particle's orbit wanders over most of phase space, roughly spending
equal amounts of time in equal areas (i.e. the particle's orbit is
approximately ergodic). Indeed the phase space is no longer character-
ized by a single island centered around one resonant point, we=k.w = 0,
but by the presence of an infinity of higher order islands centered
around the points defined by Eq. (12). For fields above threshold,
these islands overlap thus allowing almost unrestricted motion in W,.

2.3 Velocity Space Aspects: quantitative analysis

Because of the fundamental role played by the Quasi-Linear
Fokker-Planck (QLFP) equation in the theory of RF plasma heating and
current drive, it may be useful to give here a simple derivation of
it. We start from the QL diffusion term which we want to derive in
the simplest case of a travelling electrostatic wave




E(3>{7> =S‘LkEka<é “wt) ) (16)

with EK kept constant in space and time by external sources which
compensate for the absorption by the plasma. Writing f = <f> + fl’
where fl is the fast-time-dependent part of the distribution function,
the Boltzmann equation splits into the following two equations:

o<{>/2k + /13 <e E(3,0)f, Jm> = c@&)} ()

(17)

o ot 41500, 35, +2(015 (L E<Dfm) -of, 6

thus

C(J'cg-wf:>
Qg Sa’k( eEK 8@<§;{ 3+¢(k1)'a-w) " c.c.}

< E(mDY, fm> =~ S&Jatkz(ﬁ%a"’gkl?k, %\% .

((k3-wb) (ks -wE) (18)
)&
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As the average of exp(+ 2iwt) is zero and, by definition

< e ri(k- ‘*')3> = S(k-k")y . ¥a. (18) becomes
19<£> 29
CEm = 5 C ) "+G<');3-w)’-.§ (19)

where /Emn_-— {ZV/(QZ.}(KUE-Q_))‘)—} LTS-G(V— —co)

Thus for a rectangu]ar wave spectrum, using Heaviside step functions 8(x),
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Ex =E2{0(k-k)~B(k-¥)}(k-k2) = E*B, /ak )

(20)

we have

2, 21)
I:lo ::'%E €%§§€>//2&LL. ) (

Now we consider the collision term C( <f>) = divﬁ(EQ)J In spherical
coordinates (w,08,4) with ¢ ignorable:

19 ( w4
C =w_-.,%@”)§w)+ ul“:mea% @“*935) © o (22)

For the electrons, the only species we consider explicitly, we

Jy = S (> +3670<E5/0w) |
-QD’Q" = Z.Te,/fm e,) (23)

fo = sas DI wo</6

The term proportional to the ion charge state Z accounts for the
collisions with ions and is called the Lorentz term, all other terms
describe electron-electron collisions. The jw term describes energy
diffusion and Maxwellisation, the jg term describes pitch angle
scattering and spherical symmetrisation. Taking for v(w) the high speed
limit
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VW) = Wi b fATMe W2 = A Juy3 Y

and writing £ = cos 8, Eq. (22) becomes, dropping the angle brackets
for brevity,

<;<3§L:) = CZ-E;(EF'j) + (:45<3£1)) )

Ce {f%;ilégéii;{iﬁg,-+-{5 V= A o , (25)

I

W~ oW~

O
l

s =10DLFHE-BE)  w

Equation (25) conserves the electron number density but not their
energy. This drawback is the result.of an oversimplification in jw.
An ad hoc energydiffusion term conservirg also energy is

C; = —,ﬁ:;_ %Mg’m(wm—f))) X

The collision term has a remarkable non-vanishing momentum: the

(27)

collisional rate of change of the particle free-path parallel to a
given direction:

Y =08 =g (LB Im)CE) .

(28)

With d3 = 2r w2 dw de and Eqs. (26) and (27), we have

X =z waif Ry QW@H-B))%@#)%((‘*S%% [y
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and repetedly integrating by parts

ﬁﬁ_‘f/
5 =—@+z> Lw W 29)

(Using Eq. (25) would have given the same result to within a correction
O(VE/WZ)). Thus

- Sa(,sw,w—;ﬁ 54z gaé W%}C@) -

Since, on the other hand,

appt + @ =CEY,

s J
where T is the flux of particles in velocity space including, but not
restricted to, QL diffusion,DC-electric field acceleration, etc., we
have

. K- JL% QU] g cﬂLLf-* r1
;}U Er Z uJJ( // Cuf g (32)

=== gfu—;:(ﬁg/ o )(Wa [Y(wr))

(33)

This is a special case of a remarkably general result derived by
Antonsen and Chu /9/ who expressed w,/v(w) in terms of the Spitzer-Hidrm
distribution function fSH’ i.e. the solution of Eq. (31) when fjis
solely the result of a DC-electric field, weak enough so that f departs
only slightly from fM at all energies (i.e. there is negligible runaway

electron production):
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then . ' w" 0 <£
:}53}{ = "Qalg; 0TS

and from Eq. (32)-

o (L, 2B /0T
dsw = 5+Z |

Thus we have

L., - £ wieFic [T(2+5)ew)

Equation (33) then becomes

jn = gﬁi; Cﬁ oo Q‘%T‘QSH/QQ MG/EDQ)

which is essentially Eq. (7) of Ref. /9/.

The time average of the absorbed power density is

(i3 ool = LB (T e’

As an example, consider the case of a monochromatic pump

13

(34)

(35)

(36)

(37)

E(z,t) = E, cos(k Z-wt) with sufficiently small E to be allowed to

set af/aw" = kﬁfM/v in be Then Eq. (37) prov1des the classic

Landau-damping result
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-

2 2 ~ W2
We, = § s Eq Jwsmp2 & wite

(38)

where the expression in curly brackets is the reactive electrostatic
power density, wﬁs is the plasma frequency and Wy = m/kovt 5 1.

An analogous expression can be found for j, from Eq. (32) or (33) in-
the same limit. The ratio

) _ e 2Wo*
?;;/W MLACTIES (39)

is usually referred to as the figure of merit /10-12/.

-
In the case that B is very localized in velocity space we can

write for -j./w
| L (T 2/o0) (Wa /o)
WY = TZ (R oE) L (20

an interesting result, independent of the form of the distribution
function, first derived (in a different way) by Fisch & Boozer /12/.
The surprise in Eqs. (33) to (40) is that 3. can be generated even
inducing a purely perpendicular particle flux. Following Ohkawa /13/
a cyclotron wave travelling in one direction along the toroidal co-
ordinate can be used to selectively increase the perpendicular energy

of the resonant electron population, in order to asymmetrically
trapping some passing particles. At the same time, trapped particles
are symmetrically detrapped by Coulomb collisions., As a result, there
is a net increase in the electron toroidal angular momentum in the
direction opposite to the propagation of the wave. This momentum is
dissipated by the ions to generate a toroidal current. The fact that
a net momentum is created opposite to the wave momentum is not sur-
prising. For instance, in axisymmetric geometry only the canonical
momentum of a particle is conserved: if there is radial displacement




of the particle orbit or a driven radial flow, there is indeed creation
of toroidal angular momentum, mRv¢,

(41)

L k)= dp(Ray) < etz RBg

where V4. s the electron drift velocity along the minor radius of
a plasma embedded in concentric magnetic surfaces.

The Ohkawa effect is described by Eq. (36) by taking for the
Spitzer-Harm distribution the expression appropriate to passing

particles in a torus, which has a loss cone defined by [g[<|gy: 0.l

Finally we want to prove the formal similarity of Landau and
cyclotron damping in the collisionless linear regime. Assuming for the
unperturbed state a uniform velocity distribution fo which is a function
of the kinetic energy, e, and for the pump wave the usual form
exp i(K.¥ - wt), the Vlasov equation for the perturbed part of the di-
stribution function fl. Eq. (17)b, for W<, becomes

[e(R-Tm) e 0, = - (defded A /de

(42)

where (ds/dt)1 is the perturbation of the rate of change of the single
particle kinetic energy in the drift approximation

(defdt), =Qi‘€ +/“~951/at )

(43)

and'VZ is the unperturbed guiding center velocity which we assume, for
simplicity, to be independent of space and time. The last term in (43)
is the induction effect of a time dependent'ﬁtfie1d and is due to the

curl of'E§acting about thﬁ_;ircle of gyration. Obviously this term has

to be dropped in the case B0 = 0.

The solution of Eq. (42) describes Landau damping provided that
. ) . . A sex 14
when integrating over velocity space the quantity [( «Np=w )=ty

-AtS_,



be interpreted as
Lo [(ET-)= VT PSET -0) '} 4
V-0

(44)

where P indicates that the Cauchy principal value has to be taken and
§(x) is the Dirac function.

The simplest case of cyclotron damping occurs with a circularly
polarized wave propagating along a uniform Bo—field: El(r,t) = El'
(excos(kz-hot) + eysin(kz-tot)) where we use Cartesian coordinates
with z taken along Bo' By writing Xy =Wy sinsb and wy =W, cosqﬁ i
where dtﬁ/dt :Lob' for the velocity components and the corresponding

equations for the particle coordinates x and y, we obtain

C‘ig/d’b),i = ew; B 4m (k3 +p-wt)

(45)

and for fl o< cos(kz +cF -wt) the following Vlasov equation

@wz -L-wc,-w)-é = Cd,E/oLE:>4 0(1‘%/&4'5 ' (46)

-3
Harmonic cyclotron damping occurs if the wave vector k has a component
say along the x-direction. In this case, the Jacobi identity, Eq.(13),
can be used to write the Vlasov equation in the form

(kg s ) = (efde) |3, (vl df e

(47)

where (dc /dt); can again be given by Eq. (45). Equations (42) to (47)
show the basic similarity of Landau and cyclotron damping.

- 16 -
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The time average of the absorbed power density is then given as

w =4 Ra § 80{’3“?%%@”6/ 0@4 g :

(48)

where the star indicates complex conjugate, a3 - 2wdw”d(wf/2) in the
Landau-damping case, and dBW = d¢dw"d(w5/2) in the cyclotron damping
cases. Notice, in conclusion, that Eqs. (43) and (45) give the kinetic
energy excursions of a non-colliding single particle, and that the
piasma temperature increase may well be much larger than these ex-
cursions: the latter are nothing more than the basic steps of the
"random walk" process in energy space to which power absorption is
ultimately due (even though this process is not explicitly exploited
in the actual calculation of W).

3. Wave propagation in non uniform plasmas

In this section we briefly discuss the main properties of wave
propagation in a magnetically confined plasma. In such a radially
stratified medium, not only the frequency of the wave but also the
two wave numbers corresponding to the toroidal and poloidal directions
of the torus.can, at least in principle, be thought of as being de-
termined by the external launching structure. Then the radial de-
pendence of the wave quantities is determined by a system of ordinary
differential equations. In a warm collisionless plasma with fixed
temperature, this system is equivalent to a single sixth order
equation in one of the field components, whose solutions correspond
to three kinds of waves (there are two of each kind differing only
in the (opposite) direction of propagation). These three waves corres-
pond to the existence of three different interaction forces. One force
derives from an electrostatic potential ¢, the other two from the two
independent components of a vector potential R. These three forces
are related to the kinetic pressure, the electro - magnetic pressure,
and the electro-magnetic tension. However, we shall see below that
if w << w_; the x-dependence of the wave is given by a single

ci
2nd order equation. This is because the B-tension force along x
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-
does not depend on x, and because across B0 the kinetic and magnetic

pressures appear always combined in the single quantity (p + B2/8n)1.
In the opposite limit of very high frequency, charge separation and
electric forces are dominant. The necessary inertia is provided by the
ion (electron) mass if the frequency is very low (high). In general,
however, the effective jnertia can involve both Mg and m, and is a
sensitive function of the ratios m/mCa and of the nature of the inter-
action force.

In a hot collisionless plasma there is virtually an infinity of
waves (the dispersion relation involves transcendental functions of
the wave number vector E. instead of the first three powers of I<2 as
in the warin plasma case) although only some of them will be observable
and even fewer will be relevant to plasma heating: e.g. the so-called
Bernstein modes which are very slow waves propagating almost across
Eo at w =Nw_ Transcendental functioni enter for two reasons.

(1) Only particles whose velocity along BO is sufficiently close to a
resonant value (12) are sensibly affected by a very-low-amplitude

wave with given v and k,. Since the strength of such an interaction

is controlled by the slope of f0 at the resonant velocity - a trans-
cendental function of w/k, - this introduces the Fried and Conte plas-
ma dispersion function. (2) Because of the Larmor excursions of the
particles across ﬁ;, the Jacobi identity (13) introduces into the
dielectric tensor series of Besse! functions of argument

(ks "’Es/“’cs)zlz'

If the temperature is neglected there are only two kinds of waves

in an essentially collisionless plasma. Taking all wave amplitudes
~iwt

« e , and normalizing lengths to c/w, Maxwell equations read
curl E = iB (49)
curl B = -iD (50)
D=cE (51)

-> -
With orthogonal coordinates (xl,xz,x3) having X3 along Bo’ the non-
vanishing components of the cold-plasma dielectric tensor ¢ are

E.EEnmF 4 = | — .%QJ;TS/CLOL—-&J(JE) )

y 2 % o6
Eln=-€2 =&, = “25 wPSwﬁs/w(w_w"S)) (52)
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(neglecting unity on the RHS of Egs. (52) is neglecting displacement
currents).

First of all we consider the case where the space dependence of
the plasma parameters is negligible and assume wave amplitudes
>

. o o,
e'!ﬁ_,_-XL‘FI Ny Xy (aS usual Subscripts L and " refer to the BO di-

rection). Then the solubility of the linear system (49)-(51) is the
cold plasma dispersion relation (DR)

g 2
E,imf-__\:,m_,_ +C =0 -
]

with
b =(E4+E2)(E4-Mi)+E2 5 C=Eq [C‘E‘"m'})z'“‘cﬂ
and A = g\— 4846 ==

— [64@54—83—-M?,‘)+ &+ Es ]Eﬁ((&fis-m:} +Ez.“"“u\r§_—5] ‘

When bZ 55 iEc e

|Eo-e)(ey-mt) < 63| > 2 Mg NE |

(54)

the solutions of the DR are the so-called extraordinary (X), and
ordinary (0) wave

" |
My X =~ C84‘m;)+e';: C&r-mpi))

=
M7 = Eo(8-)/5y .
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In the special case of perpendicular propagat1on Egs. (55) hold
strictly and with no restrictions . on <.

From Eqs. (49) to (51) one can deduce that the extraordinary
wave has E, = 0, while the ordinary wave has B, = 0. These facts can
be exploited to derive the separate equations for the X and O waves in

an inhomogeneous plasma, when the WKB approximation can be made along
23

B :
0

:6: %’WQ’QQ = gm“BO\TQ ' (56)

For the X wave, from E, = 0 and from the Xy and %o components of
Eq. (49) we obtain

E:_rn”Ez ; Bop = fﬂ"E,,

Y (57)

Then the Xy and x, components of Eq. (50) become

(E,~Mi )E +&, E =¢'g Bu >
-, B4+ qu—mff_)E,t -'-‘-”‘:QX,, Bu )

or

[Ces- m%)q-'\’ 522,] E,= c (“ 52_’8)9, +(54“M?I)Dx9 B
(58)
[Cﬁ,,_ - -’Y\T})Z—l—gé] E2 == CCEA"M?,')%% —EZQKQ')B”I

Expressions (58) inserted into the x3-component of Eq. (49) give

Q)({ i“’ni)g}e BII Ee, e t} —{-85( &My Xy, +69;<IB,,2 'B = D
’ C«?,,_ n) +E5 (E-miveT -)

(59)
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Not all space derivatives of ¢ are equally important in such an
equation. Keeping only the derivatives of(sl-ng)which can vanish,
Eq. (59) takes the more transparent form

Qx1 (@4 ‘"mff) BX’?)’D +9x_.,_((84”m7.7 9x§9+(651 *M@ﬁ-&@ B,, Eel)
(60)

Since in a uniform isotropic medium (52 = 0) the equation has to be of
the Helmboltz type, Eq. (50) can heuristically be put in the intrinsic
form

M{Cerm;j%&,}{(s{-myg e [B =0

For the 0 wave, from B, = 0 and from tihe Xq and Xo components of
Eq. (50) we obtain

62)
E (
£,Ey = —My B, + €2 B4
and from the x, and X, components of Eq. (49)
LB’! = gXQ__E” — Lm” }:2
(63)

L\BZ. = — )g{t” +Lm“ E/f

so that

(e,—-mi)Es = cony O, Ey-& E,
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Inserted into the x;-component of Eq. (50) they give

Eo,E, = = i ®X4EH L0 (émlIQX,IEI]—g)_Ez)E_

84 —m“

— D o B = ?_Cw'lugxz n €2t
()

Disregarding the x, 2derivativeof €5 and (sl—ng) and using again
]
B, = 0, give finally

’gx,( C‘g'f 9)«,, EO +9.><2C54 9*,,5,)-{-83 [Errhﬁ) E, =P

(65)

which for nﬁ >> 1511, becomes the equation for an electrostatic wave.
This suggests the following intrinsic form of Eq. (65):

dir (€4 s i) + Ex(8-m7)E; =0 (4

When the WKB approximation is made also along the other coordinate

- say x, - on the magnetic surfaces, Eqs. (61) and (66) become ordinary
differential equations in the radial direction. They can always be put
in the "canonical" form d2_y/dx2 + kz(x)y = 0, where y(x) is the product
of a properly chosen function of x and of the field component under
consideration.

Points where k2 = 0 separate a region of wave propagation (k2 > 0)
from a region of evanescence (k2 < 0). They are called cut-offs
(C-points) since they produce at least partial reflection of the wave
energy flux. In a nonuniform plasma no general simple statement can be
made about the number and position of the C-points as they depend upon
the behaviour of the e's as functions of x. The physical significance
of the points where the coefficient in front of the B,- and E,-deriva-
tive in Eq. (59) and (64) goes to infinity is simply a statement of
wave polarization: in space such points are usually quite close to
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C-points. In a uniform plasma the C-points of Eq. (61) are given by

g)) = eg. those of Eq. (66) by equation
(al-n“) €3 = Ny €4. Energy transmission through an evane;cence region
of finite width is called tunnelling /5/. Points where k= -+ « are
called resonances (R-points): they are the only places where energy

can be absorbed in the limit of zero collision frequency. In the case
of perpendicular propagation only the X-wave has R-points: when € = 0.

When n, #0, it is the O-wave which has R-points when ¢ 1 = 0, while

equation (e;-n ) (eq - (nE+n

now Eq. (61) has R-points when €y = nll # 0. However, a close examination
of the va11d1ty condition (54), would reveal that Eq. (61) is correct
when €1 nﬂ £0 on]y in the Timit eq + @ and that only in this limit,
i.e. when y is so low that the electron inertia is negligible, we can
speak of a resonance at gy = ng # 0. In all the other cases, the points
where €1 = nE turn out be close to the points where € = 0 and the
situation is such that there are no longer two decoupled waves as

there the two phase-velocities would have comparable values. These
physically significant points are called linear mode conversion or
turning-points (T-points) since the rf-energy can pass from one wave

to the other. We leave the discussion of the T-points for the next
section and concentrate here on the R-points.

The resonances occuring for € = 0 are generally called hybrid
resonances. There is one hybrid resonance frequency above Wea and one
between every two consecutive gyrofrequencies of the various ion
species in-the plasma. Thus, in the important case of a two-ion plasma
(for example D-T or H-D) there are three hybrid resonance freguencies

/14/:

1. The upper hybrid resonance (UHR) frequency

9 2 A 2 i
W™= Wyyr = Ype+ W (67)
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2. The lower hybrid resonance (LHR) frequency

2 ; i
w‘).__:: sz_HR ~ 2: QJPL /(4+Q.)P@/wc’a) )

(68)
where we assumed wgi << mgi' and, with the same assumption,
3. The ion-ion hybrid resonance (IZHR) frequency
2 Z- as (09, 1) MM (4N M2
W= Cr2yp e — ) (69)

mlﬁ’nq,‘!' mlmi

where ni(mi) is the number density (mass)of the ion of species
i = 1,2. Equation (69) depends on the ratio n1/n2, but is independent
of plasma density.

In a single-ion species plasma the non-electrostatic e = ng #0
resonance occurs at the frequency

w* =W (A + (/K€ ) (70)

where we have assumed w_: << w_.. This is called (rather improperly)

ci pi
either the shear Alfvén resonance or the perpendicular ion-cyclotron

resonance /4/. In a two-ion species plasma there are two solutions

to Eq. ey = nE # 0 in the ionic frequency domain. If “El: <<ziwﬁi <<
pi > {{ka€)Toucy 2}

one solution corresponds to a resonance at the frequency

2 2 2
(kuc)™ they are close to w j and v p. If I w

w*=(k,c ‘chwc;DZ/Cw‘: wg;,"rwzz@%i,))
(71)

which is related to (70), the other being very close to the W124R?
Eq. (69), corresponds to a T-point.
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4, rf-energy flow and accessibility

e e ]

An important property of the resonance frequencies (67) to (71)
is that they do not coincide with any of the eigenfrequencies 0l of
the unperturbed single-particle motion. This is a direct consequence
of the fact that at resonance the displacement currents are negligible
/16/ (this is a consequence of Faraday's law) so that div 3 = 0.
Indeed the latter equation implies that at resonance the s-species mean

velocity ?Shas no component in the x-direction. This is possible only
if the E—component which rotates in the same sense as the s-particle
unperturbed motion vanishes when y - weg SO that v (left) + v
(right) = 0. Frequencies (67) to (71) are the eigenfrequencies of the
free oscillations of the plasma-field system which do not propagate
energy in the x-direction : their group velocity must either be
parallel to the resonance surface or vanish. It is only in such cases
that resonance does occur at the points of a plasma profile where a
local eigenfrequency equals the frequency of a propagating em-field.
When thermal effects are neglected, the group velocity of the electro-
static modes € = 0 van1shes, while the group velocity of the electro-
magnetic modes €1 = n“ £ 0 is along B . For instance, when IR
the group velocity is equal to the Alfven velocity vector B o4me)= 1/2:
in this Timit the free oscillations are essentially those of a collection
of elastic strings stretched along'§5/17/.

We now consider the problem of power absorption in the case of a
wave incident on a plasma profile where it encounters a R-point. The
very fact that for real w equations (61) and (66) are singular in real
space at the R-points, implies that no dissipation mechanism is in-
cluded in the equations. However, absorption is formally obtained from
their singular solutions if, when integrating over real space, these
are interpreted as generalized functions of(@res(x)-u . Thus as 1in
the Landau damping case (44) the power absorbed is independent of
Veoll® The underlying physical picture is the following. If we examine
the group velocity we discover that t+R’ the time it takes the wave
energy to approach the R-point starting from any point at a finite
distance from it, is infinitely long /15/, in the sense that
t+R = lim a/v

Ycoll » 0

11 Where a ~ 1 is a constant. Therefore the
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rf-power density would become infinite at the R-point (both 3 and E
tending to infinity) unless energy is dissipated by some mechanism. If
« = 1 Coulomb collisions in the immediate neighbourhood of the R-point
provide the required mechanism. If & << 1 a different effect must be
looked for. This is provided by Tinear mode conversion to a warm (or
hot) plasma wave since a R-point of a cold plasma wave is the point
toward which the T-point of some warm (or hot) plasma wave tends when
the temperature goes to zero. This is illustrated on Fig.3 which is a
plot of ki:ki(kﬁ,ki,m;x) as derived by a Tocal dispersion relation (of
course the WKB-approximation fails in the neighbourhood of a T-point).
The important point here is that the square of the phase velocity of
the warm (or hot) plasma wave steadily decreases when the distance from
the T-point increases. Thus if the phase-velocity at the T-point is
still too high to allow for substantial wave-energy dissipation there,

the rf-energy is diverted away from the T-point until the wave reaches
a plasma region where the conditions are met for efficient damping. A
completely satisfactory understanding of the energy flow and absorption
problem in such cases became possible after the appearance of a funda-
mental paper by ZASLAVSKII etal. /18/. They used the theory of the
solutions of differential equations of the type ay V(x)+B(x)y"(x)+
v(x)y(x) =0 (primes denote x-derivatives) with a small parameter a
preceding the highest-order derivative, to handle quantitatively the
wave transformation which takes place at the T-point g2 = 4oy. A direct

application of these techniques to the hybrid resonances has been made
by STIX in a frequently quoted letter /19/ where he showed that a
cold-plasma wave moving inward towards the resonance can be completely
converied into a warm-plasma wave (Fig. 3) well before the resonance
point is reached.

Let us now briefly discuss power flow and absorption when C-points
are presented on a plasma profile at some distance from the R-point.
Figure (4a) is an example of a fairly compact C-R-C triplet where the
R-point separates propagation from evanescence regions. This situation
is encountered at low frequency (mz << wii’ see Eqs. (69) and (70)) in
the case of the fast wave (Eq. 61) when nE < (gl-nﬁ . The energy flow
in the case of a wave incident from the right is calculated in /20/ .
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The power absorption is found to vanish with the distance Cy=Cy = (w/mci).
If'ng >> [sl~n§ » the R-point is located inside the propagation region

(Fig. 4b and /21/).

The situation corresponding to resonance (68) is recovered as the
limit of the previous case for ¢; + = (Fig. 4c): this is treated in de-
tail in Chapter 21 of Ref. /15/. A fast wave first encountering the
C-point is to a large extent reflected there. Due to tunnelling through
the evanescence reqion some energy is absorbed at the R-point and the
rest is transmitted beyond this point. A fast wave first encountering
the R-point experiences strong absorption, no reflection, and, again,
some transmission through the evanescent region. These facts are ex-
ploited to calculate power absorption in a Tokamak /22/. A qualitative
picture of the C- and R-surfaces on a Tokamak cross-section as derived
from (61) when the geometrical optics approximation 3/ax = ikx is made,
is shown on Fig, 5. If Vp << G i.e. neglecting displacement currents,
the situation of a single-ion plasma is particularly simple /23/ being
described by

(kyyw)? [A : (k//vA/m)"]= (A+ (A%-A ) (K vp/w) P HA- (A2-R)¥2- (k v, /wf )

(72)
where v, is the Alfven speed and A = o2 £ e - 2) A plot of k,v,/ )2
A P WeillWgimw ) AP a0

2

versus k"vA/m) for two cases, w<w_;(A>1) and “>wci(A<O) is shown

ci

on Fig. 6. Thus if wew 5 there are two C-points and one R-point, if
w>méi there is one C-point and no R-point. The existence of kg-inter-
vals where kL2 > 0 offers the possibility of eigenmodes within the

plasma torus. They occur when the toroidal wave number is such that

kR=n=20,1,2, ... and Jm (ka) =0 (73)

where R and a are the major and minor radius of the plasma, respectiv-
ely, and Jm is a Bessel function.

As first emphasized by ADAM and SAMAIN /24/ heating in the ion
cyclotron resonance (ICRH) domain in large (and dense) toroidal de-
vices is based on the penetration and polarization properties of the
fast wave (Eqs. (61) and (72)) with appropriate (m,kg,k¢)
(8 is the poloidal angle) and is very different from ICRH in the
model-C Stellarator /25/. The latter was essentially based on the

values
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the longitudinal propagation of the slow (torsional) wave with given

(w,L sk ) values towards Stix's magnetic beach. In the case of the fast
wave, the left-hand E component, E,, which is the component rotating in
the direction of the ion gyromotion, is strongly screened in a dense
plasma (wp1 ¥ k,c) when W s s ER/|E|: kur ;/2/7, and only moderately
reduced when w20 s, E /IEI 1/3. Recent ICRH experiments in two-ion
component plasmas where w2 = 2wc1 (e.g. H-D plasmas) have thrown new
lights on the entire subject by demonstrating the importance of the re-
lative concentration of the species on wave damping and particle heat-
ing /26/.

If the parallel wave number is chosen so as to satisfy the transit

time resonance condition for thermal particles w = k, Vig << w then

cs’
|A] <1 and in a Tow B plasma [K.v,| >> w. Thus Eq. (72) gives
KE g.-KE: the wave is radially evanescent but with an acceptably Tong

evanescence length if

T g Kpa} =ma/R 4. (74)

Transit Time Magnetic Pumping (TTMP) has been proposed in various
versions /21, 27/ depending primarily cn the nature of the driving
term in the energy equation (43) which reads

(s /), = e By s (D2 PR 410828

(75)

where Z is along the axis of a vertical cylindrical coordinate system
(Fig. 7). The last term on the right hand side of (75) is the driving
pump of the original TTMP version - the compressional version - which

involves sinusoidal modulations in the ¢-direction of the B-field
strength, B |B B /B | produced by ordinary m = 0 azimuthal coils.
In this case the so]eno1da1 part of E is mainly E19 and the E1 term
of (75) can be neglected. On the other hand, there is in addition an
irrotational E"l component which ensures charge neutrality in spite of
the preferential action of the pump on one of the plasma components,
when o = K- V _k..V..S As first shown by KOECHLIN and SAMAIN /27/,
TTMP can a]so occur with a torsional pump (B B = 0) characterized by
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a solenoidal E12 component. This field is essentially constant along z,
sinusoidal in ¢, and weakly dependent on R, and can perform work on the
particles thanks to the existence of the vertical drift velocity (again
in the presence of an electrostatic Eul-component). The most appropriate
field structure has the wave numbers |m| = |n| = 1. An interesting coil
system which can produce it (particularly easy in D-shaped vacuum
vessels) is shown on Fig. 8.

The characteristic frequency of these two TTHMP versions is between
a few tens of kHz and about 200 kHz. Other TTMP versions have been
found /27/ some of which involve w = kl-Vols(ku + 0), corresponding to
operating frequencies from a few kHz to a few tens of kHz.

The heating rate has been calculated in the various cases: roughly
‘it has the form y, = |E.Vos(w=vts)l.|gl/§0[2, so that in order of mag-
nitude the power density absorbed is = B|a{(E°+B%)/8n}/at|. In a Tow-B
plasma this is unfortunately a small fraction of the available reactive
power density. However, the thermonuclear prospects of TTMP (in all
his versiors) are poor because of a more practical reason. The first
wall of a thermonuclear device is opaque to em fields with f X 100 Hz
and the instantaneous RF g-flux through any poloidai or equatorial
cross-section of the vacuum vessel has to vanish (this follows from
Faraday law, since the line integral of E all the way round any closed
path on the conducting shell vanishes). Thus if the instantaneous RF
g-flux created by the RF coils through the poloidal or equatorial
plasma cross-section does not vanish - as here with waves which do not
oscillate in space (74) - eddy currents have to flow in the first wall,
Then the heating efficiency is the result of a compromise between two
contradictory requirements: diminishing the image currents in the wall
while keeping the plasma cross-section as large as possible. One
realizes that the efficiency of any ion TTMP version will remain dis-
appointingly low even in large thermonuclear devices /28/. Therefore
our conclusion is that the lowest practicable frequencies for RF-heat-
ing purposes in toroidal plasmas are the Alfven frequencies m>lE.;AI
at which kE>O at least on some readial extent within the plasma column

/29/.
In a toroidal plasma the quantity k"vA. which is proportional to

kyBo = K. Eo = (nBy/R + mBy/r) = (nq+m)By/r -




(q is the usual safety factor or inverse rotational transform) is a
function of r which vanishes at the MHD singular surfaces q(r) = -m/n.

Thus it may well happen that the R-point (A = (k“vAﬁxgz, occurs
within the plasma even if at the plasma periphery k"(a)vA(a)>>w. of
course the R-point may occur within the plasma even if k. never vanishes
as in the original proposals of plasma heating by a resonant fast wave
/29/. Theory predicts /30/ that as long as there is one R-surface or
two R-surfaces well separated in space the fraction of the available
reactive power which can be absorbed should be substantial.

It remains to consider the hybrid resonances (67) and (68). Both
cases are recovered as the Gy o5 = limit of Fig. 4c. In this highly
idealized model (Fig. 4d) the resonance is inaccessible to a wave
launched from the left, while all the energy of a wave launched from
the right is completely absorbed at x = 0.(in reality in the latter
case the cold-plasma wave energy is lincarly mode converted into a
warm-plasma wave at a T-point located on the right of x = 0, see Fig.3).
Let us first consider the L.H.R. frequency. It can be shown (1) that
the resonance the X-wave has at the frequency (68) when k.c/ws0 is
inaccessible from the low density side, and (2) that ki, the square of
the wave-number vector along x of the O-wave, is real and positive
all the way from the C-point

(Wpeeausf = 1+ %5 /(K2 - (ofeY)

(77)

to the R-point (67), provided that the externally launched wave is
slowed down along B0 so as to satisfy the Stix-Golant condition /31/

=\ 2
i > (4 -] = |+ (pe/We) [wihr=w]/ (78)

where n, = k,c/w is the parallel index of refraction. The last sub-
script in (78) indicates evaluation at the point where the frequency
(68) is equal to w. A very successful LHR antenna is the Grill /32/
a phased array of wave guides (mounted flush on the liner) with their
small side in the toroidal direction and excited in the fundamental
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TE01 mode. A complete theory exists of the radiation properties of the
Grill in realistic situations /33/.

As the C-point (77) is at the very edge of the plasma for the
frequencies under consideration (Fig. 3), efficient tunneling can be
easily obtained from a rf-antenna which is able to create an electric
field essentially parallel to Eo and to concentrate most of the rf-
power in the accessible part of the n,-spectrum according to (78) (the
inaccessible part of the rf-field is trapped near the vacuum wall and
eventually absorbed, resulting at best in low grade heating). If the
accessibility condition (78) is violated there exists an interval
T1 < X < T2 in which the two roots ki of the cold-plasma dispersion re-
Tation are complex conjugate and the waves evanescent: T1 and T2 are
T-points, Fig. 9.

In the UHR-frequency domain it is impossible in practice to slow
down waves along Eo’ as the required launching structures would have
to be placed at a distance of the order of the millimeter wave length
from the hot plasma. Thus the injected waves have real direction angles.
The ray paths are traced by using the geometrical-optics equations /34/

dr/ds=(dr/dt)/ ng= - sgn(aD/dw) (aD/3K)/| 3D/ 3k]|

dk/ds = (dk/dt)/ V| = san(30/aw) (20/F)/ | ab/ak| (19)

where D(w(K,¥),K,7) = 0 is the local dispersion relation (53), s the
arc length along the ray, and Vg the group velocity. Equations (79)
are integrated numerically for given initial (at s = so) conditions

?0, KB. Propagation purely perpendicular to the magnetic surfaces is
most easily visualized by transposing to the poloidal cross section of
the plasma torus the Clemmow-Mullaly-Allis (CMA) diagram giving for a
plasma slab the C- and R-points of the X- and O-waves in the {(w e/m)z.
wce/m}-plane (Fig. 10). We obtain Fig. 11. The X-wave, thanks to the
1/R-dependence of Bo, is accessible only from the inside of a vertical
cylinder of radius R, where wce(Rm) = w; it is deflected toward regions
of weaker Bo—amplitude up to the UHR surface - actually a T-surface if
thermal effects are retainded - where it mode-converts to an electron
Bernstein mode which is eventually cyclotron damped /35/. The O-wave

penetrates up to the w__. = w surface, being reflected away from regions

pe
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of relatively-high density. If k # 0, the 0- and X-waves are no longer
uncoupled: it exists a k, interval (Fig. 12 and Ref. /36/), for wh1ch
the O-wave energy is transmitted slightly beyond the C-poing (mie = w )
and is almost entirely converted to the X-wave at the cold-plasma
T-point (it is further transferred to an electron Bernstein mode,
etc....).

With regard to Fig. 12 notice that when |k,| is larger than the
value for which the T-point coincides with the C-point, the branch
which exhibits the UH-resonance is the ordinary wave in our labeling.

5. A ponderomotive effect in LH current drive

The measured value of the steady state current driven by LH waves
in an initially Maxwellian plasma of sufficiently low density /37/ is
orders of magnitude higher than expected given the nominal M, spectrun

of the couplers /11/

~lf2 @-—wi:‘

1144/ 2.1 mal T e C(ﬂ"l- - . (80)

Here I is in MA, /] is in units of 1020 electrons per m3, a - the plas-—
ma minor radius - is in m, T - the electron temperature - in keV, w,.‘-
= 255 Q/MHM T; and subscript m (M) denotes the lower (upper) limit
of the m" spectrum, taken for simplicity to be rectangular. Eq (80)
reproduces the experimental values if u)"e.'3, 1.€s m“MA_-: ST 'l?‘
however, the fn“M value deducible from the nominal spectra 1n /37/

is pretty much one half of that value, and this gives exp (9-w ) =

= exp (-27) 22 1.88.10 12. In what follows we tentatively suggest that
the required doubling of ‘n“M and concomitant broadening and upshifting
of the 'ﬂ“ spectrum is produced by the quasi static ponderomotive force
caused on the electrons by the LH wave. If ¢ is sufficiently in excess
ofL‘)LH (Eq.(68)) to avoid linear mode conversion to the warm plasma wave
for any 'n" within the plasma then E is essentially electrostatic, the

temperature can be neglected, and
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EL /E =mi/my = -€s/¢,

~ (M fome,) Wl /(wz— WOy -
(81)

In this case the ponderomotive force is the gradient of the momentum

independent ponderomotive potential /38/

(), =Z (fma)(Erfe™+ EF/=iy Y

a2 (82)
~ 2E,,/Zu»fvt(;;c,o"'f_‘:.E//Yl )

where & is the time average reactive energy density including both

electric field energy and particle kinetic energy /14/

e ~ i Ej flem(@w =y ) . o

In the presence of ponderomotive potential (82) a quasi-neutral plasma

is in Boltzmann equilibrium

Mg. = m(r)e E/MCA')(TQ'{'T")

or (84)

om/m & - E/m (Te +Te) -

Now the group velocity trajectories of the LH waves (Eqs.(81)) are inde-

pendent of wave number: e.g.

(85)

(/2 =V5x Vs = = Mu [t

Thus the field radiated by a finite length LH antenna tends to con-

centrate around patterns of constructive interference, called resonant
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cones /39/. Since in the experiments referred to in /37/ the direct ab-
sorption of the injected spectrum is negligible, the waves which are
transmitted to the plasma will travel around the torus a very large num-
ber of times, with essentially unchanged form. We postulate that these
waves keep their space-coherence to a sufficiently high degree to be
allowed to write that on a substantial fraction of the plasma volume

Ez(r) is schematically given by

E,-lz. g EZ‘{ 1 +a(M)m3 ""m.l."’-)}/z- )

(86)

where for brevity reasons we have omitted the effect of cylindrical geo-

metry. As a result

My = L (3,0) % My Wpe fe3 =My (4+SM/m)<op>

o fﬂ“ o {"( e (” +Con (MHQ -B‘MJ_}L))EO/Z”TEO (87)
L Wped/W >

— . .
where £, = &, (Eeo ) Now Jacobi identity (13) can be used to find

that the following Fourier components are created within the plasma

Ms ‘"J “(NE, /J O) e[ =0, 1,2,

(88)

with

h=Kion &/4M(Te+T0Y),

ES=(4+S)1<O 5 Wg =W, /(4 +9)

(89)
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Doubling N]"o corresponds to s = +1, tripling to s = +2, and so on.

€ is related as follows to the absorbed power Pa’ which we anti-
cipate to be essentially due to one single s—-Fourier component, and

be given by Eq. (38)
s —We
P x Ve 2WWowWTe = V& /T,
(90)

L

wt,, ~ e/ 2w 20\

s
(91)

2 : ; .
here e_ = e(ES ), V is essentially the plasma volume, and t;s is the

energy absorbtion time. Then Eq. (89) becomes

)\ :w%a_s/i, ) /_L = k_;_o )Z-PQ./‘?‘QJVMT

(92)

Requiring that, as in the experiments /37/, P, be sensibly equal

to the transmitted power

R: "‘861/'\610' ) (93)

where €, is the average energy density at the Grill mouth, and A

G G
the cross sectional area of the Grill, leads to
60/8q = CCTQ_S/Q-HR) Aq/'ﬂ'a_?'
(94)

The RHS of (94) can have a large value (see below) and plays the role
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of a stacking factor or of the quality factor of a resonant cavity.

Eqs. (91) and (92) now determine ’2——35 as a function of Pt. Antici-
pating that As <<|s|, we find

)14-25S S </ 2 UJ;'
e =(2 5.)/0-6 [ SwWE

T -4
[ ...zs s I+2S
as = \l?r‘wg:*s

with
o 0.75 10 muM R
‘ﬁa:RT\]m.

where P is in MW, £ - the Grill frequency - is in GHz, the other units
being those of Eq. (80). With the parameters of /37//‘_,/\— 0 (10~ )

=1
As < 10 . With nuo = 2.66

Ty = Qo‘z’ﬁfv/g) « 2 ls154;

(96)

thus typically 2‘0. ne ]O/LS , which gives with Eq. (94)

Eo /g = 103 Ag /ua”,

It is well known that the experiments have demonstrated maintaining
of substantial current by LH waves alone, only when the plasma density
is below some critical density, while at higher densities RF current
can no longer be driven. The critical value could correspond to the
point where the T-point for diverting energy from the primary wave to
the warm plasma branch (Fig. 3 and Ref. /19/) appears in the core of the

plasma. When this happens there is an abrupt drop of the absorption time
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with respect to value (96) which stops the penderomotive process respon-
2

sible for the mHO upshifet. TIf ws>) 3/2, the relevant electrostatic

equation for a warm single-ion-species plasma /40/ says that there will

be no T-point as long as

MMy = oq.‘:T\ﬁfm //VYJD
Lt 15 Mg \Te - 8o, fimp B

where ('W\D is the deuteron mass, B 1is in Tesla, and the other units are

(97)

as in Eqs. (80) and (95). However, other loss mechanisms, for instance
purely collisional dissipation, could stop the penderomotive effect at

even lower densities.

Although the bulk electron temperature of fusion plasmas is at most
in the 10 KeV range, relativistic effects cannot always be neglected in
the electron motion: two such cases are the electron run-away process
and electron cyclotron heating with X-waves propagating almost across Bo
In the latter case, the reletivistic effect is there even if electron
speed constantly remains arbitrari}y_’low. Consider an em-field rotating
around the direction of a uniform Bo—field and constant along it, with
frequency equal to the non relativistic electron gyrofrequency. The electron
motion can be calculated exactly /41/: /U-Lt') is a purely periodic
function of time, osc:.llatlng between 0 and ’U;IagC(E/Bo)Z/a, with
period 'to(,”/&)(E/B . The period is essentially the time it takes
the angle between ’D" and E to become dephased by Trfl . What
matters here, is the action S EKWL&US , rather than the't(i.netic
energy Ekm
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FIGURE CAPTIONS

Phase-space trajectories in a coordinate system moving
with a low-frequency wave with Blu=-t)Bocos(kz-wt)

Schematic plot of the heating rate Yy versus the collision
frequency Veoll in a wave-particle resonance case (upper
curve) and in gyrorelaxation (lower curve).

Schematic plot of k; Versus x = (mpe/m)2 in the LHR -
frequency range for ordinary (O) and extraordinary (X)

waves with a sufficiently large (k,c/w)? value (see condition
( 77) below). When the plasma temperature tends to zero

the broken line which is a warm plasma asymptote approaches
the vertical o = Y HR®

Profiles of the square of the radial wave-number k(x) when
there is a R-point together with two C-points (cases (a)
and (b)), with one C-point (case c) and with no C-points
(case d).

Geometrical-optics plot of the C- and R- curves of the
extraordinary wave,ET(Sl),in the I2HR frequency domain
on the Tokamak minor cross-section. The Tokamak center
is to the left of the figure. The wave is evanescent in
the shaded regions.

Schematic plot of (kyvp/w)? versus (kyvp/w)? in a single
ion species plasma for w > Wej (Tower curve) and w < W
(upper curves).

The quasi-toroidal and cylindrical co-ordinates.

Schematic rf-coil arrangement for torsional TTMP

(Im| =|n| =1) (after /27/).




10.

1

12.

Schematic plot of ki versus X = (wpe/m)2 for a cold plasma
in the LIIR-frequency range when the accessibility condition
(77) is not fulfilled : 1 < N2 < (1-w?/w_.w_ )"' (for the

ci ce
accessible case see Fig. 3 ).

The Clemmow-Mullaly-Al1lis (CMA) diagram for exact
perpendicular wave propagation in the UHR-frequency

domain. The O-wave is evanescent at the right of (mpe/m)2 =1.
The X-wave is evanescent in the shaded regions.

Geometrical-optics plot of the C- and R- curves for 0- ard
X-waves at normal incidence in the UHR-frequency domain on
a Tokamak minor cross-section. The Tokamak center is to the
left of the figure. The O-wave is evanescent inside the
(mpe/m)2= 1 curve. The X-wave is evanescent in the shaded
region.

Square of the perpendicular index of refraction, Nf as a
function of plasma density (wpe/u%effor various values of
NZ at a fixed value of w_/w = 2/3. N2=0 (....),

0,16 . .=y 0,55 fennsd, D8 f—=F, 0.86 fiowe=e )
(slightly modified after /56/).
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