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Abstract

It is shown how the set of nonlinear equations resulting from
a Crank-Nicholson discretization of a system of nonlinear diffusion
equations can be solved by Newton's iterative method.

It is proved: a) that the first step of this method is just a
matter of solving a linearized (Crank-Nicholson) form of the diffusion
equations, and b) that, under rather mild conditions, the matrices in-

volved at each iteration are not singular.




1. INTRODUCTION

This report is concerned with numerical schemes for solving
systems of nonlinear diffusion equations, which feature in many
physical processes. For two functions u (r,t) and v (r,t) in a cy-
lindrically symmetric configuration, for example, one obtains ini-

tial boundary value problems of the following type:
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u(50) = u, () 20, v(r,0) = VA(r) 20 for0sr R (1a)

u(R,t) = uR(t) 20, v(R,t) = VR(t) Z0for0=s¢tsT (1b)

du(0,t) _ 3v(0,t)
or or

=0 for 0t T (1c)

Here R 1is the cylinder radius, and T the length of time for which
the diffusion process is considered. The regularity condition (1c)
derives direct from cylindrical symmetry. Moreover, it is assumed
that
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as concerns the functional dependence of the diffusion coefficients

¢(i)

both on the solutions, u, v and on their space derivatives

(fluxes) du/3r, dv/ar.

Finally, the system considered in this report contains just two
equations, but the method discussed can be applied to systems of any
number of equations. The linearized Crank-Nicholson method already pro-
posed by D. Diichs some years ago has proved to be highly successful
in treating such problems by means of difference schemes (see []:I,
[?:[, [}:I). It is just a matter of solving a system of linear equa-
tions at each time step, without any loss of consistency compared
with the complete nonlinear difference approximation, i.e. the order
of the truncation error in the step sizes Ar, At is 2 in both methods.
Furthermore, convergence of the linearized scheme was proved in 1979
(see [}:I), by imposing certain conditions on the diffusion coeffi-
cients (2). Apart from these advantages, however, choosing large time
steps At produces more or less strong oscillations in the solution
curves. While it is true that Crank-Nicholson schemes are subject to
such oscillations when the ratio of At to Ar becomes large, the

following question nevertheless arises:

Is the maximum permissible size of time step, from the physical
point of view, already exceeded whenever such a large (i.e. oscillation
generating) time step At is chosen or are these "poor" solutions
due to the linearization (which may perhaps suppress essential quan-

tities)?

This question of great practical importance is treated in this



report. It is shown that the linearized scheme turns out to be
nothing but an iteration step of the multi-dimensional Newton
method for solving the complete system of nonlinear difference
equations. Systematic numerical experiments to be illustrated in

a future report [}CI show a surprising improvement on the linearized
scheme when two or more Newton iterations are performed. This pro-
vides a definite answer to the question asked above, for a large

class of examples at least:

The "poor" solutions with large step sizes A t are primarily
due to the linearization. The maximum At physically permissible
obviously exceeds (to an appreciable extent in some cases) the ma-
ximum At that can be handled for linearization. Besides the ad-
vantages of the Newton method (very fast convergence, good results
even when there are strong nonlinearities), there are also disad-
vantages: Firstly, the derivatives of the nonlinear functions resul-
ting from the difference equations have to be calculated and the va-
lues in the functional matrix have to be recalculated for every New-
ton iteration. Secondly, the Newton method is known to be only lo-
cally convergent. It is therefore obvious that other standard methods
of solving systems of nonlinear equations have to be enlisted for
comparison (a comparison with the predictor-corrector method is there-

fore made in the second part of the forthcoming report.)

2. DIFFERENCE APPROXIMATIONS

To abbreviate the initial boundary value problem (1), the

following notations are introduced:
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Equations (1) can then be written in the form
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W(r,0) = WA(r) 20 for 0 £r =R
W(R,t) = WR(t) 20 for 0stsT
L. (0,t) =0 for 0t sT
or

The elements of the matrix function

(n)

the partial derivative of the function ¢

v - th variable be denoted by Dv ¢(u)

fine the following tensors:
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(vyu= 1, ...
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(1*c)

¢ depend on four variables. Let

with respect to the

4) . We now de-

Furthermore, we express products of these tensors by means of two-
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component vectors X = (x!, xz)T as follows:
(1. .{2) (.. ., (2)
D¢ 'D¢ X, Dyo~ 'D,o X,
D1¢'x = o ’ ]
(3).. .{4) (3} . (&)
D1¢ D1¢ X, D2¢ D2¢ X,

and treat D2¢°x by analogy. The Di¢-x are thus again two-row matrices.,
We now choose step sizes h = Ar , k = At and provide the rectangle

Q={(r,t): 02 xr £R, 02t =T} with the rectangular mesh

QA={(i+-—;—)-h,j-k),i=0....N;j=0, e M)

with (N + %)°h =R, M+« k=T . All matrix, vector and scalar functions

y(r,t) are abbreviated:

. . )
wij: = lJJ((:L + _2_) ¢ h, q - k) = ‘p(ri+1/2, tj)

The linearized Crank-Nicholson method now reads (see [?:I, [}j)
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i=1,2... N
The quantities Ui' Vij are the numerically calculated approximations
?
of the values of the exact solution u, ., v, ., at the mesh points r., 1 t..
i,i% 7i,] *+35 ]

For every time step one has to solve a system of linear equations of the
form (3), where the unknown vector Wj+1 has to be determined. The coeffi-
cient matrices of the system of equations (3) are block-tridiagonal with

two-row blocks.
In [3] the following convergence theorem is proved:

*
Theorem 1: Let the initial boundary value problem (1*) - (1c) have in Q
a uniquely determined, sufficiently smooth solution w(r,t) and let

b, WA’ WR be sufficiently smooth. Furthermore, let the matrix
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. T . : i
with y = (y1,y2) satisfy the criterion:

there is a fixed number y > 0 such that the symmetric matrices

T
) (xtlfz,y1,y2) + 9 (x1,x2,y1,y2) - yeI (4)

S N N N N N N N NS

P : - 4
are positive semi-definite for all (xt,xz,y},y%) e R

Let the step sizes in the difference scheme (3) always be chosen such
that for fixed constants K0 >0, K1 > 0 it holds that

At
€ —— <
Ko Ar = Ar’K1 (5)

The solution of (3) then converges for Ar,At + 0 at the grid points

(ri+1 tj) of QA to the exact solution of (1%), i.e. it holds that
2’

N 1/2
2 2 2
max (Ar » £ [(U..-u..)" + (V,.,~v..)°[) =M« (ar)
051sM i=0 1] 1] 1] 1]
~5 B (6)

R i S

for fixed M > 0

Note: The criterion (4) constitutes a generalization of the term
"parabolic" to systems. If the differentiation on the RHS of eq. (1%)

is performed, one obtains
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This criterion thus states that the symmetric component of the co-
efficient matrix before the highest derivative with respect to space
is uniformly positive definite; it also appears to be important in
practice since the numerical calculations almost invariably break

down,if it is not satisfied.

Another way of numerically solving (1*) is to use the nonlinear

Crank-Nicholson method:

" R
1 " I R BN B o . A1,y i3,
ac Wi, 5417 Yi5) =2 @i/ B Bt [+ - ar e | —7

1+§’J

W.. - W, . W. -
-iAr ¢ ¢ S . Sl 5| +(i+1)Ard 5 ol £ el M TSt
5, 1 Ar . . Ar
i-3,1] i+5,3+1
W.. =-W. .
. 1]+1 1~1,1+1 .o B
-1 Ar¢' 1 i 2 j, i=0, .... N-1
l_is i+
or
_a 2d
F;Weaq? 5 3 3543 ¢i—1,j+1 i-1,j+1
2
Ao 21 21+2
+ L1+ 3 G ¢ 1 g ZaE] Tl '+1)] i,7+1
o g )
Ao, 21 2142
- = +
+ [:I + 2 (2i+1 ¢ 1 . 2i+1 ¢' 1 '):[ Wl’J
1_§sJ 1+§:J
A 2i+2 A2 A 2i+2
5 = - W 0
2 2571 1 . Wier,5er T2 7e1 01, Yim,g T 2 250 fied Vi
l+§’J+1 -E,



This scheme entails solving a system of nonlinear equations for
every time step. One possibility is to use the multi-dimensional

Newton method, which is treated in the next section.

3. THE NEWION METHOD

A classical and reliable method of solving systems of equations

is the Newton method, which is defined as follows:

T

Let B ) & (Flt s ene )5 sonmm Eo 0 gues X))
11 n 1 n

n

be a vector function whose partial derivatives exist and are continuous.

*

* T
oo X )" of the system of

*
It is required to find a solution x = (x

equations
F (x) =0 (8)

The method is then as follows:

(0)

1. Let x be chosen as starting vector.

2. Let the systems of linear equations

(x(V)) . x*) o F'(x(v)) : @V

P - rx™) 9)

(v+1)

be solved for x in the cases v = 0.1,... k- 1.
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Here F' (x(v)) is the functional matrix of F (x) at the point

v)
X

. In general, the Newton method is just locally convergent. LE,
12 I .
however, x is suitably chosen so that the system (9) converges,
*
and if F'(x ) is a non-singular matrix and all second partial deri-
- - 3 - 3 . * 4

vatives of F(x) are also continuous in a vicinity of x , quadratic con-
vergence occurs, i.e. it holds that

PR 9 = 01 s Ty (10)

where L > O is a constant and || + || is a vector norm. The expression

(10) states that the convergence of the Newton method is extremely fast.

To apply the Newton iteration to the system of differential equations

(7), first the functional matrix F'(W) of the vector function

- £ . .
F(W) = (Fo(wo,...WN-i)"" FN—ﬁwo"' WN—1)) occurring in the system
(7) has to be calculated. For the sake of simplicity, we omit the in-

dices j,j+1 in the following and define

ap, (0 5p (D

i i for

oF, 3u, v, i,k = 0,1,..., N-1 (11)

ET

K BF.(Z) BF.(Z)
1 1
U, v,
. - (1) (2).F _ T
with F, (Fi » F )T, W o= (Uk,vk) 3

As Fi(W) in the system (7) only depends on the variables Wi-1’ W, Wi+1’
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F(W) is a block-tridiagonal matrix in which the blocks are of the

form (11). From the system (7) one now obtains by calculation (see no-
tations in Sec. 2)
(1) I ) (1) (2) \
{3@ _1/,( 1Ui)+¢’i} v, v B@ 1, Uiy U %0371, V=]
- o, vV, _,
oW, 2 21+1
151
(3 (4) " L5 (4 _
afe; 1/2(11 U 1 V] ’ aEpi_}/z(Ul ;U 1/2(\1 v.)]
BU]'__1 avi-1
£ a3 2L -1 . (W i G-t _ A 28
T LT RN 0 00 # Dple L5 1 2 7141 8i-1/2
and hence, restoring the index j,
aF. (W.) v 21 T
—1 - - 3 2.1 g:. 1 fori=1,2... N1 (12a)
1+] =1
oW.
1-1,]
Correspondingly, one has
aF. (W) .
sl o X BEEE b 5 | e e B0 (12b)
2 2i+1 Pi+z,j
AW, .. 2
i+1y)

For the diagonal blocks one obtains
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BFi(Wj)
— =1 + % (2211 gT__ .+ %%E% g. +l .) for i = 0,... N-2
W, . iged 2141 Tik,)
1]
(12¢)
aF,_, (W.) IN=2 2 —
——N;‘I—-L=I+A(2N g+ .+2N_g]_)
M N-1 BN-5,5 7 2N-1 BN-3, ]
n 1.~ szj+1_wN‘1:j
with 1 1= ==D 1. (W . ) +D ¢
gN-E,J ¢N—§ 2 1¢N-§,J N, §+1 N-1, 2%N § h
Bl . =0 LI C SR
N—E,] 2 J+i 1,377 h "N,j+1 N-1,]
For the other derivatives one gets
oF, (W.)
——L =0 for |i-k|z 2 (12d)
aW, .
kj
substituting the vector Wj for the vector Wj+1 in egs. (3) and (7) now
yields the following relation:
0 for 1 =0, N-2
G.(W.) = F.(W.) =
1] i)
AN .
N GN 1, for i = N-1
with
) =g 1 . s (W LW 53 = (W .-W I T o
N-1, ] N=35] N, 5171, 5) ¢N’%,J< Nj N-1,57 gN-%,j(wN.j+1

W .
N,]
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With convergence of the approximation solution it holds that

6N—1,j = 0(at)

Furthermore, the formulae (12) are used to obtain
GW. .) - [F"(W.) « (W, -W.,) +F (W.)| =b.
JH E 3 JH1 ] ( J):[ ]

where the vector bj € B?N is as follows:

- n T
.= (0,0,...., 0, 5o— =« : . = - i o .
> €00 77 2N (GN—hJ : &N‘%,J gN'%;[ [w -1,j+1 wN—h;[))

The system of equations (3) can thus be written in the form

G(W. ) = F'(W.) « [w. -wé] +F MW.)+ b, =0 (3%)
1*1 ] [J"" J ]

Comparison with the system (9) shows that the scheme (3) - apart from the
last block component — constitutes a Newton iteration for the system of

nonlinear equations (7).

It has thus been shown that

Theorem 2: The linearized Crank-Nicholson scheme (3) is essentially iden-
tical with a Newton iteration for approximate solution of the Crank-Nichol-
son discretization (7), the approximate solution Wj at the old time tj

being taken as starting vector.

Note: In the linear case ¢ = const it immediately follows that bj =0,

which it has to be.
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When applied to the system (7), the Newton method (9) is

)T be chosen as starting vector.

v _ (v)

W + W + D §
1 o o o)
NONRO N R
i 1 3 =
(v) (o)
= W1 T Wy
v(v)
+ DN—1

(o) (0)\T __
1. Let (W.,7... W i) = (Woj... -1,
2. Let the following system of equations be solved for the values
W= Dglaes K=1
g, O+ _ o ) L) p () o) v
o} o} o 1 o o o
= A0 ) (v o+t V) o)
i i-1 i i 1 1+
L ) ) ) ()
1 1~1 1 1 1 1+1
for i = 1,2, .. N-2
(v) v(v) _ ) L) ) )
T A1 M2 tBNiner T T An-t ez o Baer Wi
T,_ (k) Ek)s T
3. Let (woj+1,.... wN—I,j+1) = (WO, &l WN_1)

Here the coefficient matrices in the scheme (13) are

Ai“):= 22i1 ngY}z for i = 1, N-1 ,

BE“) =1+ 2;:1 (i gIEY}z + (i+1)g iY}z) for i
ﬁiv) R ((N—1)g;f§}2 v NE;EY}Z),

ci“)-= %é%}ll : ngY}z for i = 0, N-2

defined as follows:

N-2,
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(v) (v) v) (v (v) v) )
IC LR CAPL D TR

itc 2+1

+ (i+1)¢£3%/2 (Wii: - Wio)) - i¢£f}/2 (WEO) (o)i] for i=0,...
NONE v) v) » ® W
Bpe1®= 3007 g1y, (Wyger ™ Wyoy) = D0y 37 By 4 = Wy o) +

(o) (o) (o) (o) (o)
F Oy 1/ (i = Wy ) - (N=1oy_3,, Wy - W)

+(v) (v) . . . . .
define the function values obtained by inserting

Here the Bisly, ? 9. T
the arguments (v) . It should be recalled that the sym-
. s 1— =0,1,-- N_1

bols A~ $
gN_]./z ’ N_l/z

Finally, the convergence order of the Newton scheme (13) should be con-

were defined just after formula (12c ).

sidered heuristically: The functional matrix of the system of equations

(7) is of the following form (the indices j being omitted for simplicity)

owing to (12):

F' (W) =1+-;_-‘—H(w)

where the 2N-row matrix H = H(W) is
2 q, 20
3 B @“/z

% 2.4 kot
3 In 3 g-'/"' @5/:. 3 B,

. . S
AP VA T ¢ SRS L
h 2044 41, 2i+|(h-m U4 %'4*"/2. At ddedry
N N N :
2N-2
AN Y it
2N
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In [3{1, Sec. 4 (see lemma 2, formula (13a)), the following estimate is

proved:

ID - @+ 5 B, N0

n,
3 , <1 +kAt (15)

~

Here k > 0 is fixed, D is a certain diagonal matrix, the norm occurring

is the spectral norm, and wj+1 is the vector of the exact solution

values at time t., .- From (15) it follows in particular that F is non-

1
singular.

On the basis of the numerical experiments [}:I it can be assumed that

: obtained by means of the scheme (13)

converges for Ar, At - 0 to the exact solution w (r,tj+1) of (1) at

the approximation solution wj+

the mesh points (the exact mathematical proof of convergence is not yet
available). For reasons of continuity it can then be concluded by means
of (15) that F'(wj+1) is also non-singular for sufficiently small step
sizes Ar, At, which, however, means quadratic convergence of the Newton

scheme (13).



REFERENCES

G

[2]

EX

[4]

v. Finckenstein, K., D. Diichs: Lecture Notes in Mathematics,

vol. 395, 3-17, Springer 1974

D. Diichs, v. Finckenstein, K., v. Hagenow, K.U.:

Report IPP 6/139, Garching September 1975

v. Finckenstein, K.: Methoden und Verfahren der Mathematischen

Physik (edit. by B. Brosowski and E. Martensen) Band 20, Peter Lang
Verlag 1780

0. De Barbieri, D. Diichs, v. Finckenstein,K., Richter-Glotzl, M.,
Ling, L. - Comparison between Iterated Predictor - Corrector and

Newton - Iterated Crank Nicholson Methods, to be published.




