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Abstract

The effective resistivity n, and viscosity My through
which small-scale MHD turbulence affects large - scale magne-
tic structures in a low-B plasma are derived. While My only
depends on the turbulent magnetic field and is always positive,
n, becomes negative when the magnetic turbulence energy density
exceeds the kinetic one. This generalizes a previous result in
the theory of 2D MHD turbulence. The origin of a recently pub-
lished result giving a positive definite resistivity is pointed

out.



INTRODUCTION AND BASIC EQUATIONS

In a recent letter 1) it was pointed out that in a low-R
plasma such as in a tokamak small-scale magnetic turbulence acts
as a negative effective resistivity on large-scale magnetic field
perturbations. This leads to amplification of the large-scale
fields and is a very likely mechanism for explaining the explo-
sive phase of the major disruption in tokamaks. This new paper
now treats in greater detail the derivation of the turbulent diffu-

sion coefficients, the resistivity n, and the viscosity My

For a low-B plasma in a strong, externally generated magnetic
field which is assumed to be in the z direction, the MHD equations
are well approximated by the reduced equations - for the vector
potential ¢ of the magnetic field ﬁ; =z x vy, B, << Bz, produced
by currents flowing in the plasma (essentially along Bz) and the

stream function ¢ of the incompressible perpendicular plasma flow

;l = z x V¢ (the parallel flow v, decouples):

%H? = g.v¢ = nj, (1)

Ju > - Sy 2

S * Vi'Vu = Bevj 4w Vi, (2)
with j = 92y , u = V3.

The magnetic field E; or y is now divided into three parts

Vo=t 2



Here wo describes the average field, e.g. the mean poloidal field

in a tokamak, wg the large-scale magnetic perturbations correspond-
ing to tearing modes with low poloidal mode numbers m in a tokamak,
and ws the small-scale, i.e. high m-number, perturbations. To make
this dist inction of different spatial (and time) scales unambig-
uous, we assume a mode spectrum as illustrated in Fig. 1, with two
well-separated populations and with the ks part sufficiently broad,
Aks v ks, to allow strong turbulent mixing. Usually turbulence
spectra are not of this type; rather they decrease monotonically.

In this case the processes discussed here describe only a certain
aspect of the full dynamics of the turbulence. This point will be
returned to later, when possible applications are discussed. Averag-
ing ¥ over the small scales ks gives < y > = wo + wg’ averaging over
large scales << P >> = wo. The scale separation should be valid

in all spatial directions which precludes Yo having localized struc-

tures like those of linear tearing modes around the resonant surface.

This, however, is no real restriction since the main contributions
to y, are from finite—amplitude perturbations where the radial mode-
structures are broadened over dimensions corresponding to the magne-
tic island widths in the case of tearing modes. It is also assumed
that possible spatial variations of wo are weak over typical X,
scales. Hence in tokamaks the island widths should be small compared

with the plasma radius, which defines the radial scale length of the

average poloidal field. Similarly, we divide the stream function

6=06 +0¢ (4)

since ¢, is usually negligible.



From eqs. (1) and (2) one obtains the equations for the

large-scale perturbations (go = (z x Vwo, Bz)) :

314;2 - - -— 5

3t~ BoVéy T ByrVéy = <BeVe >+ nuly, (5)
Uy B oayi —B.Y] # %Y B Vi (6)
—— - Y p— . + - — .

3t o Iy 2 3o T VY IAREY)

Y Vu > + <B -Vj v2
- <y *Vu + < . > + u
s s s Js He

L
and the small-scale perturbations
s B -V B B v B v (7)
at 0 ¢s - BR.V¢S - Bs ¢2 - Bs'v¢s " T1‘*'-1#5 ’
s B -V B eVj -B +Vj +7V +Vu +7V eV (8)
ot o s [P s g T Vpttlg T Vg™

— = . 2
= v + B .V + pVyu .,
Vs g s Jg T Ml

-3 . - — i
The average terms < B *V$ > in eq. (5) and - <v _+Vu > + <B Vj >
s s s s s s
in eq. (6) give rise to anomalous resistivity and viscosity,
respectively. To evaluate these terms, we consider an expansion

of ws, ¢S in the amplitudes of the large-scale perturbations

lpR’ ¢2
_ () (1) (9)
ws lps (xs) * lps (xs’xl) T
and similarly for ¢S. Here w;ﬂz w;lz ¢;DZ ¢;1)are periodic
functions of x and y My ©),, B /B .
S s s L o

Unlike the conventional analysis in MHD turbulence theory,



the present treatment does not introduce an overall Fourier de-
composition of fields which requires overall statistical homo-
geneity. Instead, it is only for the small-scale motions that

a state of local homogeneous turbulence is assumed, while the
large-scale fields-ﬁk, 3; are deterministic and inhomogeneous.
Since the small-scale field‘-ﬁS is in general small com-
pared with the large-scale field B , the nonlinear terms on the

r.h.s of eqs. (7) and (8) are small. Hence, to lowest order, these

equations seem to reduce to

S = _
5T B +V¢, = 0 (10)
Bus -
*é?— - BC;V‘]S = 0 (1 1)

which describe free Alfvén waves propagating along ﬁo with equal
kinetic and magnetic energies < v; > =< Bz >. This, however, is
an unrealistically strong restriction. Though the small-scale
modes are Alfven-like with kinetic and magnetic mode energies of
the same order, their ratio is usually not exactly unity. The
ratio depends on the way in which these modes are excited. In a
realistic, monotonically decaying MHD turbulence spectrum the
small-scale modes are continuously stirred by interaction with
the adjacent part of the spectrum. If the latter has distinctly
disparate kinetic and magnetic mode energies, the smaller scales,

too, will not reach complete equipartition. Since only interaction

with the large-scale modes is explicitly included in the equa-




tions for ws and u , we may mimic the effect of neighbouring
parts of the ks spectrum by a stirring force fs,gs which should
be independent of the large-scale fields. Hence, instead of

eqs. (10) and (11), the lowest-order equations become

a‘p(sm o

55 ~ B,V = £ (10a)
0> 07

dug -B_vj, =g, - (11a)

at B

It is emphasized that the dynamics of w';o), u(SO) will not be used

in the following derivation; it only enters implicitly through

the correlation times.
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TURBULENT DIFFUSION COEFFICIENTS

Let us now turn to the evaluation of the anomalous
diffusion terms in eqs. (5) and (6), considering first

-
< B «V¢ >, One has
s s

- —_ -
<B V¢ > =< (V 4V )« > =V < >
s ¢)s ( % s) Bs¢s VR Bs¢s 2 (12)
so that in zeroth order this term vanishes, Vl. < 3;0%;@7> = 0.

In the next order one obtains

<B ¢ V=B, 4 ﬁmcb(o‘ >
S S S s S S
ES +(0)
x < 3 W5 - L FOO 5 (13)
S s S s

The first—-order quantities obey the equations

ay
% & .%(1) =3 w® - T gyt (14)
ot o s L s M s
1)
du ay
s = . AR ) S T )
= B o], ™ B,S4) v, Vu . (15)
€1

Since in the computation of < BS¢S > only the lowest—order
contributions are needed (in contrast to the anomalous visco-
sity terms in eq. (6) where, as will be seen, cancellations
. €1y g2401) 2.(1) (1) . 201
=V gV and =V
occur), one may approximate u, ¢S A ¢S Jig % ws

in eq. (15) and extract the Laplacian %,



—= - F .wy ="Ez-v¢§” - 7. .77, (15a)

Equations (14) and (15a) are easily solved:

(l.) 1 r 1 1 1 1 1
b =3 [at'[A(e") + A (e") +B (") - B_(¢')] (16)
e 1 [ ! ' 1 1 1
6 =3 Jat'[A,(e") - A () + B (c) +B_(¢")] . (17)

Here A and B are the right-hand sides of eqs. (14) and (15a)
respectively, and F+(t') = F(;S + ZA(t-t'),t'), where in our

. -»> + - . 3 .
units ¢, = B . Substituting expressions (16) and (17) in eq. (13)
yields a number of correlation functions, either pure correla-

-»
v

-+ + -
i < "Yde' > <
tions Bs f %t(t )dt and Vg f s

+(t') dt' > or cross corre-
. > > i ; :
lations such as < Ny f Bs+(t ) dt' > . Let us first evaluate

+ - . 3 .
< BS¢S>p, the contribution from the pure correlations. Using the

Y 1 + "'A - =—+. 1
relation BE sz =z X ng sz BS ng, we obtain
o> =-1E, [a' @ ) + 3 (18)
< B¢ p =732 B, [ dt B, (¢ B,_(t >
t

-

- v, [aer G () +T__(£") ey,

t
e 5B B, far@ e -8 e >

-<v, [ de' (v, (c") - v _(e") ] +ve,

. - . - - ® . -
omitting the superscripts of BS and V. For isotropic turbulence




both propagation directions are equally probable:

> > . _ > > . . _
<B_ [B_ (t)dt > =< B, [ B _(thdt' > =1

vy

2
B < BS [2s Ty

g being the magnetic correlation time; similarly,

¥4

->
v
S

<V [V, (eNde > = <V [V (eDde > = qy < v?/2 > 1

Hence the terms « V¢£ cancel, and eq. (18) becomes

1 = L o B,
<B-s¢s>p-—('rv<2> TB<2>)V|JJ

(19)

The cross correlations < ﬁs(t) f gs(t')dt' > are now discussed.

It is argued that these vanish or are at least small for reasonable
assumptions about the small-scale turbulence. It is easy to show
that for free Alfven waves, eqs. (10) and (11), the equal time
correlation tensor < Es(t) 3S(t) > is constant in time, i.e. if
initially zero, it will vanish at any time. For this result to hold
also in the more general case of driven Alfven-like waves, eqs.(10a)
and (11a), the stirring forces must satisfy certain statistical
relations. But even if these are only approximately satisfied,

the cross correlation tensor is expected to be small. In the nu-
merical simulations referred to in Ref. 1, the cross correlations

for the small scale modes are in fact found to be small, typically

-2 . .
<§S-3S>//(<vsz><Bsz>) n~ 10 . Hence the time integral

f<§5(t)3s(t')>dt' N T<ES(t)3;(t)> is also small. With cross corre-

lations neglected, the anomalous magnetic diffusion term thus becomes

where
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=
]
ol

(< v; > - < B; >) (20)

with T

g ¥ Ty = T- The anomalous resistivity n, thus becomes
negative if the magnetic energy of the small-scale turbulence
exceeds the kinetic energy. This generalizes a result pre-
viously obtained for 2D MHD turbulenceB), though derived in a
different way. In fact, the three-dimensional structure of the
turbulence in our case of a low-f plasma only appears in the
integrals along Bo’ while the dynamics is essentially two-dimen-—

sional.

The evaluation of the anomalous viscosity in eq. (6) is
slightly more complicated. First the magnetic contribution

- -
< BS'VjS > = VR' < BS Vz¢s > is treated. Proceeding as before,

one finds
&8 v2y V= QP92 4 'ﬁ(l)vzwfm 5
s s s s s s
p4 O} 2y, (1)
= 2V o v > 21
o (2v, VA, (21)
. 2 01y _ 2 . 2y (1)
since V ﬁ (VS +2VR VS+V£ ) U~ and
= 2 8 o s 2y O (1)
D A Tl < Bs”vs by > . Wheny V), eq. (16),

is substituted in eq. (21) and cross correlations are again
. = (o)v ) .
neglected, the expression < Bs sw‘ > consists of terms

- o .
@ < BSI dt'VSBS(t') > . Since the equal time correlation tensor
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S 3 ; ; ; .
< Bs(t) VSBS(t) > vanishes, the time integral is small, too.

Hence
3 o2 _ F0), 2.01)
<st UJ5> <Bs VR, ws>
_1t 1 +( (-. ' =+ 1 2
=3 Jar' [« B ()(B_ (t") + B__(£") >.wv?p,
_ =g = g ‘-—)' f . 2
<B_(£)(B_, (¢") B__(t")) >-vy ¢é]
B2
= 8 2
=Ty <5 > W ¢£ . (22)

To compute the kinetic viscosity contribution in eq. (6), the

17

exact equation (15) for u; instead of the approximate equation

(15a) for ¢;1’must be used. As in eq. (21), we have

¥ .pp? 2 U e 2 " 2 1
<V, vV ¢S > v2 L (2v2 vs+vg ) ¢S > (23)

. . . . Could —_ (O" .
The only non-vanishing contribution come from the term VR'VUS in

eq. (15):
B Vo2 f e ' '
=g T [ dt V£°V[§S+(t ) + o (t M +... (28)

Since V2¢;1)z (VS2 + ZVR-VS)¢;11 it follows that

W L &
) VoV [ e de' (25)

1y o

g - (1 -
it ] s
s

where 1/VS2 is the inverse of the Laplacian. Substituting eq. (25)

in eq. (23) yields
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V eV V V

t
. 2 - . > __&___S_.Q:_E p— 2 '+ 3
<V > =V <y (4 o v,HO /[ de'v > vs,  (26)

s

If isotropic turbulence is assumed and 6, the angle between
VS¢S and V2¢£ is introduced, this expression will vanish since
it is proportional to [ d6 sin®6 (4 cos?6 - 1) = 0. This can
most easily be seen when Fourier transforming eq. (26) with re-

spect to the small-scale coordinates X .

Finally, it should be mentioned that the term'Fg-Vug in

eq. (8), which is a factor O(RRZ/RSZ) smaller than Vv °Vus and

2
hence has been neglected in eq. (15), seems to make a contribution
of the same order as the terms in eq. (26). Its total contribution,
however, vanishes (to the order considered here). Because of the in-
herent smallness of the corresponding contribution to ¢(1) % ¢:;),

s

one has

n

<‘31) V2¢(07> " <-“;(0)v2¢ iy,
sa s s so

A

<—\;(DV2¢(°)>+ v © 2 D5 =g .,
sa& s 's s s sa
The kinetic contribution to the anomalous viscosity thus vanishes

and it is found from eq. (22) that
T
U=§<Bz>’ (27)

; : 3 P
which also agrees with Pouquet's results ) for 2D turbulence 1if it
is taken into account that because of the shape of the spectrum as-
sumed, Fig. 1, no boundary contributions arise from partial inte-

gration of the spectral integrals.




III
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COMPARISON WITH PREVIOUS STUDIES

The problem of turbulent resistivity due to small-scale
magnetic fluctuations has also been treated in a recent publi-
cationa). Though the spirit and methods of that paper are some-
what different to those involved here, emphasizing resonance
phenomena and resonance broadening, the basic features of the
derivation of the turbulent resistivity (Section VII in Ref. 4)
are similar to our treatment. Surprisingly, the result is
different from eq. (20), the magnetic contribution being posi-
tive instead of negative. The author has traced back this differ-
ence, which is not due to a simple sign error, and identified its
origin. Instead of eqs. (1) and (2) for the potentials ¥ and ¢,

. > > . =3 ; :
Reference 4 uses equations for B and v. While the B equation 1is

exact,

£ = v-(By) - v-GB) (28)
and equivalent to eq. (1), the v equation is not,

=4 Ve = BeVB , (29)
the pressure force - Vp* being neglected. It is easy to see that
these equations indeed give rise to a positive definite ex-—

pression for n,: Averaging eq. (28) over small scales gives

(only the diffusion terms being written down)




-

BBQ > > > >

5E— - VR. < sts 7T VR' < vsBs ? (30)
. . - = =
(in Ref. 4 the notation B = < B > + 8B is used instead of

- -
Bl + BS). Since we want to investigate the magnetic contribu-

. i 4 i
tion, only < BSO#;1]> need be considered. From eq. (29) one

obtains
(1) £ <> +(o) +(0) =
vi= [ ae'(B,-vB%+ BB ) . (31)
s 2 s
Inserting this into eq. (30), we find that there is only one

non-vanishing term, the second term of eq. (31) inserted in the

first term of eq. (30):

-
i SO N T (32)
TS ) s s L8

. = b= 0 .

since < B VB >=0 and V +B, = 0. Hence starting from eq.

S 8 s L8

(29), one indeed obtains a positive resistivity n,=Tc< BSZIZ >
It should be noted that we did not use the fact that the plasma
motion is incompressible. In fact, eq. (29) does not describe
incompressible motions, since it is in general inconsistent with
vev = 0. It is true that Vp* is small, but since the dominant
first term in eq. (31) does not contribute to n_» thé pressure
force nevertheless plays an important role, p* being determined
by Poissons equation V?p* = v-(ﬁ-dﬁ - ?-V;) . For incompressible
motions V;I)has to be computed from eq. (2):
d

2.0) o 9 2 . M_-73 . 2
dt ¥ ¢s T dt (vs * 2Vs vl) d>s BR vsvs v

©)
S



Hence we have

(17 £ > (0) ZVE-VS‘* (o)
- dt'|B -V - —_— .
¢s j Lil sws v 2 B£ WJs :[
s
and
=Q)_ . (1)
Vs z (Vs * vl) ¢s
t e WV .
s v . — - - — .
[ dc'[B -vB_ - B_-VB, " By+VB_ ] (33)
s
. g - ) A = - - P
since =z X VZ(BR-sz = -z % VR(Bs.va) = - BS'VBR . Inserting

eq. (33) into eq. (30), we find that only the second term in
eq. (33) gives a non-vanishing contribution, while the last term

cancels when inserted into both terms of eq. (30). Hence we get

and we again find a negative magnetic contribution to the anomalous
resistivity n,= - T« BSZ/Z > in agreement with our result in

Sec. II.

I do not want to discuss whether the (compressible) equations
(28), (29), considered as exact model equations,have any practical
significance. However, I should like to emphasize that in the numer-
ical simulations of the major disruption, which have been discussed
in Ref. 1 and interpreted in terms of a negative resistivity, the

exact incompressible equations (1), (2) are being used.




IV

CONCLUSTIONS

In conclusion, a few comments are made on the main
assumptions entering the derivation of the diffusion coeffi-
cients (20) and (27). The basic assumption is that of two
well-separated spatial scales xs, ) which seems to require
a spectrum as indicated in Fig. 1. Since in practice MHD tur-
bulence spectra usually decrease monotonically, our model
system only describes part of the dynamics of the turbulence
where the interaction with the intermediate scales is switched
off. However, if the character of the modes changes rather ab-
ruptly in k-space, i.e. if there are two different types of
modes, the requirements imposed on the separation of their spa-
tial scales seem to be less strict. Such behaviour has been ob-
served in numerical simulations of MHD turbulence generated
during a major disruption in a tokamak-like plasmaS). While

modes with m § 5 are essentially tearing modes with Bm2 >> v 2,

m

2 .
. Comparison

they become Alfven-like for m > 6 with Bm2 > Vm
of a model computation of the behaviour of the (m,n) = (2,1)
mode under the influence of na and ua with an exact numerical
simulation shows good agreement1), which indicates that at least
in the major disruption the effect of the (negative) turbulent
resistivity is the dominant process. It should also be stressed

(o (0
g ° ¢S need

once more that the zero-order small-scale modes ¥
not be free Alfvén waves since these modes are continuously re-

excited owing to interaction with modes of the adjacent part

of the spectrum in a cascade process. This is accounted for by
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a stirring force in eqs. (10a) and (11a), which because of
the quasilocality of the cascade process is essentially inde-
pendent of the long-wavelength part of the spectrum. The dyna-

: (0 (o)
mics of ws 3 ¢S

only enter the diffusion coefficients through
the correlation times. In addition, eqs. (20) and (27) may be
considered to be '"'renormalized" in the sense that < BS2 >, Tgs
etc. are not computed with the dominant, somewhat fictitious
zero-order quantities, but with the full actual small-scale

e

5 -
fields B , v .
s’ s
The concept of negative anomalous resistivity is, in the
author's opinion, likely to play a role in various types of ex-

plosive magnetic phenomena other than disruptions in tokamaks,

notably in solar flares.




_18_

REFERENCES

1) Biskamp, D., Welter, H., to appear in Phys. Lett.A

2) Strauss, H., Phys. Fluids 19, 134 (1976)

3) Pouquet, A., J. Fluid Mech. 88, 1 (1978)

The concept of an inverse cascade of magnetic potential

in two-dimensional MHD turbulence has, to the authors'

knowledge, first been proposed by D. Fyfe and D. Montgo-—

mery, J. Plasma Phys. 16, 181 (1976)

4) Tetreault, D.J., Phys. Fluids 25, 527 (1982)

5) Biskamp, D., Welter, H., to appear to Plasma Physics

and Controlled Nuclear Fusion Research, Proceedings of

the 1982 IAEA Conference in Baltimore, paper CN-41/T - 1.




Figure Caption

Fig. 1 Illustration of the magnetic energy spectrum

with clear separation of spatial scales kﬂ, ks.




Fig. 1



