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Abstract

Littlejohn’s guiding-center mechanics, with the polarization drift included,

is rederived from a Lagrangian. The respective collisionless kinetic guiding-
center theory is then established. Even though single-guiding-center energy
is exactly conserved here in time-independent fields, the total energy of the
resulting guiding-center plasma and its self-consistent fields is only approxi-
mately conserved (to leading order in € = ’fé /L ). This is unlike in the

case without polarization drift, where exact conservation of total energy

obtains. Nevertheless, the present formalism seems to be important for the

theory of drift waves and anomalous transport.




1. Introduction

A kinetic guiding-center theory that includes the polarization drift and
provides for exact conservation of the total energy of the guiding-center
plasma and its self-consistent electromagnetic fields is desirable for treat-
ing drift instabilities and anomalous transport. Littlejohn’s guiding-center
mechanics [1, 2] seems particularly attractive as a basis because it
guarantees energy conservation for single guiding-centers in time-independent
fields and validity of Liouville’s theorem for an appropriate phase space

volume element. |In the case of drift scaling [3] , i.e, for

E _
-‘;B = 0] , e€=+/L, (1.0

where the polarization drift and other higher-order effects are omitted, a
collisionless kinetic guiding-center theory and the respective moment
equations were in fact formulated for this guiding-center mechanics, with
energy-conserving self-consistent coupling to Maxwell’s equations [3:{
By defining on "effective current density" of the guiding-center plasma
it was possible there to conserve the total energy of the guiding-center

plasma and its self-consistent fields [3]

In this paper the case of "guiding-center scaling", i.e.

e By < E
:\-);—g :O(i) ; ?,[B— -2 O(E)/ (1.2)




with allowance for the polarization drift is considered. In Sect. 2
the equations of motion of the guiding centers are derived from an
appropriate Lagrangian [2] . In Sect. 3 energy conservation for
single guiding centers in time-independent fields and Liouville’s
theorem are proved. In Sect. 4 the respective collisionless kinetic
equation for the guiding centers is derived, and moment equations
for guiding-center density and energy density are established. In

Sect. 5 it is shown that conservation of the total energy of the

guiding-center plasma and its self-consistent electromagnetic fields

is only approximate, i.e. it holds to leading order in € = 'T;/L
(rg = gyro-radius, L = characteristic macroscopic length), but not
exactly. The consequences of this approximate energy conservation
must be considered when applying this mathematical formalism to

the theory of drift instabilities and anomalous transport. On the other
hand, single-guiding-center energy conservation and validity of
Liouville’s theorem make this kinetic guiding-center theory particularly
attractive. In Sect. é the conclusions are given, and Appendix A

verifies the results of Sect. 2 by comparing them with Littlejohn’s

Hamiltonion theory [1] .



2. Consistent Guiding-center Mechanics with Polarization Drift

In agreement with earlier work [3, 4, 5] , we call a guiding-center
mechanics "consistent" when it conserves single-guiding-center energy
in time-independent fields and satisfies a Liouville’s theorem. The
following is an extension of Littlejohn’s Lagrangian formalism [2]
which switches from "drift scaling" to "guiding-center scaling" (see

Sect. 1). We start with the guiding-center Lagrangian
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with L depending on the guiding-center variables t, X, v=X, 'U" )
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and the parameters /u, m &, cC . Here A is a modified vector

potential []_] , viz.
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q)(tf)f) is the scalar potential, and wk is the kinetic energy in

the form
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The other quantities are: B(t, x) the magnetic field, E'—‘TE/B the unit
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vector in the field direction, U, the usual E x B drift, viz.
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with E(t, x) the electric field; the (scalar) magnetic moment U is an
adiabatic invariant, i.e./:t = 0, and v, is the "parallel velocity",
i.e. the guiding-center velocity component parallel to B; but the
relation v, = (r_-ﬂb') is not yet implied here; it will follow from one

of the Lagrangian equations.

* ¥
In what follows the "modified fields" B cndE [1, 3] will be needed.

They are defined by
% *
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so that they satisfy the modified homogeneous Maxwell equations, viz.

Ay B* = 0 2.7)
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Explicit expressions of B and E are
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X
It should be noted that the gauge used for 5 is different from that of

Littlejohn [i) (see Appendix A). An important quantity is the

X
"parallel" component of B , viz.
-~

% mc A A
B"_:' B+“—; %'{“0'“ cutl § + cu+d EE}

All time and space derivatives are performed with ‘0" ond)& kept constant.

Equations (2.1) through (2.4) are a plausible ansatz for including the
polarization drift and obtaining a "consistent" theory. The Lagrangian
equations of motion [6] that follow can be proved to be correct by
comparing them with Littlejohn’s earlier results [1] (see Appendix A

below). Firstly, the equation
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The other equations of motion are obtained from
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By using
d ‘é Y e
—_— = = A\ - + O e 2.16
and several of the above relations this can be transformed to yield
» A * e X
rmv“% '—_-(Q,E -VWK) +T'ng . 2.17)

This equation can be decomposed into an equation for the guiding-

~center velocity 1Y and another one for the "parallel acceleration”

v o= Y, —%—— + (Q.E*—Vwk)yé, (2.18)

. (QE*— V\A(K) 2.19)

- 4 . (e E*-VWK), (2.19a)
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By substituting the modified fields and WK more explicit expressions

are obtained, viz.
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7 = N dt
+ _3%_ cud; v, (2.20)
with
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The energy equation following from the above equations reads
®
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a W, 9B m 2
_ . 2
- cEy tprgp v 7 se (V)
A
- . 94 OVe
- '}3": G T -+ St (2.24)




v
—M(EL“BE)' j (2.25)

9

This can be given the form
28

dW . .
et S A

where the last term is now a correction of order £ , and the vectorial
magnetic momenf}l. is defined by
C

wm Y,

A
pomoopd v (v v ), 2.

Equation (2.25) is useful when dealing with the kinetic theory (see Sect. 4).
The above theory and the work of Littlejohn ['IJ are compared in Appen-
dix A, It will follow that the above equations are in agreement with the
results Littlejohn []] obtained from a Hamiltonian formalism. Since
Littlejohn [1] derives his results direct from particle dynamics, this agree-

ment proves the Lagrangian of eq. (2.1) to be correct.
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3. Energy Thecrem and Liouville’s Theorem

From eq. (2.23) or (2.24) conservation of single-guiding-center energy

[i] follows in time-independent fields, viz.

-j—l%—(\/\/,( + e$) = 0.

Liouville’s theorem will be proved for the phase space volume element

[ 3]
dv = 22 B % dv, du,

m

i.e. one proves, for a co-moving df,
dt = S (de) = 0
o (dv)

or, equivalently D, 3] i

¥
OB * Q X
_ I ; (B 'U’) 4 9 ( y )
where 'E’ must be taken from eq. (2.18) and '6;, from eq. (2.19). The
scalar magnetic moment}.\ has now been included among the phase

space coordinates {o(; } = X' 13’" ) f.k j) which

~ !

makes no difference in the verification of egs. (3.3), (3.3a) since /..k= 0.

To prove eq. (3.3a), we list
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The modified homogeneous Maxwell equations [eqs. (2.7) and (2.8)}
were used to derive eq. (3.7). |Inspection of egs. (2.9) and (2.10) for
the "modified fields" shows that both sets of curly brackets in eq. (3.7)
vanish. This proves the validity of eq. (3.3a) and hence of eq. (3.3),
i.e. Liouville’s theorem for the dv of eq. (3.2). The results of this
section agree with Littlejohn’s earlier results [1} ; Littlejohn [l]
used a Hamiltonian formalism rather than the Lagrangian approach he

proposed later [2] for the case of "drift scaling".

(3.5)

3.6)

—_
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4, Collisionless Kinetic Equation for the Guiding Centers

A collisionless kinetic theory is given for the guiding-center mechanics
with polarization drift as presented in Sects. 2 and 3. The phase space
is 5-dimensional, with coordinates {oc;_} = {2{, 7, | /u} )
i =1 to5. The volume element in phase space, dv , as given by
eq. (3.2), is Liouvillian, i.e. Ci"e':O for a dt that moves with the
guiding centers in phase space. The guiding center distribution function

f is defined by

d N

il

ﬁo\t’,

with 12 = g (t, X oy }A.) , N being the number of guiding
centers in phase space. The collisionless kinetic equation expresses con-
servation of AN in a volume element o\'t that moves with the guiding

centers, i.e.

d - _d
T (4N = g (fd) = 0.

This equation can be reformulated [3] to read

(L) » (Bl 1e) e B 6 14)-
A (B“ + dew (B, {v )+ 3 B, £ )=0.
This form of the kinetic equation holds independently of whether dt is
Liouvillian or not. Since our QT is in fact Liouvillian, eq. (4.3) can

be simplified to read

oD D
%:"Bt +y-V£+v—£— =0,

A "By

(4.1)

(4.2)

(4.3)

(4.4)
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Here 1% must be taken from eq. (2.18) or (2.20) and '{)l" from eq. (2.19)

or (2.22).

When moment equations are to be derived from the kinetic equation the

use of eq. (4.3) is to be preferred. An equation of continuity and an
energy equation will be derived. Integration of eq. (4.3) over ol‘lj'“ d}-k
far —06 < '\)‘II < + ®© and 0 < )L < & yields the equa-

tion of continuity, viz,

O,

ot

+ dv [, =0, (4.5)

where

M, = S de, ﬁ (4.6)
is the guiding-center density in position space,
Nr'i = joh—v { g (4.60)

is the guiding-center flux density, and

X
dt, = %,175 B, dv o\/u (4.7)

is the volume element in guiding-center velocity space. To obtain

¥* '
eq. (4.5), it is assumed that (B“ e 'O'u) —> 0 for I'\’"l * R

In order to formulate the energy equation, let us define the kinetic

energy density, viz,

D, = [dr, ¢ W, (4.9
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the kinetic energy flux density, viz.

fi Eyfvaﬁwk'}l /

and the vectorial magnetic moment density, viz.

Moo= fde, ] oa

Here WK is to be taken from eq. (2.3), "g'from eq. (2.18) or (2.20),

ond/u from eq. (2.26). By multiplying eq. (4.3) by WK c‘\’\j'“ cl);

and integrating over ('\},, )}L) space one obtains the energy equation in

the form

‘ot ~

or [eqs. (2.25) and (2.26) |

~

D div By o= [y

Dy o, - LB - M

d Wy
dt

A
Here ’\I:'i-L = Ei - (& 'Ni) Q’, is the perpendicular

part of r'i , and

J:E = m, v, .

It would be desirable to transform

eq.

(4.11) so that the new right-hand

(4.9)

(4.9a)

(4.10)

(4.11)

(4.12)
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side acquires the form E }QW , 4_,‘# being the "effective

-~

viding-center current density" of one guiding-center component |3, 4| .
g g Y g9 9 P

This would allow exact energetic coupling of the guiding-center theory
with Maxwell’s equations. As a first step the following form of the

energy equation is obtained:

9D, 4 i F2 — E'(efi + ccweﬁj)

3t S
[e)

S

_"’“@_%g'(fu B

with the modified energy flux density

Ez = Fi +C£’1XE.

~

The induction law, i.e.

—%—%—:HCCU*’EE;

was used here. Further transformations will be considered in Sect. 5.

(4.13)

(4.14)

(4.15)
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5. Energetic Coupling of Kinetic Guiding-center Theory and Maxwell’s

Eguc’rions

In order to provide exact conservation of the total energy of the guiding-
center plasma and the fields the guiding-center energy equation, viz.
eq. (4.13), would have to be further transformed so that the right-hand
side of the transformed equation would acquire the form E ‘ j:"?F ’

with the identity

, : d
div Jup = = 3F S 5.1

where g‘% and },_ﬂ refer to a single guiding-center component and
are allowed to differ from e'ni and .e.fi , respectively, by higher-
order corrections in & = ’}':} / L . The form of the last term of the

r.h.s. of eq. (4.13) suggests, however, that such a transformation is

generally not possible.

To make this plausible, we shall try two different transformations and
identify the mathematical obstacles. As a first attempt, let us try

partial differentiation with respect to time of the troubling term, viz.
v
— ~ —
X = - M >t (J:i.L EE) (5.2)

After some manipulation this yields a new form of the energy equation,

viz.
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’%Dt::z + d.ivf,_ = ~-{efi+ .QJ: =z cu+e t{}) (5.3)

with the definitions

(5.4)

=4
i
=
~
+
3
G
]

1

§ %I_E’k 'Paét (Eu“fg)- (5.5)

For general field configurations it appears to be impossible to find an

explicit expression for a density N, such that

D
i f?_ + 'Brz =0 (5.6)

is identically satisfied. It follows that

by = <l

does not identically satisfy eq. (5.1). Since this is in contradiction to

+o.£z +cc_u+€M (5.7)

Maxwell’s equations, where current density and charge density do obey
an equation of continuity, exact energetic coupling of guiding-center

theory and Maxwell’s equations cannot be provided by eqgs. (5.3) to

(5.5).

As a second attempt, one observes that in
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1AL _EE) (5.8)

one may write
A
fu. _fe = %YE

A
with K& =0 [see egs. (2.20), (4.6), ond (4.12):‘ . Hence one

~

has
0V A
y:-—%(—%ﬁf&xg)'K. (5.10)

On the other hand, the following identity holds:

Qv . § 4 9B < E,
—;s—t“' X R)’ -E-EE X 'at B ,—at_ . (5.11)

Insertion in eq. (5.10) yields

— M C BAE,_L
I e

The first term of the r.h.s. can be transformed in the desired way by

-—Mi'—g—-_%—z clf\ji'cweg

= & E-cuve ,.[\:11 = iC cli\r(ﬁjixg)/

(5.13)
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which is similar to the transformation that led from eq. (4.11) to
(4.13). However, no transformation appears to be available that

would identically yield

oD
5 5"_"%% = sfelis =og — L, b

with

O
div [ + _—'B'EL = 0. (5.15)

~S

It therefore appears that our second attempt does not provide exact
energetic coupling of guiding-center theory and Maxwell’s equations
either. It should be mentioned that preliminary investigations convey
the impression that this problem will persist for guiding-center theories
with polarization drift other than Littlejohn’s, e.g. theories with
exact single-guiding-center energy conservation, but without a

Liouville’s theorem.

Even though exact conservation of total energy cannot be established,
total energy is in fact conserved to leading order in € = W’} /L o

This can be seen by considering eq. (4.13) and defining
g,% ‘:‘efi +C_<:ureﬂ- (5.16)

The equation of continuity |eq. (5.])] is then satisfied with

Sup = emy 6.17)
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where Ny has been defined in eq. (4.6). Furthermore, if 3#
and ?"# are inserted on the right-hand sides of Maxwell’s inhomo-
geneous equations, then one has (o( =5 My e)

3] o oe [ 20

P

Ve
= =2 e = (ﬂu B Feoc)/

the energy source term on the r.h.s. being of higher order in g,

viz. of O (i) This shows that the total energy is approximately

conserved.

(5.18)
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6. Conclusion

Non-relativistic guiding-center equations of motion that include the polari=-
zation drift [1, 2] were rederived from an appropriate Lagrangian. They
conserve single-guiding-center energy in time-independent fields, obey a
Liouville’s theorem for an appropriate phase space volume element, and
are identical with the results of Littlejohn’s Hamiltonian theory []] when
higher-order terms in & = 1’“'} / L. are dropped (see Appendix A). From
this guiding-center mechanics, collisionless kinetic guiding-center equations
and moment equations - for guiding-center density and energy density -
were deduced. Unlike in the case without polarization drift [3_] y T
appears here that the kinetic guiding-center theory with polarization drift,
when coupled with Maxwell’s equations, does not exactly conserve the
total energy of the guiding-center plasma and its self-consistent fields.
Rather an artificial energy source of higher order in € = T} /L )
viz., O(E.) , exists. Preliminary investigations indicate that this property
will persist for other guiding-center theories with polarization drift when-
ever exact energy conservation for single guiding centers holds. This prop-
erty must be taken into account when the theory is applied, e.g. to prob-
lems of drift instabilities and anomalous transport. Still, employing
Littlejohn’s mechanics [1, 2} appears to be the best possible basis for a
rational kinetic guiding-center theory. In addition, Littlejohn’s guiding-
center mechanics [1, 2, 3] continues to be superior to earlier guiding-

center theories as far as single guiding centers in given external fields are
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concerned. Moreover, in the case of "drift scaling" where the polari-
zation drift and other higher-order corrections are omitted, conservation
of the total energy of the guiding-center plasma and its self-consistent
fields is in fact compatible with conservation of single-guiding-center

energy (and with validity of Liouville’s theorem) [3 , 4:[ :

Acknowledgment. The author thanks A. Salat for several interesting con-

versations.
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Appendix A. Verification of the Results of Sect. 2

It is shown here that the results of Sect. 2 agree with the results that
Littlejohn derived with a Hamiltonian formalism [1] . Unlike in

this paper, Littlejohn [1] uses the gauge

jn

2= E - {oaE e 3

and, in effect,
- m .. ? 2
(WK)L s 2 + uB + 0 (£2).

This is equivalent to replacing $ by

b = b + 2= v2 4 0[5

*
and leaves the expressions L, (e¢ + WK) , and (e.g —_ VWK)
invariant, Littlejohn’s [1} definitions of A and B are the same as in
~ ~
this paper, except for terms of 0 (27‘). It should be noted, however,

that Littlejohn [1] uses the convention m = ¢ = e = sign(e) = 1,

while in this paper normal Gaussian units and sign(e) = ¥ 1 are employed.

When the differences in gauge, in units, and in notation are taken into

account, it can easily be seen that eq. (2.18) above for U is identical

(A.2)
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with eq. (D 9) of Littlejohn [11 . Equally, eq. (2.19) above for
is identical with eq. (D 10) of Littlejohn [1] . This proves that our
choice of the Lagrangian L [:eqs. (2.1) through (2.4)] is correct.

In addition, Littlejohn [l] shows that his (and hence our) guiding-
center equations of motion agree to leading orders in € with the

usual ones, viz.

g: "ﬁ% * '\-ZE +}?vg
1 3 3 9 -
! “ﬁ‘”z"{'é?“%s?*‘ls'v}(‘%%*
+ 0(52) /
with

'U"

_ M g
Yyg = T £ VB
and
; M 9B
LRl STl T
Y oy .
Ve 3 s Fo VL 4+ 0(e).

Here, egs. (A.4) and (A.6) are transscriptions of Littlejohn’s [l]

egs. (D 11) and (D 12).

(A.6)
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