MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

Energy Conserving Non-relativistic Guiding Center

Mechanics and the Galilean Principle of Relativity

H.K. Wimmel

IPP 6/219 March 1983

Die nachstehende Arbeit wurde im Rabmen desVertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europdischen Atomgemeinschaft iiber die
Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiibrt.




IPP 6/219 H.K. Wimmel Energy Conserving Non-relativistic Guiding
Center Mechanics and the Galilean Prin-

ciple of Relativity

March 1983

(in English)

Abstract

Arguments and representative examples are given that suggest that exact energy
conservation and Galilei invariance are incompatible in non-relativistic guiding-
center mechanics. Provided that this is true in general it also follows that
exact energy conservation and Lorentz invariance are incompatible in relativis-
tic guiding-center mechanics. |t would furthermore follow that every guiding-
center mechanics with exact energy conservatien is a non-unique theory owing
to the principle of relativity. The paper also presents a Galilei invariant

guiding-center mechanics that does not conserve energy.



1. Introduction

The principle of relativity states that the laws of physics are the same in

all inertial reference frames (IF) when expressed by the physical quantities

defined relative to the IF considered. Hence, those fundamental equat-

ions of physics that only contain observable quantities and are to be

unique must be form-invariant (henceforth simply called "invariant") with

respect to an appropriate group of transformations that relate the quantities
of one IF with those of another (e.g. Lorentz group, Galilei group). The

principle of relativity holds independently of the existence of such a

transformation group that would leave the equations under consideration
form-invariant. Hence, if physical equations are given that are not so
invariant they represent a non-unique theory with infinitely many branches
of equal validity (see Sec. 2). Actually, this very situation prevails in
much of "non-relativistic" plasma theory (see Sec. 2). This is usually not
made very apparent because a change of the IF is seldom considered and
rarely necessary. However, in the context of this paper this point has

its explicit importance.

Recently, traditional non-relativistic guiding-center mechanics []] has
been greatly improved by the establishment of modified theories that are,
in a specific sense, "consistent" [2, 3, 8] . This term is used to express
that these theories possess exact energy theorems (in time-independent

fields) and exact Liouville theorems. However, these theories, as well as



traditional guiding-center mechanics, are not Galilei invariant. Even

though these "consistent" theories can be derived from the particle

Hamiltonian [2] or the particle Lagrangian [8] Galilei invariance is

lost in the course of the approximations used. It has been suggested
[3] that "structural reasons" will in fact prevent any of the "consistent"
versions of non-relativistic guiding-center mechanics from being Galilei
invariant. This paper is to corroborate this conjecture by representative
examples and physical arguments (Secs. 3 and 4). Specifically, Sec. 3
presents a representative, Galilei invariant guiding-center mechanics

that does not conserve energy in general time-independent fields. The
general incompatibility of energy conservation and Galilei invariance in
guiding-center mechanics is justified and analysed in Sec. 4. It may be
added that the relativistic guiding-center mechanics by Morozov and
Solov’ev [7] conserves energy in time-independent fields, but lacks
Lorentz invariance, as we would expect. The same is true for the con-
sistent relativistic guiding center theory of ref. [9] that conserves energy

and phase space volume at the same time.




2. Non-invariant Physical Theories

Different theories result when the same set of dynamic equations is combined

with various transformation groups that are to effect transition to the other
IFs. If the equations are non-invariant with respect to one such transforma-
tion group then the principle of relativity will provide that the resulting
theory is a non-unique one. Such a non-uniqueness cannot always be avoid-
ed or amended. In fact, many well-established thearies exist in physics that
have this non-uniqueness property (see the examples below). In order for
such a theory to be physically relevant its "dispersion by non-uniqueness"
ought to be sufficiently small in the IFs used. Of course, this non-uniqueness
dispersion is related to the approximation error committed when the non-
unique theory is derived from a more exact and more fundamental theory that
is unique and invariant. These and other points are best clarified by a

simple example taken from particle dynamics.

The example taken is non-relativistic mechanics (NRM) of particles, visualized

as an approximation to relativistic mechanics (RM). The usual equations of

NRM approximately hold, for a given mechanical system, in a restricted class

of IFs in which the particle speeds are small compared with c. The equations
of NRM are, of course, not Lorentz invariant. One may, for a moment,
imagine that their Galilei invariance was absent or unknown. One would
then argue that an approximation applied to the dynamical equations (of RM)

does not by itself alter the transformation properties of the physical observables.



Hence, one would extend the non-relativistic equations of motion to all

other IFs by applying the Lorentz transformation group to all occurring

quantities. The resulting new equations would explicitly depend on the
transformation velocity V. On the other hand, the principle of relativity

provides that, e.g. the equations of NRM in their usual form (expressed

in quantities appropriate to the |F considered) must be applicable in every

IF of the restricted class mentioned. This creates a 3 parametric family

of branches of the theory that possess equal validity.

Of course, the alternative procedure of employing the Galilei transformation

group exists. The resulting theory is invariant and unique, as is well

known. Yet, application of the Galilei transformations is limited to V< ¢,
while the above Lorentz transformations admitted all values V< c for the
transformation velocity. Thus, the choice between the two ways of proceeding

may sometimes be a matter of taste. Examples of the first kind are offered

by several "non-relativistic" plasma theories that consist of some form of NRM

together with the full set of unabridged Maxwell’s equations (see, e.g. ref.

[4] ). The combined set of equations is neither Lorentz invariant nor
Galilei invariant. Hence, they form a non-unique theory in the sense defined
above. Other non-unique theories are given by the guiding-center theories

mentioned in Sec. 1.




3. A Galilei Invariant Guiding-center Mechanics Lacking Energy

Conservation

Be {5, /J, v,,} the coordinates of 5-dimension guiding-center (G.C.)
phase space, with x the G.C. position in ordinary space, /.1 the magnetic
moment, and v, the component of G.C. velocity parallel to B [3] .
We use the Galilei transformation, with the transformation velocity V, in

its usual form, viz.

x" = x - Vt, t’ =t , (3.1)
~ ~ ~

f\i’:'\i_l{’ xa;(’ (3.2)
=y @.3)

/A’ ‘—‘/u , (3.4)

B :'E’ (3.5)
E'=E+1VxB, (3.6)

with E and B being the electromagnetic fields. The Lorentz force, viz.
A

KLEQE+f~XXE ) (3.7)

10>

= B/B, it follows

is seen to be Galilei invariant, From v, 5 v ¢ b,
~ ~ ~

that 0‘
\-/"' = '{l" - ’V' ’;H._ o (3.8)

The dot in egs. (3.3) and (3.8) indicates the ordinary time derivative,

ROU—>

which is equivalent to the total time derivative in phase space, viz.
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with }1= 0 henceforth. The V operation is, of course, performed

wi'rh}.( and v, kept constant. |t follows that
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In eq. (3.11) the vector notation of [5] is used, i.e. YV operates

A
on b only. Considering the fields it turns out that the homogeneous

~

Maxwell equations, viz.

£l
s

Vi = O, (3.14q)

= — C VX,E; | (3.14)

are Galilei invariant while the inhomogeneous Maxwell equations,




which are not needed in a G.C. mechanics - as opposed to a self
consistent G.C. kinetic theory - are not Galilei invariant (see
Appendix A). The Galilei transforms of the fields, e.g. egs. (3.5)
and (3.6), deviate from the Lorentz transforms by terms of the
relative magnitude { 0(V3/c2) + O(VE/CB)} , i.e. the relative
deviation is not simply 0(V¥/c?). This is not specific to the field
transforms; the coordinate transforms (including time) exhibit a similar
behavior. Of the two relativistic invariants only E * B is Galilei

A A

. " 2 2, .
invariant, whereas (B~ - E7) is not.

In order to construct a Galilei invariant guiding-center mechanics we

start by putting

A
v = ¥, b+ Xy 4 (3.15)
Ar ~
whence
db . dy,
A
. ) V
= o ~ s (3.16)
v Vi ,13 O v v
with Yp @ drift velocity to be determined. In what follows, drift

scaling in £_=_5/L is used (see Appendix A of ref. [3] ), where
rg is the gyro-radius and L a characteristic macroscopic length. It
follows that Yp = 0(£). In order for v to be Galilei covariant

and for D to agree to order € with conventional theory [T, 3]

we put
Yy 8 Ye t MYup t Yy (3.17)



where
v A
ve. = — Exb (3.18)
(2" B A AL
Vv L s ngB (3.19)
= 4bx (¢)
MYEI ‘j{“b" ;Ft‘lfi = Yt gt ) (3.20)
with Jl';_ eB/mc, and the definitions
A
o (3.21)
Xi - Vné +¥E +~VVB )
d VI
Loz &y, Vg S
T ) (3.22)
dt ot Y 7
and FV*K: the usual curvature drift ['I, 3J . It is seen that XD
and V¢ satisfy eq. (3.2), while AYVB and 'Y'Ki transform like
velocity increments, i.e. they are Galilei invariant. The resulting
V, as defined by eqgs. (3.15) to (3.22), can also be written in the
form
1.7 d
= 1 4 , 3.15a
v =Y.+t b T Y (3.15)
An expression for v, is also needed. In order for it to satisfy eq.
(3.12) and agree to leading order in € with traditional theory
[], 3] we put A
(3.23)

b (aE-£s) ey S

I




10

Finally, a Galilei covariant expression for the kinetic energy is

W o= 2o +/AB, (3.24)

K 2
whence
. : 4B
WK = MmV:V + XK 1 (3.25)

In order to obtain the desired energy equation, or "power balance
equation" [3] , in terms of the fields and derivatives the r.h.s.

of eq. (3.25) must be transformed with the aid of

mVV = mv VY, + —?—W(vg) (3.26)

~

and egs. (3.23) and (3.7). After that, by specializing to time-
independent fields, we will investigate whether an energy theorem

exists.

A straight-forward calculation brings eq. (3.25) to the form

~ ' (3.27q)
D) dt . s
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The calculation uses the identity
y,-(QE~)«VB) = 0 (3.28)

with the definition

_ 3.29
Vo = Yeg t Ypp -

Lard

In time-independent fields (’3/3'(;:0) eq. (3.27) reduces to

1l

\W }%E'("e'q) +—’g‘——vj)

K
A
+ my, XVJ? 'Vt Vi 'V(e‘h/uB)/ (2:30)

where the vector notation of [5] is used, i.e. the V operator in
A
the first term of the second line only operates on b. The quantity CP

is the electric potential, i.e. E = -V |
~s

In special time-independent field configurations, e.g. with

~ W / Vb = XD ,an energy theorem

~S

A
VE=0, Yiy

results, viz.

W

along G.C. orbits. An energy theorem does not exist for general

|

W, + P - -%"—Vo?‘ = coust (3.31)

time-independent fields. The reason is the following. The second
line of eq. (3.30) cannot, for general time-independent fields, be

transformed into a total time derivative of a function IF(X’ ,)A, V“))
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i.e. independent of t. To be sure, transformation into a total time

derivative of a function Cf{t, Xi P v,,) would be formally possible
A

by employing the formal solutions of the equations of motion. But

in order to construct a first integral of the form

W= W, +V(x B v“) — const (3.31a)

along G.C. orbits the functions W, , V, and Y may not explicitly
depend on t (except for t dependences that would cancel in W, to
yield 'b\d/at = O) Two independent, informal non-existence
proofs for the energy integral are carried through in Appendix B.
It is seen that this result does not depend on the exact definition
employed for Wk [eq. (3.24)] , as long as a Galilei covariant

definition is chosen.

Summarizing this section, we have presented a Galilei invariant G.C.
mechanics that does not, however, conserve energy in general time-
~independent fields. The analysis of Sec. 4 makes it probable that
Galilei invariance and energy conservation are in fact incompatible

in G.C. mechanics.
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4. Incompatibility of Energy Conservation and Galilei Invariance in

Guiding-center Mechanics

This section exemplifies the conjecture that energy conservation and
Galilei invariance are incompatible in non-relativistic guiding-center
mechanics, except for specialized field configurations. We define
the kinetic energy Wk and the energy equation (i.e. for \;Vk) such
that the two expressions agree to leading order in € with other non-
relativistic guiding center theories [1, Z, 3 8_] , drift ordering [3]
presupposed, and such that energy is conserved in time-independent
fields. The requirement of Galilei invariance then leads to a set of
generalized G.C. equations of motion that are in conflict with the
use of a G.C. drift velocity for general field configurations. This
discrepancy is further discussed and interpreted as incompatibility
between energy conservation and Galilei invariance in the case of

G.C. mechaniecs.

We use again the Galilei-covariant definition

W, = _’;va + mB (4.1)

whence (remember}:\ = 0):

W= oy gE R g W

We require the energy equation to read (see Appendix B of ref. [3])




. 0B
W, = eEy o+ pne

In time-independent fields this yields exact conservation of energy, viz.

W, + <% = ceust, (4.4)

with V& =- E . Comparison of egs. (4.2) and (4.3) yields (for

arbitrary fields):
dy
v(eE-uVB -m 1) = 0. 4.5

Comparing the Galilei transforms of egs. (4.2) and (4.3) furnishes the

conditions
dy
dt

which are nothing else than the G.C. equations of motion required by

e £ o M
B - S-VB + vxdl, (4.6)

the above definitions and Galilei invariance. Of course, l’{l: (e/mc)'E\S'.
These equations have an unusual, generalized form because they con-
tain the full acceleration vector dv/dt. Equation (4.6) implies eq.
(4.5). Up to now the above theory is Galilei invariant and, at the
same time, conserves energy in time-independent fields. |t may be

derived from a Lagrangian, viz.

L

which is a modified particle Lagrangian that depends on the independent

1

LA e = — _ M x2
CAX‘ e? }AB 7 X7

~ N

. » - . . .
variables t, x, x, while s merely a parameter. However, it is not
~ ~ TEE——

an ordinary G.C. mechanics because v does not have the form
~F

A
v =Vvb + AN (tz?f//"/ Vi) ) 7
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with the drift velocit Yp @ given function of its arguments. Rather y

must be determined by integrating eq. (4.6) and introducing initial con-

ditions. The gyro-motion of the guiding center is not yet eliminated here.

Before discussing the approximation of Y by a drift velocity ) let us
further consider eq. (4.6). An equation for V,, can be derived from it,

viz.

(4.8)

which is formally identical to eq. (3.23). The perpendicular components

of eq. (4.6) can be rewritten to read

V—'V-l-igxd'gl (4.9)
T A o T '

with A defined by eq. (3.29). This is equivalent with the following

v
~

equation for v:
A

vV = V + TV

~ ~1 ~ )

(4.10)
with vy given by eq. (3.21) and 2 defined by

v (4.11)

A
_ 41 b d
= S RXJE
The operator ¥’ contains y [see eq. (3.7)‘] ; hence eq. (4.10) is a non-

linear partial D. Eq. for Y. The guiding-center velocity Y, of eq. (3.15q)

does not usually satisfy eq. (4.10).

The only known method for solving eqs. (4.6), (4.10), or (4.11) by

means of a drift velocity XD [cf. eq. (4.7)] is by expanding the equa-

tions in terms of the small parameter € = 'G /L and truncating the
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resulting series. Galilei invariance will so be lost because eq. (4.6),

which is the condition for eq. (4.3) to be Galilei invariant, will then
only approximately be satisfied, except for specialized field configura-

tions for which the higher-order terms in & vanish identically.

The manner in which violation of Galilei invariance comes about in
the above analysis makes it probable that this defect will exist for any
"consistent" version of G.C. mechanics. Specifically, Galilei invari-
ance of any energy equation that would guarantee energy conservation
in time-independent fields hinges on exactly satisfying the resulting

equations of motion; for these represent the very conditions of Galilei

invariance of the energy equation. However, any such resulting equa-
tions of motion can be expected to contradict the use of a G.C. drift

velocity when general field configurations are admitted.

Provided that energy conservation and uniqueness by Galilei invariance
are generally incompatible in G.C. theories, which of the two symmetries

should be preferred? It appears to us that conservation of energy is

more important for the following reasons. When the "dispersion by non-
uniqueness" is not larger than the approximation error incurred in deriving
a theory, then a non-unique theory is no worse than a unique one.
Furthermore, a preferred IF is defined by boundary conditions in many
problems, and a change of IFs is often not required. On the other hand,

energy is of practical importance as a first integral (in time-independent
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fields) when considering orbits as well as when doing kinetic theory
(see ref. [3] ). We therefore recommend the use of "consistent"

guiding-center theories, as given in refs, [2, 3} , even though

they lack Galilei invariance and, hence, uniqueness.
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5. Conclusion

We have given arguments why energy conservation and Galilei invariance
can be expected to be generally incompatible in non-relativistic guiding-
center mechanics. It turns out that Galilei invariance of the G.C.
energy equation requires validity of a set of generalized G.C. equations
of motion that are generally in conflict with the use of a G.C. drift
velocity (Sec. 4). Energy conserving types of G.C. mechanics are there-
fore non-unique theories in the sense explained in Secs. 1 and 2. In
addition, a Galilei invariant, energy non-conserving version of G.C.
mechanics has been given in Sec. 3. From the above it may be inferred

that energy conservation and Lorentz invariance will be equally incom-

patible in any relativistic G.C. mechanics. The "consistent" types of
G.C. mechanics, as given in refs, [2, 3: 8; 9] , are preferable over
any Galilei invariant (or Lorentz invariant, respectively) versions in
practice as is discussed in Sec. 4. Independently of that, a self-

consistent, Galilei invariant, kinetic G.C. theory does not exist because

the inhomogeneous Maxwell equations are not Galilei invariant (see

Appendix A).
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Appendix A. Lacking Galilei Invariance of the Inhomogeneous Maxwell

Ejucfions

We assume that charge densifyg and electric current densityi are created

by nonrelativistic fluids of charged particles. Hence these quantities

Galilei transform thus:

s | 9

=;*8Y)

where V is again the transformation velocity. The equation of continuity

is Galilei invariant, viz.

(5 +vy) = 3 £V

According to egs. (3.5) and (3.6) the inhomogeneous Maxwell equations
Galilei transform in the following way. The Poisson equation transforms
as
! 1
' --q- — ' - = - — ' x
(VE ~trg) — (VE-4np) = = 2 V. (VxB).
Hence, the Poisson equation is generally not Galilei invariant. Similarly,

Ampére’s law shows non-invariance, viz.
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where 1 is the unit dyad, and the vector notation of ref. [5_] is used
again. In particular the operatorV only operates on B in the expression

VB x V. This completes the proof of lacking Galilei invariance of the
~ 4

inhomogeneous Maxwell equations.
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Appendix B. Non-Integrability of Equation (3.30)

The first line of eq. (3.30) is a total time derivative (in time-independent

fields). The second line is given by

. A

WKZ = %%‘AY‘V.@'X + yki'V(tcb'f‘/.{B) ) (B.1)
again for time-independent fields. Here the vector notation of ref. [5_]

is used (see Sec. 3 above), the vV operator operates on x with),g and v,

kept constant, and in is given by eq. (3.20). In order to show that

\;JKZ cannot be expressed, for general time-independent fields, as a

total time derivative in the way explained in Sec. 3 ("non-integrability")

one first notes that it would suffice to show this impossibility for one

special time-independent field configuration and one particular point

{2{ i ).I.! Vu} in phase space. If Wk_z was "integrable" it would

have the form
L ]

W :X-VV +\'/(BV

with v, substituted by the r.h.s. of eq. (3.23), and '\Y(E [ }.\, V“)

being a potential function defined in phase space. It can be demon-
strated in several ways that eq. (B.1) cannot assume the form of eq. (B.2)

in the general, time-independent case.

A
To give a first, informal proof, consider a field with Vb =0 )

«\v,ki, + 0 at {XOI }J-’ V“} | i.e. wi’rhi:zo fixed,

but/L and v, arbitrary. Then the first term on the r.h.s. of eq. (B.1)
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vanishes and it suffices to consider the second term. This term does
not contain E, , hence the term \.lu BV/BV" in eq. (B.2) must

not contribute, and 'BY/BV“ =0 at {KO J /Lkl Vi, }
is necessary. On the other hand, it is not possible to express the
second term as V * V’IIV’ Firstly, it has the form vki . VW)V and,
~ ~
A
generally, one has c\\{l(j. '-'l: x even though Vb=0 at x = x_.
Further inspection shows that no other possibility exists to transform

the second term to the form V. VW

An alternative informal proof is the following. Be the magnetic
A A
field B chosen such that b - curl b = 0. It follows that orthogonal
~ ~ ~

surfaces exist for the field of B lines [6] . Choose E = - V¢
and )A:)Lo such that

V_L (2 ? +/‘*o B) = O
for ).\ :-}LJ,l , all icnd v, , but

V“(Q(P +}‘°B) £ 0.

This means that the function (e¢’ ‘f‘)‘o B) is constant on the orthogonal

(B.3)

(B.4)

surfaces mentioned above. Then the following relations hold for )J. =/Ll° .

Yo =0, Xi"'vug) di/olt'—'vn'a/gsj

P

Q
o>

)
v
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A

A 'ab A
=v.Vb =v 5% +v_ Vb, ©.6)

0>

d
at

For )1:),\0 the second term of the r.h.s. of eq. (B.1) vanishes, and

A

Again, this expression does not contain E, and, hence, ’a’lp’/a\/" =0
for M= Mo in eq. (B.2). It is easy to see that the r.h.s. of eq.

(B.3) does not have the form V ’VV If it had this would imply that

\YA") (8.8)

1

3
=<
<]
o>
1<
]|

wv, v- Vb = VY, (®.9)

would have to hold. Here the velocifyi is explicitly given by

A L A )
b Vy “ob
s + Ln_ o * s
at M= Mg Taking into account that B'\Fd. /Bvu = ’é‘llbz /aVu =

at }k'-:)-lo it is clear that the two sides of eq. (B.8) cannot have the

(B.10)

same dependence on v, . The same is true for eq. (B.9). Hence,
egs. (B.8) and/or (B.9) cannot be satisfied cf).\:),to . To perform
this second proof it would, of course, have been sufficient to consider
only a neighborhood of x =X in position space instead of all x .

This completes the proof of the proposition that eq. (3.30) does not
have the form of a total time-derivative in the way specified in Sec. 3

and, hence, does not yield an energy theorem.
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