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Abstract

A new relativistic guiding center mechanics is presented that conserves
energy (in time-independent fields) and satisfies a Liouville's theorem.
The theory reduces to Littlejohn's theory in the non-relativistic limit
and agrees to leading orders in €& = ‘*f;/L with the relativistic
theory by Morozov and Solov'ev (which generally lacks a Liouville's theorem).
The new theory is developed from an appropriate Lagrangian and is supple-
mented by a collisionless relativistic kinetic equation for the guiding
centers. Moment equations for guiding center density and energy density
are also derived.




1. Introduction

An energy-conserving relativistic guiding center mechanics exists [1]. How-
ever, this theory by Morozov and Solov'ev does not generally obey a Liouville's
theorem. A Liouville's theorem is desirable for several reasons ([2], [31),
particularly in order to formulate a rational kinetic theory. This paper pre-
sents a new relativistic guiding center mechanics that satisfies both an energy
theorem and a Liouville's theorem. In agreement with earlier work [3] we term
such a guiding center theory "consistent". The starting point is a guiding
center Lagrangian which is a relativistic generalization of a non-relativistic
Lagrangian given by Littlejohn [4]. It also provides for conservation of ca-
nonical momenta in cases of spatial symmetry. The theory agrees to leading
orders in £ = 15/[_ ( +} = gyro-radius, L = macroscopic length scale)
with the relativistic guiding center theory of Morozov and Solov'ev [1]. Rela-
tivistic drift scaling (see Appendix C) is used throughout. From the new guid-
ing center mechanics a collisionless guiding center kinetic theory is derived
with the methods of ref.[3]. Moment equations (continuity, energy) are obtained
from the kinetic equation, and an effective guiding center current is defined.
Our theory reduces to the one given by Littlejohn and the present author ([Z2],
[3], [4]) in the non-relativistic Timit.

It will be seen that the new, consistent, relativistic guiding center mechanics
is not Lorentz invariant. Similarly, Littlejohn's non-relativistic theory ([2],
[3], [4]) is not Galilei invariant. Strong arguments exist to the effect that
this lack of Lorentz invariance (or Galilei invariance, respectively) is un-
avoidable in consistent guiding center theories, because conservation of energy
and Lorentz invariance (or Galilei invariance) appear to be incompatible in

guiding center theories [6]. On the other hand, non-invariant theories are
frequent in plasma physics; for instance, all existing guiding center theories
cited in [3] and in this paper are non-invariant. A Galilei invariant, non-
relativistic guiding center theory has been formulated, but it lacks an energy
theorem [6]. Concerning the principle of relativity this physical law remains,

of course, effective. However, any non-invariant theory is of necessity non-
unique, as is explained in ref.[6].




The paper is organized as follows. The relativistic guiding center mechanics
is given in Sec.2, while the kinetic theory is presented in Sec.3. Section 4
presents. the conclusions. For reference, Appendix A collects the main results
of Morozov and Solov'ev [1], Appendix B those by Littlejohn [4], and Appendix
C explains the drift scaling in the relativistic case.



2. Consistent Relativistic Guiding Center Mechanics

In agreement with earlier work [3] we call a guiding center theory "consistent"
if it satisfies an energy theorem (in time-independent fields) and a Liouville's
theorem. We start with the guiding center Lagrangian

X
L= &A v e - W, (2.1)

~

with L depending on the vamab]es 'f-' X‘ V=X, U, and the parameters

NN

Jl_, € , M, , and ¢ . Here /& is a m0d1f1ed vector potential, viz.

*

A =

Fad

nm;c ’6,5 (f, x) ) (2.2)

Cb (f:,kf) is the scalar potential, and bdk is the kinetic energy (includ-
ing the rest energy) in the form

W, = m,c*[1+

(2.3)

2
Uy " J.B
: 2

t. A’) the magnetic field strength, IS (t’ Xf) the magnetic field,
B /B the unit vector in the direction ofg The parameter Jl
’E ndicular adiabatic invariant [1] and satisfies the relations

_L/d-t = and

IR -_-J,?—wf - Q’LB_ ) (2.4)

Wy

with'}x the (scalar) magnetic moment, }yh_ the gyration velocity (without the
guiding center drift), and



The abbreviation

N = W /y (2:6)

will also be used. However, the interpretation of Vi as, the "parallel
velocity" of the guiding center, in the form \/II = V.,@ , is not yet

here implied; it will follow from one of the Lagrangian equations.

Equation (2.1) is a plausible ansatz. The equations of motion following from
this Lagrangian can be proved to be correct by showing them to agree, to
leading orders in € , with the theory of Morozov and Solov'ev [1]. See Ap-
pendices A and C. This comparison is easy and is, hence, left to the reader.

The Lagrangian equations are [5]
d (faL) oL

g5 s, ) (2.7)

dt

L]
where the 2. are arbitrary coordinates, and L = L ('{j, Z;: 'Z‘:) .

Here {2.;5 = {}(, u"} is chosen. As a parameter J_}_ is not included
among the #; . The conjugated momenta are defined as

AL
e = 3

-

(2.8)

One notes that the momentum F" associated with un does not exist since
'a[./ 3(1” vanishes identically. However,

L a
== EA

e
+ 2 A (2.9)
’bv C =



exists and, according to eq.(2.7), is conserved if 31./3)_6 = VL

In inhomogeneous fields one or two spatial derivatives of L vanish at most

so that only special components of P to be expressed in appropriately trans-
formed coordinates, may be conserved. We shall not need to transform to a
Hamiltonian representation [4] in what follows. However, the definition of
"modified fields" I;k and EE*' ([21, [3]) will prove useful, viz.

* # 1
B" = cud é = B +-%—5u,, cur? 4 ) (2.10)

* 4" . B@
s A T

It should be observed that time- and space-derivatives are always formed with

u" (and Jl ) kept constant. The "modified homogeneous Maxwell equations",
viz.

¥

&A\:r B = 0O (2.12)

)

X *
&) = - c cud E (2.13)
ot ~

follow and will prove useful. We shall also need the parallel component of

Ia* .

Fad

i
1l

R +

j@: va W, (ﬂ; Cur@é—). (2.14)

l

Let us consider the components of eq.(2.7). The equation

2. S D (2.15)
Uy,

yields the relation

A
2.16
vik o= . o



The other guiding center equations of motion are obtained from

d (_?_L) _ oL

€ 5y) =3y =V o

which reads

¥

.g_ —i—é- = % V(é*g) — o Vo - VWK 5 (2.18)

e

By using

d 'B ' _’é_
".‘E = 3t + Xv + U, —a“u (2.19)

and several of the above relations this can be transformed to yield

. A
Mg U“’% = (QE*" va) ot %XVE X (2.20)

This equation is the starting point of the following. It yields an equation

for the guiding center drift ve]ocity‘lfl and another one for the "parallel
acceleration" C\u :
A

By forming the cross product of eq.(2.20) with g@ one obtains for V :

* ¥ * 2
Byv = v B +’§T(‘Q,Ec "VWKJX:Q: g e

*
and for B

~



WB = By - S(eE-VW)xE

U~

(2.

22)

The latter equation will be needed below. On inserting the explicit ex-

S
pressions for E and B¥ , and using
~ -~

g Jo.

AT

VB ':‘)AVB

the guiding center velocity is obtained, viz.

vV =Y, % + :—:(.QE -V =~mou, v, Bs)k%

or, alternatively,

A % % * ¥
=ik o+ Vet VetV + VG
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the components of the drift velocity being defined as
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with the definitions

X
* e Bn

(ﬂ = ) (2.29)
0 fmoc
rs A
— : \ 2.:30
A = Y (2.30)
¥*

By forming the scalar product of eq.(2.20) with 13 one obtains a first ex-
4 ~
pression for W, , viz.

U, = ""'LLT‘" B*' (QE*“ Vwk) . (2.31)

/h“o Bu
*
By using eq.(2.22) for IS this is transformed in a remarkable way, viz.
A ¥
0, = —=— \/-(QE —V\A/k), (2.32)
I ”Wto\/“ ~ ~e

A
On decomposing V , viz. V = Vu ﬂr + V , , and using egs.(2.21), (2.11),
e ar

~ ~ 4L

and (2.23) one finally obtains

A
U _ £ T_L raB 5 B‘Q{ 2.
W B T gy TR Y
with
Lo A (2.34)




The relation from eq.(2.24), viz.

(2.35)

(QE*—VWK) = Wy ZI gg

My V

is important in deriving eq.(2.33).

Next the energy equation is to be derived. On using egs.(2.19) and (2.32) one
obtains

d W, _ * W, (2.36)
Mo~ oEhy o+ B
*

A more explicit expression is found by inserting E; from eq.(2.11) and ob-
serving that

W,  m,J. 3B
0 2p 9ot

whence the energy equation reads

s

B , (2.37)
M 3

dW o 9B
eialE S A A Tl :38)

with the definition

M = “MJL% +MV¢- (2.39)

In order to confirm conservation of energy in time-independent fields we put

’a/at = O in eq.(2.38), to obtain




%E (Wk + e_q?) = i , (2.40)

or WK + Q¢ = const along orbits.

volume
Liouville's theorem remains to be proved. Generally, the correct phase space

element olT must be constructed by transforming to a Hamiltonian formalism
[4]. Here, however, we use an intelligent guess, viz.

i = JrB: o\gx duh O\T_L, (2.41)

and prove = d (dt’)/dt O . The perpendicular adiabatic invariant
31_ has now been included among the phase space coordinates {cx j =,

{x Uy Jl} , which makes no difference in the calculation, since J..L =0
It is known [3] that At =0 holds if

¥

s= 25 4 wio(Bly) + 2o (Biy)-0 e

is satisfied. Here x must be taken from eq.(2.21) and &u from eq.(2.31).
Let us prove eq.(2.42) to be true. One has

A »

38, * 3 A OB .
w CBae tEige ) o
div (Byv) = B Wy +ch:cud E”

_%(QE _Vwk)- cuyf @ y (2.44)

. (2.45)



Hence the 1.h.s. of eq.(2.42) is transformed to read

§ _’-’—__{’3-5* L ey } B

m, | DU, e 3t ~
4 35. s o Cuwre ﬁr -(QE*‘ VW) (2.46)
+ 73;;: Iy, = ~ - e

In doing this transformation eqs.(2.12) and (2.13) have also been used. In-
spection of eqs.(2.10) and (2.11) for the "modified fields" shows that both
curly brackets in eq.(2.46) vanish. This proves the validity of eq.(2.42)
and, hence, that of Liouville's theorem concerning the dTT of eq.(2.41).

In this section we have derived a relativistic guiding center mechanics from

a Lagrangian. An energy theorem and a Liouville's theorem are satisfied. The
explicit results are given by eqgs.(2.16), (2.24) through (2.28), (2.33), (2.38)
with (2.39) and (2.40), (2.41) with dt =0 or (2.42). As mentioned, the
correctness of this theory to leading orders in € may be proved by comparing
with Morozov and Solov'ev's theory [1] as given in Appendix A (below).




3. Collisionless Relativistic Kinetic Equation for Guiding Centers

We give a collisionless kinetic theory for the relativistic guiding center
mechanics established in Sec.2. The phase space is 5 dimensional, with co-
ordinates {o{;_} = {)_{‘, Wy | o } , 4 = 1 to 5. The volume element
in phase space, dt‘, is given by eq.(2.41) and, hence, is Liouvillian, 1i.e.
dt = O . A guiding center distribution function f is defined by

dN = 4 dr (3.1)

with ? = f(t, X, Uy / T_L) , N being the number of guiding centers
(in phase space). The collisionless kinetic equation expresses the conser-

vation of dN in a volume element dt that moves with the guiding centers,
i.e.

i

j’-\E—(dN) —Oé——(f o(?:) = @ . (3.2)

This equation can be reformulated [3] to read

%(B.’fﬁ)ww(sﬁﬁgh%l(su au) = 0. (3.3)

This form of the kinetic equation holds independent of whether dTT is

Liouvillian or not. Since our dx: is Liouvillian eq.(3.3) can be simpli-
fied to read

« V-V + g, %& = 0. (3-4)

o
ot

dg:
&t

Here Y must be taken from eqs.(2.24) through (2.28) and &1 from eq.(2.33).
The transition from eq.(3.3) to eq.(3.4) follows from eq.(2.42). In time-
independent fields equilibrium distribution functions have the form



$° = go (WK +Q¢’ IL ) other integrals of the motion)_ (3.5)

When moment equations are to be derived from the kinetic equation the
use of eq.(3.3) is to be preferred. We shall derive the equation of con-
tinuity and an energy equation. On defining the guiding center density

m = Kdtv / (3.6)

and the guiding center flux density

= Jdtv f v, (3.7)

with the definition of the volume element in velocity space as

dr, = =B, du, dI_, (3-8)

integration of eq.(3.3) over dun Q\J:L yields

On
—_— | = 0. (3:3)
~f + d,wf

*
Here, one has assumed that (BI{ GH E ) =>0Q for qul -> o0
The ranges of integration are, of course, — e < U, < +o° and

0<J, < .

In order to formulate the energy equation let us define the kinetic energy
density

D= gdtv £ We ) (3.10)

the kinetic energy flux density, viz.

B 3.11
jfi = J{(i:t\f .ﬁ lﬁ LN/K ) : )




and the magnetic moment density

M = Sd'r:v P B (3.12)

with Ji to be taken from eq.(2.39).

Multiplying eq.(3.3) by wk clu,, dI_L and integrating over ( U, , J-_L)
space yields

. d Wy
Dy divf, = [y f (319

or [eq.(2.38)]

o
°

>x

(3.14)

:

SEordv o= B D -l

™+

It is desirable to transform eq.(3.14) so that the new right-hand side has
the form E ¢ 4 , Where { is the "effective guiding center
S g ¢epp quilding

current density" [3]. In this way, the guiding center theory can be asso-
ciated with Maxwell's equations. By using

B st E (3.15)

and doing a partial differentiation one obtains
—%—E—- + cl{\:rE = E'(Qf +CCu¢€ﬂ)) (3.16)

with the definition of the effective current density (of one single guiding
center component) as

BN




j’ﬂi = e[ + ccwrl M

(3.17)

and of the effective energy flux density as

E E4+CM¥§'

0}

(3.18)

The total electric current density of the guiding center plasma is obtained
by

%t&t = qz(ex,[; + ¢ curl M«),

(3.19)
i.e.

by summing over the plasma components, e.g. & = t, e . Then

oD . :
2?_ ( Bt“ ~°‘) = ';tu-i' ) (3.20)

The energy equation for the electromagnetic fields is given by

+ ) + — dm( -E«¢ . B2y
gr 2t (E B .\E,é'{-&t
Summing eqs.(3.20) and (3.21) yields conservation of total energy. The re-

sults of this section are very similar to those obtained in the non-rela-
tivistic case [3].




4. Conclusion

A consistent relativistic guiding center mechanics has been derived from

a guiding center Lagrangian. It conserves energy in time-independent

fields and obeys a Liouville's theorem for an appropriate volume element

in guiding center phase space. The new theory agrees to leading orders in
= Y, /L with the earlier theory by Morozov and Solov'ev [1] and
reduces to Littlejohn's theory [2], [3], [4] in the non-relativistic limit.
Collisionless kinetic theory and moment equations have also been considered.
Drift scaling was assumed throughout. The new theory and the other theories
mentioned all Tlack Lorentz invariance, or Galilei invariance, respectively;
the structural reason for this has been explained in ref.[6].

The new relativistic guiding center theory can find application to run-
away electrons in laboratory plasmas and to relativistic particles in
space. In fact, run-away drifts in time-independent electromagnetic fields
were considered by Zehrfeld et al. [7] on the basis of the earlier relati-
vistic guiding center theory [1]. If needed, the guiding center kinetic
equation of Sec.3 could be supplemented by a relativistic collision term.

The Lagrangian formalism introduced by Littlejohn [4] in the non-relativistic
problem and generalized to the relativistic one here is not only concise and
elegant; it also makes clear that the guiding center equations of motion are
strongly interdependent. In particular, one would destroy some or all sym-
metries of the theory (or even create a singularity at u" ~» Q) if one
tried to approximate the drift velocity }f¢ by dropping one or several of
the magnetic drift velocities, viz. X’;B , MK' , and/or X cd

This point was earlier discussed in some detail in the case of the non-rela-
tivistic guiding center theory [3].

This paper has limited itself to leading-order approximations in & . Higher-
order terms, e.qg. th are included as far as they are necessary for
the required symmetries of the theory, i.e. the conservation theorems.
Littlejohn's non-relativistic work [4] is, within its subject, more compre-
hensive in that the guiding center Lagrangian is systematically derived

from the particle Lagrangian up to higher orders in € . This has not been




done in our relativistic case here since it was not needed for proving the
correctness of our theory. If desired, this could be done along the lines
followed by Littlejohn [4] in the non-relativistic case.
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Appendix A. Summary of the Relativistic Guiding Center Theory by Mozorov

and Solov'ev

The theory by Morozov and Solov'ev [1] is defined by the following results:

J-J_ = 0, (A.1)
" . ‘ ’V’nonTJ_ %B (A.2)
W = eEry + %= 3¢
A
v o= &ty F Vot Vi (A.3)
with the definitions
c 0. (A.4)
Ve = 7 E¥ & |
gL \
Vog = & x VB, (A.5)




S, = B (A.7)

Otherwise the notation is that of Sec.2. In parpjcu]ar eqs.(2.3) through
(2.6) and (2.16) for W, » yr» Uy » Vy » M+ 8 are in effect. Morozov

and Solov'ev [1] do not give an explicit expression for &“ , but this can
be supplemented, viz.

(A.8)

. " J, 28 98
u“=;“—;-E.,—-§-;;——,§-S—-+uu,\g s

For time-independent fields conservation of energy follows from eq.(A.3),
viz.

WK + e,¢ = const (A.9)

along orbits. It is seen that eqs.(A.1) and (A.8) agree exactly with the
corresponding relations of Sec.2, while eq.(A.2) and‘kf of eqgs.(A.3) through
(A.6) only deviate by terms of 0 (Ez) , if drift ordering (see Appendix
C) is assumed. In particular, ,.Ytp of eq.(2.28) is of order €2 . Note
that the agreement of eq.(A.8) with eq.(2.33) is only formal, since the

two quantities V¥ are not the same in the two equations. Physically, the
discrepancy is :gain of O (82) . As mentioned in Sec.l, this theory is
not Lorentz invariant and it does not generally satisfy a Liouville's theor-
em. The Tack of Lorentz invariance is explained in ref.[6].




Appendix B. Littlejohn's Non-relativistic Guiding Center Theory Summarized

This summary is restricted to the special form Littlejohn's theory [2] as-
sumes when drift scaling (see Appendix C) is assumed [3], [4]. Littlejohn
[4] uses an extended Lagrangian that contains the gyro-motion, viz

A v——e‘?—/uB-—v EL )Ae

where @ is the gyration angle and M is one of the independent variables

rather than a parameter. We prefer to start with an abbreviated Lagrangian,
viz.

L

il

e ¥ 2
— Ay —e? —uB - 22y (8-2)

- )

which does not contain the gyro-motion and where }1 is now a parameter
rather than one of the independent variables, which are 't X \/ )f

and V, . Here it is M that is the (perpendicular) ad1abat1c 1nvar1ant
Al ).A,-.:O . The modified vector potential is now

A= Al x) + mey, Bt x)

[ ¥ 2 ] (Bs3)

while the kinetic energy is, of course,
wm 2
- M v e

The Lagrangian equations yield

A
v & = v, (8-5)
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Vi = m BT s T MY
— 2 V - N~
O\t 'Q'A_ ~ )i at /
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_ "
po=opke vy
and
4 ¥ * % ¥
V=V d+Ve+ Vo *+ Ve t Ve )
with
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2 A
x _ Vo7, 28
L NF bxmee )
A
* _ Vi A ﬁs'gf
Yo = F BX g
with
* WE 5 ﬁ:-cuwr?_é
Bu =B e LI 4 ~ 1

SU = QBTl /nmc ;
The energy theorem reads

.f\-{:——(wk +e,¢’) = £,
The Liouville's theorem is satisfied for

dt = %Br Oy 0\\/“ O\}A,



and a rational kinetic theory can therefore be derived [3]. Littlejohn's
theory [2], [3], [4] is not Galilei invariant, as is explained in [6].




Appendix C. Relativistic Drift Scaling

The expansion parameter & << 4 s defined as the ratio between the
gyro-radius T} and a typical macroscopic length L , i.e. & = '1'} /L

 Here

Wy ¥y W ¥ Vin (C.1)
N =2 —— = = Ay —L .
c? J}- J‘-o \ﬂ'o }

where V”l is a typical thermal velocity. For a time ‘t defined by L/Vbh )
which is of the order of a bounce time in a toroidal magnetic field, it
follows that

JilEe = O(i'i}. (C.2)

Drift ordering assumes that

c E
— . = , (C.3)
Vg B 0(e)

For Ell this implies

2 B t _ O(’l) (C.4)
M"o(}’ vth

It follows that

* * ¥
Ve o Y . Ve _ 0 (¢) (C.5)
Vi Vi, Vtn ,



while
%
Vep - O(Ez) (C.6)
Vth
owing to
94 _ 4 °oB @ oB (C.7)
ot B ‘ot ~ ot
and

3 g ewte - 0l o

From eq.(2.4) it follows that

JB _ 2B _ O(/I). (C.9)

..z 2

e
4 th, Moy Viu

It is important to note that for several dimensionless quantities no g -
scaling is defined, e.g. for E/B 5 V,H' /C 5 -e¢/wk, and others.

The magnitude of these quantities is inasmuch arbitrary.

It is sometimes useful to employ a dimensional representation of the above
drift scaling. One may then put

N{_-.\,._@..N ML S =O(/1)J (C.10)

vath c Mo Y yz




~ T, ~ E = O(E.) ) (CaIl}

whence
* ¥ *
Ve~ Ve ~ Ve = O(c)
and
* 2
Vo = 0(¢). (c.13)

Again, several quantities remain unscaled, e.g. C ,13 ,)A s J;_ ,J’,
M, e . uhile B) /c and B/c are O(4) , their difference is

0 (i) , viz.

%
B . —E—— + 0/(<) . (c.14)

c

Using these relations it can easily be shown that the theory of Sec.2 and
the theory by Morozov and Solov'ev [1], as cited in Appendix A, agree to
leading orders in g€ . When comparing vector equations, as the ones for lf,
the parallel and perpendicular components must be compared separately.
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