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Abstract:

A mechanism is given to explain the explosive
phase of the major disruption in tokamak-like plasmas.
It is based on the phenomenum, that small-scale mag-
netic turbulence acts on large scale magnetic fields as
a negative magnetic diffusivity D. By means of a model
equation it is found that negative D causes very rapid
growth of tearing modes with a pronounced threshold be-
havior. Comparison with exact numerical simulations

shows remarkably good agreement.

Die nachstebende Arbeit wurde im Rabmen des Vertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europiischen Atomgemeinschaft siber die
Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiibrt.
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Numerical simulations of major disruptions in tokamaks reveal
the presence of intense small-scale MHD turbulence during the onset of

the explosive phase of the disruption characterized by the rapid growth
of low m-number modes, notably the (m,n) = (2,1) mode, stochastization

of the central part of the plasma and rapid widening of the current

1)

profile. It has been argued ° that these small-scale oscillations cause
anomalous resistivity which accelerates tearing mode growth and may thus
explain the fast time scale of the disruption. In this letter we outline

a somewhat different mechanism giving rise to sharp onset and truely

explosive growth.

The starting point is a recent result in the theory of two-dimen-
sional MHD turbulence3). It has been shown that the effect of small-scale
MHD turbulence on large-scale magnetic fields can be written in terms
of a magnetic diffusivity which is negative if the magnetic energy of
the turbulence exceeds the kinetic energy. We first show that this re-
sult is also valid for three-dimensional MHD processes in a low—-f plasma.
We then investigate the effect of a negative resistivity on tearing

modes at small and finite amplitudes, using a model equation, and finally

compare the results with numerical simulations of major disruptions.

We restrict ourselves to the low-f reduced MHD equationsa) for
the vector potential ¥ of the poloidal magnetic field, B = (z x VY, Bz)
with B, >> |vy|, and the stream function ¢ of the perpendicular flow,

v = (zxV¢, 0):
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We consider a cylindrical plasma column and divide ¥ and ¢ into an
average part, a large-scale pertubation corresponding to low-m-number
tearing modes and a small-scale part corresponding to high-m Alfven

modes
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From (1), (2) we obtain the equations for tearing modes (linear in

the amplitudes ¥, ,¢,)
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where jl = Vzwz and the brackets < > mean averaging over small scales.
The term <3S'VV2¢S> from eq. (2) is found to be negligible and is hence
omitted. In the presence of an average magnetic field small-scale MHD
perturbations are essentially Alfven waves. From eqs. (1), (2) we find

the approximate equations
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The term <§s.v¢s>£ in eq. (5) gives rise to the anomalous re-
sistivity and is therefore the most important small-scale contribution.
To lowest order this term is linear in the tearing mode amplitude. It is
evaluated iteratively by inserting the solution of egs. (7), (8) into
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The time integral is taken along the (zeroth order) characteristic of

eqs. (7), (8). Assuming the absence of cross-correlations, <¢S¢S> =0,

as usually done in MHD turbulence theory, only the first term in w;z)
in eq. (10) contributes in eq. (9). Thus we find
t t
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Assuming an isotropic (in r,8) Alfven spectrum and Ty 2Tg =T,

where the Lagrangian correlation times Ty and Ty are defined by
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the r.h.s. of eq. (5) takes the form of a diffusion term (D +n) Vzwg

with

_ T 2 _ 2
D—2(<vs> <BS>) (13)

The anomalous magnetic diffusivity is thus negative if the magnetic

energy density of the small-scale turbulence exceeds the kinetic one.
This generalizes Pouquet's resu1t3) and is in contrast to a recently
published studys) where the magnetic contribution is erroneously con-

cluded to yield a positive resistivity.
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The anomalous viscosity contained in <BS-VJS> in eq. (6) is
evaluated in a similar way. Here only the second term in eq. (10) con-

tributes giving rise to a positive coefficient
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which agrees with Pouquet's result, as can be seen after partial
integration of the corresponding expressions in Ref. 3, assuming that

large and small scales are well separated.



Let us now proceed to investigate the effect of a negative
resistivity on tearing modes. We start by observing that in a diffusion
equation a negative diffusion coefficient leads to exponé%ial growth
with the smallest possible spatial scales dominating, which can be
seen directly after Fourier transformation
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In the context of negative resistivity due to small-scale magnetic
turbulence eq. (15) applies only for k <kg , where kg is the average
turbulent wave number. To account for this effect, we replace D by
D(k) in eq. (15) with D -~ 0 for k>kg , choosing the ansatz

D(k) =D exp{—kzlké}. Transformation of the diffusion term to confi-

guration space and insertion into eq. (5) yields
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Here D is given by eq. (13) and £(r) is a smooth shape function with
f(rs) = 1, rg = resonant radius of tearing mode considered. Treating
the anomalous viscosity in a similar way, the equation of motion (6)
becomes
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with M, given by (14). It should be mentioned, that our results will
be rather insensitive to the form of the viscosity term, so that the
r.h.s. of eq. (17) could as well be written in terms of a constant

viscosity, o
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We consider the stability of the (2,1) tearing mode and choose
a tokamak configuration characterized by the following safety factor
profile (similar as in Ref. 2) :

q(r) = 1.15 (1 + (OTS)B)”A

The magnetic field is normalized such that Be(a) = 1, the plasma
radius a is taken to be unity, and as usual the diffusion wefficients

n,.. are expressed in terms of av

AB(a). Equations (16) and (17)

are solved numerically by advancing ¥ in time, which yields

2 ’¢£
the most unstable (least stable) mode. Figure 1 gives as an example
growth rates Yoy @8 @ function of ks for D = -5x 10_4 and both

n=.5>5 ><10_5 and 10_4. The prominent feature is the threshold behavior
at a critical value k. While for k.S <kC the negative resistivity

has mainly a stabilizing effect, it is strongly destabilizing for
ks> kc. The stability properties are rather complex in the neigh-
borhood of the critical point, 0.9 § kS/kc < 1, where in particular

a real part of the frequency appears. Varying D, we find k;1 o« |D|2/5
which is thus related to the resistive layer width &, kcé vl, i.e.
the region where the (positive or negative) resistivity is important.

If k;1 becomes smaller than &, the negative diffusion process indi-

cated in (15) is activated, which drives the tearing mode strongly



unstable. For kS g,kc the global mode structure resembles that of the
ordinary tearing instability, while for k > 1.1 kc the mode becomes

localized around r_ and y approaches the value k; |D| predicted by (15).

Figure 1 shows that for a larger value of n the mode is somewhat
more unstable or less stable  for suberitical ks’ and that the value
of kc is somewhat increased. This tendency is quite plausible, since
the positive resistivity contribution partially cancels the dominant
negative one. It is also interesting to study the influence of negative
D on stable tearing modes (with A'<0 in the usual notation), such as
the (4,2) mode. In this case, too, explosive growth occurs for k>k
where kc increases with mode number m. But in contrast to the (2,1)

mode (with A'>0) the (4,2) mode is already slightly destabilized for

The abrupt increase of y to large values owing to.negative D
should be contrasted with the corresponding positive D case. Here ¥y
is a smoothly growing function of kS approaching the relatively small

asymptotic value « D 3L for ks-+ o,

Since the explosive phase of the major disruption sets in at some
finite amplitude of the (2,1) mode, it is important to extend the pre-
ceding results to nonlinear tearing modes. In this letter we only treat
the simplest nonlinear model, the quasi-linear approximation, which,
however, already incorporates the essential features of the nonlinear
evolution. Hence we still neglect nonlinear terms in eqs. (16) and (17),
but allow for the change of the average current distribution due to

finite (2,1) amplitude. The quasi-linear equation also contains the




anomalous (negative) resistivity term ]DVzwo, but this is usually small
compared with the quasi-linear diffusion term resulting from the low-m
modes. We numerically follow the slow nonlinear growth due to a classical
resistivity n and switch on the anomalous negative resistivity D, when
the amplitude has reached a certain value. As in the linear case we

find that the mode will either decay or grow rapidly (after a short decay
phase), where the eritical value kc is smaller than in the linear case

and is essentially related to the island width.

We shall now show that the mechanism just outlined may exlain the
main features of the major disruption as observed in full-scale numerical

1) ,2)

simulations . In Ref. 2 it is found that during the period immediately
preceding the hard phase of the disruption a steadily growing level of
small-scale turbulence is generated, giving rise to growing values of

kS and D. The magnetic energy of the turbulence is consistently larger
than the kinetic energy, hence D should be negative. It should also be
noted that if the formation of the small-scale turbulence spectrum is
affected by choosing too few modes in the simulation, the phase of rapid
growth is suppressed. Since the energy spectra are monotonically falling
off with increasing mode number, the low- and high-m parts are not strict-
ly separated. It has, however, been pointed out in Ref. 2 that the
character of the modes changes quite distinctly at m ~ 5-6 , being
tearing-mode-like for smaller and Alfven—mode-like for larger m. Hence

we define our high-m spectrum by m>6. In a typical simulation run we

have found by summing over these modes that (<v§>-—<B§>)/2 Vo5 % 10_4
in the region of the m=2 island at the time of onset of rapid growth.

The Lagrangian correlation time is T ~ 0.5-1 and hence |D| 3_3—5><10_4.




The anomalous viscosity is roughly My n~ 1.5 |D|, while the classical
resistivity in this region is n 3_5><10_5. A measure of kS can be ob-
tained from the radial correlation function, ks n 30. Inserting these
numbers, D = - 4 x 10_4, . = 6 X10_4, ks = 30, we have solved the quasi-
linear equations outlined above, smoothly switching on the anomalous
resistivity and viscosity at the time when the m = 2 amplitude has
reached about the onset value observed in the simulation run (at t =85
in Fig. 2). The agreement is surprisingly good, which may be somewhat
accidental in view of the qualitative character of the theory. We
should like to point out, however, that the conditions are quite close
to marginal stability. Even a slight decrease of ky or |D| will quench
the growth, while a further increase would lead to an excessively

rapid growth.

In summary, we have shown that the effect of a negative resistivity
generated by small-scale magnetic turbulence may explain the main
features of the explosive phase of the major disruption. The agreement
between the simple quasi-linear model and the full-scale numerical
simulation is remarkably good. Nevertheless we should like to emphasize
that our model only deals with the interaction between low-m and high-m
modes. The real dynamics of the disruption is certainly more complex,
the interaction between the different low-m modes playing an important

role.

The authors would like to thank Dr. D. Pfirsch for several

valuable discussions.
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Figure Captions

Fig. 1 Linear growth rates Y4 due to negative anmalous resistivity

Fig. 2 Time evolution of the magnetic energy of the (2,1) mode

a) quasi-linear model; b) exact numerical simulation
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