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Abstract:

The resistive perturbation of the Alfven
continuum of incompressible ideal magnetohydro-
dynamics is derived for an arbitrary static plane
slab equilibrium. If the unperturbed continuum does
not contain the origin, the perturbed eigenfre-
quencies fill a system of curves in the stable part
of the complex plane which are independent of the

resistivity.

Die nachstehende Arbeit wurde im Rahmen des Vertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europdischen Atomgemeinschaft iiber die
Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiibrt.




The frequency spectrum of the linearized motion of a
plasma is perhaps one of the most useful tools in a variety
of applications such as stability, wave propagation and heating.
In the present note we derive the influence of small resisti-
vity on the Alfvén continua of ideal magnetohydrodynamics. Most
previous investigations of this problem (for instance []:1- [}jﬁ
focussed on unstable resistive modes whose eigenfrequencies emerge
from the origin due to the presence of "singular surfaces". In
contrast, we investigate all modes which emerge from a continuum
which does not contain the origin (there are no singular surfaces).
Even though we consider only the simplest possible case, viz. the
incompressible motion about a static plame slab equilibrium, we

believe that our results are representative.

The equations of resistive incompressible magnetohydrodynamics,

when linearized about a static equilibrium subject to

Vf "’3)‘ W‘C—B‘F o and d&o"f':.-o , are
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Here p and 4§ are the perturbations of the equilibrium pressure P
and magnetic field -‘g , IZ is the flow velocity, and § and #
(both assumed to be constants) are the mass density and resistivity.
We impose the boundary conditig&s pertaining to a ps;fectly conduc-
ting rigid wall, ﬁﬂ:.—o , b'ﬂs-’o , and Cud'(.t b =0 (the
subscripts </ and X denote normal and tangential components).
Since resistive diffusion is ignored, the system (1) is meaningful
only for small 2 . Thus, terms O(?‘) with 2 | will be neg-

lected.

Considering a slab equilibrium, characterized by '3/7 , =

= QL/ﬂii;:- o] ) IQKI= o ) and jz-}1%:‘B=L-r L01"15 )




we Fourier decompose the system (1) by putting the perturbations

proportional to exp (0’*»-%4,‘_’? +4 Z) . With th_es abbre-
viations Az-2 u. , & _.6',‘ , F= t B ‘.’( ")% )
and A= f/‘)“-&," , a subset of equatlons can be
written as [1]

o*rdu-i—FAb-l—F’.(r:.—o
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where primes denote derivatives with respect to X . The boundary
conditions are =0 and L =0at X= © and X =L . In what
follows we assume that there are no singular surfaces, i.e., that
F(X) vanishes nowhere. In other words, we assume that B(K)
vanishes nowhere, and consider only those wave vectors Q which
are nowhere perpendicular to -B) . If there is no magnetic shear
(i.e., if ‘s is unidirectional), F is either identically zero or
it has no zeroes at all. Since the system (2) is trivial if F:-_-"O)

et -
we thus have a genuine restriction upon 4 only if ® has shear.

—_— z
Introduc1ng dlmensmnless variables by X » L X ‘-’& /L
F—E,F,G’ FS ,and?'E'Lth
( Fo is a characteristic value of F), then eliminating L from the
system (2) and omitting the bars, we obtain the fourth-order equa-

tion
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where A= '(’F/( . Since the boundary conditions are
V4
=0 and ‘6‘ x0at X=@and X= | , the dispersion relation is
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where .b-’ g 6'4 are any four independent solutions.
)

EE 7:: O , the zeroes of A are singular points of Eq.(3).
Correspondingly, the ranges of the functions O/(X) =4 (: F(x)
form continuous spectra (the Alfvén continua). Discrete eigenvalues
do not exist. In contrast, the resistive spectrum is purely dis-

crete because Eq. (3) has no singular points if ? F O

If ‘2((’ and *3-, O(” ) '@ and 6‘# can be chosen

to satisfy the ideal equation (i.e., Eq.(3) witn 7:—-0), thus

varying on the equilibrium scale; the  remaining two solutions

467 and %_ can be chosen as ,6-:..-5 3"‘-" , where % satisfies

? lj,”-l»Ag =0 (5)

thus varying fast. Since %(0)%(’) - '6-'5(') J'Q(o) 4'" o

(the ideal spectrum contains no discrete eigenvalues), and since
4 4 ; ;
,6',/ and 4'2/ ire larce compared to the other terms in the dis-

persion relation (4), the latter reduces asymptotically to

/
g /@ 4,/0 -4 ) 4. @) = 0 ®
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Thus, the eigenvalues are determined from Eq.(5) with the

. /
boundary conditions g =0,

Multiplying Eq. (5) with the complex conjugate of y and
averaging over x we obtain the quadratic equation
2 i o i
(2<,%’z’>+(2<'9llz>+<F ’?F‘}sa This implies
Re ¢ € 0O and (for complex eigenvalues)
2 2 2 .
F#% < ’,‘, < F . Hence all eigenmodes are stable and
damped, and the spectrum is restricted to the negative real axis
and to the annulus which is traced out by the Alfvén continuum when

rotated about the origin.

Assuming from now on that F(x) is monotonic, we introduce a

new independent variable @& by [5:[

-z:t{it(-}i-c), , « (x,6) = S e x \/_(x () )

Xo(®)

where Xo solves =41 F(X) , So that Z_6<) is analytic
near the interval ©<£ X £ | . The new dependent variable

W= 3 .2/6‘) then satisfies asymptotically the Airy equation
&

oL Z2W =0 (8)

od2* -

Since 2 1is large for X=Q and X=1 as long as Re & is

finite, we may use the asymptg_tlc representatlons of the Airy func-

tions [ 6 | Ad (2) ~Z QKTL (,22' /3 ) for eigen-

values which are not too close to the ideal continuum.

Due to Stokes' phenomenon [7] the Airy functions, for large
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Z . change abruptly across the rays d(‘? 2 = (Z’l+’)77/3 "
Therefore, the dispersion relation (6) has the following three

branches:
= /
1) %= -YE(mg)T Tm, >0 )

2) £,= 2%("”"“7) Im <, >0

(9

L
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r
where ‘C:_ (J') = o (‘-,O') , and U is a positive integer. The
eigenvalues of the first two branches (4q smaller than some number
-
O (‘Z z )) are on two curves which start at the two edges
of the ideal continuum (forming angles of TT/QS with the imaginary
axis) and meet at the "triple point" where both a(o and d(, are
real. The eigenvalues of the third branch (larger #,¢) are on a curve
which starts at the triple point to meet its complex conjugate some-
where at the negative real axis, and then continues along the real
axis to both sides. For M —=» ©®@ the eigenvalues accumulate
- . , )""/ g
at both the origin and infinity according to e X <F ?"l
1.-n-1.. . .
and o> - ? n . The complex eigenvalues 1in the
upper half plane are shown in the Figure for ? = 10~

2

and F= |+3X . This is a case in which a numerical inte-
gration of Eq. (3) is difficult because ? is too small. However,
we have found excellent agreement between numerical evaluations of
Eq. (3) and our asymptotic formulas (9) for = Jid f‘xloﬂq ;
even for the eigenvalues with small 47 (‘)z > 2.) .

In summary, we have reduced the spectral problem to quadratures,
and we have gained a qualitative picture of the entire spectrum. In
particular, we have shown that shearless slab equilibria (without
magnetic nulls) are resistively stable, and that the damping of the

Alfven modes is O as ?-D © . This supports the conjecture
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[}i] that ideally stable equilibria without shear (and without

magnetic nulls) remain resistively stable, and it may have impact

upon the theory of Alfvén wave heating.

Details of the present theory and, in addition, the boundary
layer modes (

‘R{ ¥> O ) as well as the ballooning modes
( 4&?\%’ L

) will be described in a forthcoming paper.
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Eigenvalues in upper left quadrant of the complex plane
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