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Abstract:

It is shown that Petschek - type models of
fast magnetic reconnection are not valid in the
limit of small resistivity owing to the properties
of the diffusion region. Since the structure of
this region does not permit a high outflow speed,
the reconnection rate is strongly dependent on the

resistivity and, in general, quite small.

Die nachstehende Arbeit wurde im Rahmen des Vertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europiischen Atomgemeinschaft iiber die
Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefibrt.




One of the most fundamental concepts in the theory of fast
magnetic reconnection is the model introduced by Petschek]).
(A detailed review of Petschek's theory and its later refinements
is given in Ref. 2.) Since its appearance this model has been
generally accepted and used to explain various types of explosive
magnetic events, i.e. processes where large amounts of magnetic
energy are released in a short period, notably in solar flares.
Recently, however, increasing evidence which casts some doubt on
the validity of Petschek's theory and related approaches has
emerged3) - 7). In this letter I have therefore re—examined the
problem of fast magnetic reconnection across an x-type neutral
point and considered in detail the structure of the diffusion re-
gion. One finds that it is precisely in the assumptions about this
small but crucial region around the x-point where Petschek's and

similar theories are in error, which leads to a failure of the

whole concept.




Petschek's model in its simplest form is a stationary two-—
dimensional magnetohydrodynamic (MHD) configuration, as shown
schematically in Fig. 1. It is characterized by two pairsof slow
shocks standing back to back which sharply bend and accelerate the
inward plasma flow. Finite resistivity plays an important role on-—
ly in the small region around the x-point, the so called diffusion
region. The ratio of the plasma velocity immediately upstream of
the diffusion region to the upstream Alfvéen speed u/vA = M is called
the reconnection rate, since it indicates how fast the oppositely
oriented magnetic flux tubes transported toward the x-point are
reconnected. This local definition of M is useful for our discussion.
(Conventionally the reconnection rate is defined by the asymptotic
quasi-homogeneous magnetic field and flow velocity; the difference
in definition does not, however, lead to largely different values
of M.) Since in most applications of interest the resistivity is
effectively very small, the most welcome feature of Petschek's
and related theories is that they allow large reconnection rates,

< 1, essentially independent of the resistivity.
max v



Petschek's theory is based on the two-dimensional incom-
pressible MHD equations. In this case the plasma density can

be assumed homogeneous without essential loss of generality,

B = Either no magnetic field or a strong uniform one (which
guarantees incompressibility) is assumed in the third direction.

The dynamics are then described by two scalar functions, a magnetic
ftux function Y (x,y), B = ; x V¢, and a stream function ¢(x,y),

v = ; x V¢. The current density j and vorticity w are in the z-
direction, j = V?y, and w = V?¢. Normalizing to the units B0 = typi-
cal magnetic field, L = typical macro-length scale and v, = 30//3;

A

the dynamic equations are
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Here n and p are now the inverse magnetic and kinetic Reynolds numbers.
One usually assumes n>>uy, so that the viscosity term is negligible.
The basic question in the theory of magnetic reconnection is, how
fast can reconnection be at large magnetic Reynolds numbers, i.e. for

n << 1 (no problem arises if n is sufficiently large).

Since eqs. (1), (2) are well suited to numerical treatment on



present-day computers, several numerical studies of spontaneous as
well as driven reconnection have been performed in recent years (re-
connection which occurs in a closed system owing to, for instance,

the free magnetic energy of an MHD unstable configuration is called
spontaneous in contrast to reconnection in an open system enforced

by the boundary condition, which is called driven .) In

Refs. 3 and 4 the evolution of the island coalescence instability was
investigated, in Ref. 5 results on the m = 1 resistive kink instabili-
ty are given, while in Refs. 6 and 7 various types of driven re-
connection processes have been analysed. In all cases the behavior

for sufficiently small resistivity is quite different from a Pet-
schek-type process. Instead, a long quasi one-dimensional diffusion
layer is generated, and the reconnection rates are quite small, roughly

1/2
n

M . Thus the question arises, what is wrong with Petschek's

model.

A basic assumption in the traditional reconnection models of the
Petschek type is that there exists a hierarchy of spatial scales. Em-
bedded in a larger system whose size and shape depend on the particular
global magnetic process under consideration, the Petschek configuration,
Fig. 1, consists of a self-similar ideal hydromagnetic configuration,
usually called the outer region, and the small region around the
x-point, called the diffusion region, where the resistivity is impor-

tant. A necessary condition for a global solution to exist is that the

solutions in the sub-regions can be matched to each other. The main

problem is caused by the diffusion region.



No rigorous solution has yet been given. In fact, most ar-
ticles in the literature concerned with Petschek's theory only
treat the outer region, simply ignoring the diffusion region.
The few actual treatments of the latter, such as in Ref. 2,
are based on several simplifying or even erroneous assumptions.
The conventional picture of the diffusion region is that of a
small Sweet—Parkera) layer connecting smoothly to the outer
region. The plasma enters the diffusion layer at a relatively
low speed u = PivA , where it is uniformly accelerated up to the
Alfven speed vy o at which it continues to flow throughout the
outer field-reversal region, the downstream region between the

slow shocks as indicated in Fig. 1. Hence the reconnection

rate is essentially determined by the angle formed by the shocks.

The numerical simulations, however, consistently show that the
transition from the diffusion layer into the outer field-reversal
region is not smooth. Figures 2 and 3 illustrate a typical simula-
tion of driven reconnection. Plasma and magnetic field are injec-
ted at a constant rate at the boundaries x = + 1 and are leaving
the system at y = + 1 (only a quadrant is actually computed in this
particular case). After a short transient phase a stationary confi-
guration is generated. Parameters, in particular n, ere chosen in
such a way, that the diffusion region has a finite length A, but is
still smaller than the overall system size. The stereographic plot

of the current density, Fig. 2, shows the diffusion region and the




adjacent slow shock. The structure of the diffusion region is
clearly more complex than anticipated. There is a distinct region
of negative current density attached to the current layer which
connects discontinuously (for p + 0) to the current density of the
outer field-reversal region. The negative current density strongly
affects the plasma flow along the layer. While the plasma is acce-
lerated in the region of positive current density up to the Alfven
speed as in the conventional picture of the diffusion region, it is
strongly decelerated by the adjacent region of negative j, where the
} x B force reverses sign, so that the downstream flow speed in the
outer field-reversal region is again small compared with Vye This
behavior is clearly seen in the ¢-plot in Fig. 3. It may be said that

the negative j region acts like a plug to the flow within the diffu-

n

sion region. Consequently the reconnection rate is small (M = 0.03

in this case), although the angle between the shocks is quite large.

A qualitative interpretation of the current behavior in the
diffusion region is obtained by considering the requirements of Am-
pére's law for an x-point magnetic configuration. Since the current
density at the neutral point strongly exceeds that within the shocks,
the latter are unimportant for the magnetic field in the neighborhood
of the diffusion layer. A filament of unidirectional current density,
even if elongated, would, however, produce an O-point magnetic con-—
figuration. Only if the current layer is terminated at both ends by
regions of reversed current density, the proper x-point field topo-

logy may be generated.




It is possible to construct an analytic solution of (1),
(2) in the diffusion region as a power series in y in terms of
the zeroth-order current distribution jo(x), using only the symme-

try properties Y(-x,y) = ¥(x,-y) = v(x,y); ¢(-x,y) = ¢(x,-y) = —-¢(x,y)
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It is found in the simulations that the current density in the diffu-

sion region has a self-similar shape which fits surprisingly well the

expression
Im
I, &) = ———=———m——— (5)
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8
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the well-known solution for a collisionless current sheet
(It might be worthwhile to give some attention to this observation,
which indicates that the profile (5) is of more general importance than

anticipated.) With this assumption the lowest-order velocity becomes

(1) _ _ n X
v = 5 tanh =, (6)
G | A N (7)
y 82 coshZ%?

Hence the upstream plasma velocity is u = n/§, the upstream Alfvén




velocity v, = jm §, and the reconnection rate M = n/jmdz, which we
assume to be small M << 1. The true expansion parameter in (3) and
(4) is thus M y/6. The subsequent contributions wz, ¢3 are readily
computed. An interesting result is that at x =0 wz and j2 vanish
(for w = 0), i.e. BX = 0(y?) along the current layer, which implies
that the two branches of the separatrix do not intersect at a finite
angle but merely osculate. It is interesting to note that this is not a
consequence éf the special current profile (5) but is generally true
for 4 = 0, as can be seen from a power series expansion in x and y
around the neutral point using only the symmetry properties of ¢ and
¢10). (It .should be mentioned that previous calculations of
the diffusion layer such as in Ref. 2 erroneously assume Bx to vary
linearly with y). From a fourth order calculation for x = 0 one ob-
tains B/ 6 = — M*(y/8)® and j/j_ = 1 - = M*(y/6)*. Although the

X “m 3 m 3
low order terms in (3) and (4) already reveal important features of
the full solution, the power series expansion probably fails to con-
verge for M(y/8)2z 1, i.e. when y reaches the length of the diffusion
layer A = jm63/n, which also corresponds to the point, where vy reaches
the Alfvén speed. Hence the complex discontinuous transition from the

diffusion region to the ideal field reversal region cannot be described

in this way.

I can therefore discuss only qualitatively what happens in a reconnecting

system in the limit of small resistivity. To be definite consider the
case of stationary driven reconnection. The important point is the n-

scaling of 4, the length of the diffusion layer. Decreasing n (for a




fixed rate of plasma injection , u B_ = njm = const) one expects

®
reconnection to become more difficult, which leads to a piling up
of magnetic flu# in front of the layer and hence to an increase
of the upstream field. Writing B0 = jmd « n-: v>0, one has § « n*7V
and A = jm63/n =« §3/n? « n'=3V, only for v<€% would the size of

the diffusion layer shrink with n, as assumed in Petschek's theory.

; ; 1 : .
In the simulations, however, v 2y and thus A increases and finally

reaches the overall system size.

The diffusion layer which is a quasi one-dimensional current
sheet, is nevertheless relatively stable with respect to tearing modes
owing to the inhomogeneous plasma flow along the sheet. Instability
sets in only, if the tearing mode growth rate exceeds the convective
distortion rate kAv, as has been discussed in Ref. 4, which occurs if
n is sufficiently small. The nonlinear development of the tearing in-
stability depends on the geometry of the overall configuration. If this
is rather symmetric and the current layer has reached the maximum
length allowed by the configuration, a single large magnetic island
develops. It forms a new quasi stationary state, which strongly reduces
the reconnection rate. This has been described in detail in Ref. 4.
In the general unsymmetric case, however, the tearing instability has
a less dramatic effect. The islands created are swept downstream along
and out of the current layer before growing to large amplitudes. Their

effect on the average reconnection rate seems to be rather small.

In conclusion, it has been seen that Petschek's theory is not valid



because of the hitherto unknown properties of the diffusion region.

The analogy, often used, between a reconnecting magnetic configuration
of the kind discussed here and two supersonic counterstreaming gas
flows is not correct. While in the latter nothing particular happens

at the stagnation point, the flow being completely determined by the
system of shock waves, which arrange themselves automatically, it is
only in the diffusion region in the magnetic system that the reconnec-—
tion process occurs. If this process is too slow, the message is trans-—
mitted upstream by the fast magnetic mode (infinitely fast in the in-
compressible approximation), increasing the magnetic field and slowing
down the flow. Only if the problem of the diffusion region is eliminated
by artificially increasing the resistivity in this region (using an

s T : ; : . "
"anomalous" resistivity) is the Petschek configuration obtained ).
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Figure Captions

Fig. 1 Schematic drawing of Petschek's configuration

Fig. 2 Current density in a simulation of driven reconnection

(only a quadrant is displayed)

Fig. 3 Flow pattern ¢ in the same simulation as in Fig. 2

(only half of the system is shown)
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