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Abstract

Axisymmetric, ideal MHD configurations with steady flow

are computed by applying the finite element method. Rectan-
gular elements with four to eight nodes are used. By mesh
rearrangement the equilibria are obtained in flux coordina-
tes. Accurate results without flow and with purely toroidal

flow are presented.



0. Introduction

The existence of an MHD equilibrium is considered as a necessary condition

for the successful operation of a tokamak. Assuming isotropic pressure yields

the well-known Grad-Schliiter-Shafranov equation for axisymmetric configura-
tions. This nonlinear equation is usually solved numerically to allow arbi-

trary plasma shapes and current profiles. Such codes are in permanent use

for control and analysis of operating experiments and for designing new

devices,

Present experiments use large auxiliary heating power in the form of neutral
beam injection to increase the plasma temperature substantially. This injec-
tion creates a flow in the plasma, in both the toroidal and poloidal direc-
tions. The toroidal flow velocities become comparable to the ion sound
speed, as has been observed in experiments. The poloidal flow appears to
be damped so that large poloidal flow velocities have not yet been ob-
served. Enlarged transport due to non-uniform pressure and density on a
flux surface is responsible for such damping. The neutral-beam-driven rota-
tion of the plasma may therefore result in the deterioration of the energy

confinement observed in experiments.

In order to describe plasmas with flow, the inertia term QQV_LL has to
be taken into account in the momentum equation. If the flow is purely

toroidal, the resulting equation is basically the Grad-Schliiter-Shafranov equation.



Existing codes are thus easily extended for this case. It is our opinion
that poloidal flow is interesting, even if it is not observed directly,
because it causes a poloidal dependence of pressure and density on
magnetic surfaces. Such profiles should be of great interest for frans-
port theory and simulation! In this case the resulting equations become

more complicated and require special treatment.

The Galerkin method in conjunction with finite elements is used for the
numerical solution. This method closely resembles the variational for-
mulation of the problem. The finite element method is completely
general with respect to the geometry of the plasma cross-section and
arbitrary boundary conditions. In addition, the elements can be arranged
in the iteration process to coincide with the surfaces of constant flux.

In this manner the equilibrium is obtained in adapted coordinates with-

out working directly in flux coordinates.

The paper is organized in the following way: The physical model and
the equilibrium equations are discussed in Sec. |. The numerical
method and the code are described in Sec. Il. Section |ll presents the

results, The discussion and conclusion are given in Sec. IV.



|. Physical Model

We begin with the ideal MHD equatiors for the density Q. the velocity

W, the scalar pressure p and the magnetic field B:

9
Continuity: ’SE <3 * V(%L_L\ = 0 Q)
Momentum: Q ( % * \_,\_V\ u = - VP ¥ 5- % E (2)
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Maxwell-Ohm: %' B = Vx (Qx i‘;\ (3
V.

Maxwell:

B = o (4)

N = UxB ©

The absence of any dissipation is expressed by the conservation of the

entropy S:
.
(g;_ + U \7\ 4 = 0 (6)
The plasma is assumed to be an ideal gas, i.e.
p= 1S

T being the temperature,

The thermodynamic relations lead to the caloric equation of state /1/:
p=S g’ 79

where & is the ratio of specific heats, which is taken as equal to

5/3, as usual.



To compute axisymmetric equilibria we work in usual cylindrical co-

ordinates r,8,z, with © being the ignorable coordinate.

The stationary, i.e. ,g 20 , equations read
N (gg\ = 0 (8)
QuMu = -Vp + (Ux)xB (9)
Ux(uxB) = © (10)
V-8 -©° (1)
(Ww¥)yg =0 (12)

b - Qg7 (13)

The equations for equilibria with flow were first derived by Zehrfeld
and Green /2/. Here we closely follow a more recent derivation by
Hameiri /3/.

The magnetic field is represented as

B = U8xVe + FVUe il
where WV is the poloidal flux and F the poloidal current profile.
The velocity can be decomposed into a toroidal component and one

along B (poloidal)

D.(%)
|ve\?

A

v = 3 e Ve (19

where Q and §) are functions of ¥ alone. Furthermore, the entropy



is also a surface quantity
S =S (16)

The components of the velocity and the field are restricted by the

identity
V() + § Q/Iver
Fa a/ (17)
4- /g
where | =1 () is a surface quantity. In the case with no poloidal

flow, i.e. Q'-“O , this identity gives F = F(¥).

A second identity involves the entropy

Q* . ¥
Tolgelr | %-4

2 o
H(W) = % B S(W) g‘ ‘ (18)

where H = H(Y) is a free surface quantity.

The radial (V®) component of the momentum equation yields

V[(ﬂ- —Zi‘\lvell V‘«P] * ‘-“-Ed_kP +9(lve\1* LT

dl dht At a8
*IVB\Q' J.V*,gw-ﬁ_‘\% 4% = 0

The plasma is assumed to be confined within a toroidal, rigid perfect
conductor with the boundary conditions of zero normal components of
u and B at the wall. We can specify the five surface quantities

@l S, 1, Y and S arbitrarily, as well as the plasma cross-section,
The functions F and @ are, in general, not surface quantities. To-

gether with the partial differential equation (19) the two algebraic



equations (17) and (18) have to be satisfied. Equation (18) contains
the information that g is a function of \W\z . To be more precise
one has

= (v, ¥, | ve1*) (20)
Closer inspection of the differential equation (19) reveals that the
type of the equation is defined by the second derivatives, i.e. by
the term

@Q.

V[(’\- 3 ) lvel W] 1)
Using the relation (20), it is seen that the highest derivatives are
due to " g

(A- %}\ e+ % TeoTg
where

Wl = W4 W S wvlwh

It is convenient to normalize the velocity along B (poloidal component)

to the poloidal Alfvén velocity

A= 3 /1] (22)

The analysis shows that the differential equation (19) is elliptical if

0% A* & ® (23a)

where the plasma beta is defined as

¥ e
e)" e B

For a value of beta between 1 and 10% the normalized velocity A is
small, A £ 0.1 - 0.3. The differential equation is of hyperbolic type

if




Bs A* < Ag (23b)
again of elliptical type if

As < A* < Ay (23¢)
and again of hyperbolic type if

Ry & A (23d)

2

2 . .
A" and AF corresponding to the slow and fast compressive waves are

defined (see Ref. /3/) as:

N = A= [ A= wpet /(8 gp) [ (Bewp) 02

A = A TA-upey/ (840 ]™ (80w A8}
where B: ™ \V("P WB\“’

For small poloidal velocities (eq. 23a) the flow is strictly elliptic.
There are then no additional difficulties to solve the algebraic equations

(18) and (17), as can be seen from the theory of implicit functions.

If the poloidal flow is in the range of eq. 23b, the differential equa-
tion is of hyperbolic type. Shock waves then have to be expected,
which may cause changes in the topology. The algebraic equations 17
and 18 may then impose additional constraints on the solution, as dis-
cussed in Ref. /2/. In the introduction we pointed out that it should
be interesting to study large poloidal flow and the resulting poloidal
variation for @ and P We thus have to be prepared for the transition

from elliptic to hyperbolic type in the numerical solution.




With the transformation used in Ref. /4/
3=
= S (24)
¢ -s"

we can eliminate the entropy. The equations using the fact that

E =B, g_ = SA’“ U and \T\=“§1"‘ read
| + 0§/ 1ver -
1- ¥*3§ ’
~ é" S E‘)—L 4
- i ~ ~ ¥ (18b)
H=ux B Nvelr T ¥-1 3
" a®
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Sl T @ el 8-

A solution of the equations (17b - 19b), i.e. S = 1, together with

four arbitrary functions &, L, \ and W generates with the trans-

formation (24) a family of new equilibria with profiles S =S(¥),

Purely toroidal flow:

We now discuss the special case of zero poloidal flow, i.e. Q(‘ﬂ =0,
Equation (17) gives F=\({) . The Bernoulli-type equation (18)

reads

- ; IR S (25)
T 0% g T b amen MY
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where i is the specific enthalpy.

The differential equation (19) takes the form

2 82 49 e ® o 8Y &y
V(Ivel ve) + icGe gy * WIFR Y2 - wwae o
From eq. (25) we obtain for S # 0
L
%--4
- (nw e | g
and further
" 2 Yeg-4
V(v we) « 19l Gy ¢ L0 g VB2 T°

A g2 v A Q* \ dS
— [ S— — = 0
{Q velrdd T dy T g (W i) @ E
This equation contains four arbitrary functions F, 2, H and S. If these
functions and the boundary condition for ¥ are specified, the solution

of the problem is entirely determined. Using the transformation (24),

we need only compute equilibria for S =1,

For purely toroidal flow there is no constraint on the entropy and we
may assume any relation p = p (#,Q ). The most convenient relation is
p = T(‘P)g , eq. (7), expressing the fact that due to the large heat
conductivity along B the temperature is constant on a flux surface.

For this model the Bernoulli-type equation (18) reads

.
WYY = - __—&;‘\"3 ¢ TW g 7
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If we introduce

H 91
“o = i“— v W T and S)_°= ?" (28)
we obtain
0g
and further
o + DT /21Vp\x
P = € (29)
The differential equation reads
1 2 C_\!_:
V[WB\ e s \:z\ Fa (30)
.'S'L e d_“? =
or plTae s+ w1 =
v oF
yliverve] + lveltr § + & =0 -

This equation has the form of the Grad-Schliiter-Shafranov equation with
arbitrary profiles F, &, , H, and a free function T = T(¥) in the

transformation (28).
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1. Numerical Method

In the plasma region I the differential equation (19b) has to be solved
together with the algebraic equations (17b) and (18b). The five func-
tions & , 0,1 , W and S depending only on ¢ can be arbitrarily
specified. For purely toroidal flow the temperature is introduced instead
of the entropy and eq. (30) is to be solved for given F, Ry and H, .
The plasma cross-section can be specified, leading to the boundary con-
dition
Wact. on the surface ar (31)
With the definition
k= (4- TV ive® (32)
we keep the highest derivatives in eq. (19b) or 30 explicitly and
abbreviate the other terms by G
\ Y_k Wl + @ =o in D (33)
o o

% = 0 on (34)

of = 3 LM
The boundary conditions can be generalized to Dirichlet and v. Neumann

conditions.

The Galerkin method uses a linear expansion for ¥ and solves eq. (33)
in its weak form, We work with two-dimensional finite elements as

expansion functions:
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W = Z: a.;,h; o2

The elements hi are chosen to satisfy the Dirichlet boundary condition.
There then is no error associated with this condition. Integration by

parts yields the matrix equation for the vector & of the expansion

coefficients /5-7/:

x =b

I7<

where K denotes the stiffness matrix and b the force vector:

K‘.& = § k Vi, Vi dt

by = §Ghgor + § kg dr « X

r 2

where X& expresses the known value of @ along ()
A
%, = | 20 &% by ds
Yo ¢ ’

The most common two-dimensional finite elements are triangular and
rectangular elements with initially straight-line boundaries. However,
the development of the variable 4 to 8 - node isoparametric elements
has given the method much more flexibility; for details see Ref. /5-7/.
We prefer rectangular elements because they yield more accurate

results than triangular ones /6/. |n addition, the rectangular elements
are better suited to represent the flux contours. Our code is an
extension of the existing finite~element code for heat transfer, Ref.
/8-10/. This code is based on earlier work of Wilson, Ref. /11,12,5/,

and is described in Ref. /13/.

(35)

(36)

(38)
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Isoparametric mapping provides a one-to-one correspondence between
the local (s,t) and global (r,z) coordinates (see Fig. 1). The coor-
dinate transformation between the bi-unit square and the curvilinear
element is given by

8
fu (33) = 2, () v, (39

2w (S4) = wi«l him (Si4) 2400

where (rim’ Zim) are the global coordinates of node i in element m
and him is the interpolation function corresponding to node i of

element m. The interpolation functions are defined as follows:

B | 1 1
h]—z(]+5)(l+f)—§h5—§h8
b=t -0+ -2h -1h
2 =3\ 27572 "%

O 1 1
hs—z(]—s)(l-?)—§h6-§h7
ol A - -nh, ik
4 74 3 27 28

(40)

O 2
hs =5 (1 -5 (1 +1)

R 2
he =3 (1 -5 (1-1)

] 2
hy =5 (-5 (-1

-+

v
~—
—_

—t

1
-+
N

~—
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where the local coordinates (s,t) vary in the interval (-1,1). |If
the curvilinear element has one or more straight sides, the midside
node numbers 5, 6, 7 or 8 corresponding to the straight sides can
be omitted by setting the corresponding interpolation functions

equal to zero.

The same interpolation functions are used to approximate the flux ¥

within the element in terms of the value at nodes 1 to 8:
S
B, (88) = 20 Wy, S &g, (41)
=4

. th .
where mim is the value of Y at the i nodal point of element m.

The determinant of the transformation is

QA ¥ 3_%_@_

MR AT w “2)
The derivatives give
0 o
> . @ 4
W Jwm W (43)
s ot
® %
A Y (D
%
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The matrix elements Kii ; €q. (37), and the force vector b, eq. (38),
are evaluated in "natural" s,t coordinates for each element individually
by means of eqs. 39-44. The integration is performed by Gaussian
quadratures. We emphasize that the stiffness matrix K for ¢* /‘3 <4
is positive definite and of symmetric band form. Efficient solution
techniques for the linear system used to solve eq. 36 can be applied,
these requiring a minimum amount of storage and computing time /14/,
On the other hand, a finite difference solution for our problem, eq. 33,
produces a non-symmetric matrix - a complication additional to the

problem of handling the boundary conditions.

The equilibrium equation (33) is highly non-linear and requires an
iteration for the numerical solution. We apply the Piccard iteration in
the form
n wad W
ULk(eM ™ ] + G =0, 45)
where the index n denotes the value of the nth iteration, as in Ref. /15/.
Please note that the relation between Q and : eq. 18b, has to be
. . nia
found numerically, i.e. QR =< (l‘l \Pn| AV \ )
If the flow is purely toroidal the stiffness matrix is independent of ¥ ,

Thus K needs only be inverted once.

The plasma boundary can be specified arbitrarily, e.g. pointwise. From
these boundary points and a chosen central point we create a net of
rectangular elements, the innermost ones being degenerated to triangles,

as is shown in Fig. 2, As first applications we compute equilibria with
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up-down symmetry leading to a Dirichlet condition on the surface
and to a v. Neumann condition along the z = 0 plane. The code
is, of course, not restricted to such geometries. The plasma
behaviour is quite anisotropic with respect to directions along the
magnetic field and across it. For an accurate numerical descrip-
tion of stability and transport it is necessary to use Y as a coordi-
nate. The spectral codes for linear MHD stability, PEST /16/ and
ERATO /17/, work in special flux coordinates and the mapping of
the equilibrium into flux coordinates is an important part of the
code. Formulation of the equilibrium problem directly in flux
coordinates involves - owing to the singularity at the origin -
severe numerical problems, which were recently overcome by using
a global Fourier expansion in the angle /18, 19/. Our method
shifts the mesh points in the iteration to coincide with surfaces
Ut'\ Sy - ct., with F being the poloidal angle of the surface
points to the magnetic axis = but still works in cylindrical coordi-
nates. |t is easy to transform from the poloidal angle ‘3 to an

A
angle J with straight field lines. It has been pointed out by
Grad /20/ that the geometry converges faster than the function ¥ .
In this fashion our code is able to provide very accurate equilib-
rium data in ¥, ’819 (or G, 3’\6) coordinates efficiently as in-

put for ideal MHD spectral /17/ or resistive stability /21/ codes.
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IIT. Results

A) Static Equilibria

The first applications of the code serve to test its
accuracy. The behaviour of y near the magnetic axis
computed using linear and quadratic elements is examined
in detail. An Expansion of ¥ begins with quadratic terms

Py = e x2 + 1/e 22 +

where x denotes the radial distance from the magnetic
axis and e is the half-axis ratio. We may expect that

the bi-linear elements yield an inaccurate representaticn.
A very simple equilibrium , specified by the profiles in

eq. (30 a)

and F— =4d (46)

=
I
I
(9]

is taken. The surface is defined by the analytic repre-

sentation

r = A + cos [ B + 6.sin B ]

z = K sin B (47)
with up-down symmetry imposed and hence o =g = ¢ ,
The values of the parameters are c, = 204 d1 = o.S-Ri,

K =2,5, 6§ = 0.45 and A = 3.0 .

This curve is the outermost contour in Figs. 2a and 2b.

The mesh of finite elements is constructed from this
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curve and an arbitrary inner print on the z=o axis, RO.

For the 4-node, bilinear elements, shown in Fig. 2a,
Ry has the value Ro=2'5 and for the 8-node, bi-quadra-

tic elements, shown in Fig. 2b, the value is RO=R(axis)=3.20.
The number of radial and poloidal mesh points is 15,

NR = NP = 15. The 8-node elements coincide with flux

contours, which are defined with equidistant wvalues

= /2 .
g, = [ oy = v )/ tvm v 1%, i=1,2, ..., NR

where $a (ws) is the wvalue of ¢ at the axis (surface).
This - mesh is rearranged in the iteration procedure un-
til convergence for the flux function and the mesh is
obtained. Both choices of the finite elements yield al-
most identical results, even if the origin of the finite-
element net, R, , is initially chosen far away from its
final value, as is the case in Fig. 2a. Good results are
also obtained for the combinations of linear and quadra-
tic elements (6-node elements). This conclusion holds,

in addition, for the more complicated current profiles
discussed later on. We prefer, usually, the 8-node ele-
ments, since a given surface is then better represented.
Linear elements underestimate the arc length of a flux
contour yielding thus an inaccurate value for the safety

factor, which has to be compensated by a larger number

of elements.

The next test case is a comparison with an equilibrium

computed by the Garching code /15/. The surface is speci-
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fied by the parameters K=1,5, 6=o0 and A=3.0 in eq. (47)
yielding an aspect ratio of three. The profiles are para-

bolic ones and given by

B . 2 B . 2
p = c, (v ws) and F = 1 + d1 (y ws) (48)
with ¢, = 1.26+1072 and d, = 3.92-1072

Then the magnetic axis is found at R_ = 3.105

and the elongation of the flux surfaces around the axis

is e = 1.36 . Fig. 3a displays the flux contours of the
converged solution and Fig. 3b the toroidal current in
dependence of the radius along the midplane.

The agreement between the results from the two diffe-

rent codes is very satisfactory. The error is of the

order of 10_6 and, therefore, the comparison is not

persued further. It is interesting to have a closer look

on the convergence properties of our finite element code.
Without mesh rearrangement the convergence is fast.

After ten iterations the error - defined as the maximum

value of the difference of two subsequent iterations
(n (n) (n=-1)
ety = max [ o™= e i tess
than 10=° as is seen in Fig. 4. The finite elements
are rearranged during the first n; (in this case n,=3 )
iterations and then in steps of N (here nD=3 ). The
iteration is initialized with a constant current. There-
fore, the error of the mesh -
(n B (n) (n=1) (n) (n-1) (n)
€ }mesh) = max {(ri r, Y e (zi zy )}/Ra

increases in the second iteration, but decreases then
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monotonically to a value below 10"4. The mesh rear-

rangement introduces an error in ¢ , which is seen
in the maxima of (V) in Fig. 4., But in the sub-
sequent iterations the error decreases substantially

4 at the end of the run. These

and is smaller than 10~
local maxima in e(y) are possibly due to the linear
interpolation used for convenience in the determination
of the flux contours. The new Mesh points are obtained
as a superposition of old and new values, e.qg.

rgn) = o rgn) + (1 -a) rfn—1)
i i

to avoid oscillations of the magnetic axis. For the
specific case discussed the constant is @« = 0,75. The
values of the local maxima and minima of e(¢¥) occurring
in the course of iterations are decreased by a factor
of 4 if the number of mesh points is doubled (NR=NP=41).
The local minima can be made smaller by enlarging the
stepsize for the renewing of the mesh, e.g. ny = 4.

The basic result is that the equilibrium is obtained

in flux coordinates and is computed with sufficient
accuracy. The number of iterations necessary for such
an equilibrium is about two to three times larger than

that for a case with fixed mesh.

Equally good results are obtained for a high beta-po-
loidal equilibrium (Bp = 1.8) taken from the study
in Ref,./22/. The surface is defined by the parameters
K=1.65 and 6 = 0.25 1in eq.(47) and an aspect ratio

cf 3.5.
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The profiles have the form

P ommoy Colb=v) +cy b - y?)
F

dF

- 2 2 4 (49)
T — o (ApRy (b -v)% +a; (v -y

)

<
o

with constants co=do=o.92, c1=1.o, cz=d2=2.205 and d3=o.

The magnetic axis is then at R, = 3.8 . The flux
contours of this equilibrium are displayed in Fig. 5a
and the toroidal current in dependence of the radius

along the midplane in Fig. 5b.

A divertor experiment like ASDEX separates the plasma
by a "magnetic limiter" from the wall and avoids there-
by the contact of the plasma with a material limiter.
The corresponding equilibrium has a stagnation point

on the plasma surface. At such an x-point the flux
surface forms an angle of 90°. A finite element code
can easily represent the surface. As illustration an
equilibrium from the ASDEX-UPGRADE design (Ref./23/)

is computed. The surface is specified point-wise and
the aspect ratio is three. Interpolating these points
the surface can be represented with any desired number
of polecidal points. In Fig. 6 the surface is plotted
with 33 points. The profiles are the same as used in
the previous case, eq. (49). Fig. 6 displays the flux
contours for the converged equilibrium for equidistant
values of Yy . It is possible to shift the finite
elements closer to the separatrix if a better resolution

is needed without increasing the number of mesh points,
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By construction the flux contour has an angle of
exactly 90° at the stagnation point yielding a value
of |Ww]| =o0 there. Then the safety factor on the
surface has an infinite value. This limit is approxi-
mated by any finite value on the nearest surface if
the finite elements are accumulated sufficiently close
to the surface. This yields the very accurate profiles
needed as input for the stability code, Ref./21/, if
the influence of the separatrix on the stability of
tearing modes is to be analyzed. It has been found by
the authors that a finite difference code cannot repre-
sent the separatrix well, even if a large number of

points is taken.

Configurations With Steady Flow

The code is now applied to compute plasma states with
flow. As pointed out above a purely toroidal flow does
not change the type of the aquilibrium equation - see
eq. (30a). Analytic solutions can be obtained for a
special choice of ﬂo, HO and F, e.g. in Ref./24/

o

Since this solution is still complicated and requires
numerical evaluation the comparison is not persued.
More interesting is the result for the shift

of the center of a surface, obtained by a large aspect
ratio expansion. Similar expression are also derived in

Refs. /2,19/.

Q is a constant and p and F2 are linear in ¢ —ws
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This enhanced shift of the flux surfaces is reproduced by our
numerical results. In the first application we take the constant
current profile of eq. (46) with values for ¢, and d, as above and

1 1
add a constant toroidal flow

Qo - wo/Ra (50)

The function HO 1s chosen such that

H
e ® = p@,2 =0) = c (b= ) (51)

Then the toroidal flow contributes only in the exponential term in
eq. (30a). With increasing value wg the magnetic axis of the steady
flow configurations is shifted more outwardly. The flux contours
for the case of large toroidal flow, w, = 1.0, are shown in Fig. 7.
The comparison with the static case in Fig. 2a yields the enhanced
shift of the flux surfaces. The dependence of the normalized shift
D=1-Ra(0)/Ra(Q) on the flow velocity is shown in Fig.9. The shift
is more pronounced the smaller the elongation of the plasma in agree-
ment with the analytical results. In Fig. 9 the shift for K = 2.5,
1.0 and 0.4 is plotted, where the other parameters are held fixed
(e.g. 8 = 0.45). More realistic is the parabolic current profil of
eq. (48). Again the function HO is chosen to reproduce the pressure

of the static case, i.e.

H 2
e © = c, (v-y ) (52)

and the constants <, and d1 have the above values and the toroidal
flow is kept constant. The flux contours for the configuration with
B, = 1.1 is presented in Fig. 8. The corresponding static equili-
brium is found in Fig. 3a. The shift of the magnetic axis in depen-
dence of the flow velocity is plotted in Fig. 9. The detailed compa-
rison with analytic results is presently persued. The profile studies
have been extended to parabolic flow profiles. To facilitate the

reproduction of experimental data the profiles are specified point-

wise and then interpolated by cubic splines.
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C) Storage And Time Requirements

The size of memory needed by the code is, basically,
determined by the stiffness matrix eq.(37). The tech-
nique for storing the matrix K and for solving the sys-
tem of linear equations is adopted from the DOT code
Ref./13/, where only the non-zero elements are processed.
Therefore, keeping 400 000 words in the memory of the
computer is sufficient for handling up to 81 radial and
poloidal grid points. The results discussed have been
computed using 8-node elementswith a 4x4 Gaussian gqua-
drature for the integration per element. We list in
Table 1 the CPU time required for different mesh sizes
yielding a quadratic dependence for the computing time
in dependence of the mesh size. The number of iterations
is held fixed with n=10. The stiffness matrix is inver-
ted in each iteration, although it is required only if
the mesh is rearranged. For comparison the order of the
integration scheme is reduced to a two-point formula.

It is found that the results are almost identical to
those obtained by a four-point quadrature, the differen-

3 to 10”4, The CPU time is then

ce is of the order of 10~
decreased by a factor of 1.6 for larger mesh sizes
(NR=221). This makes it evident that the computing time
is not merely spent in the solution of the system of

linear equations but equally in the evaluation of the

matrix elements. A good performance is also achieved by
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using 4-node elements, where a two-point Gaussian
formula is adequate. Please note that the total number
of mesh points with 4-node elements is larger than with

8-node elements.

The code can easily be organized to start with a

11x11 mesh and then interpolate and transfer the re-
sults for ¢ and the flux coordinates to a finer grid
like 21x21 and 41x41. Then only a few iterations are
required for the large systems. To optimize further
the stiffness matrix will be inverted only if the mesh
is changed. Assuming that a 21x21 finite element net
is sufficient for most applications (and a 41x41 net
for the tearing mode stability analysis of the code
/21/), we estimate that an accurate solution is compu-
ted after 20 iterations in 5 to 1o seconds (and in

about 15 seconds, respectively) on the CRAY.
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CPU time in seconds for the 4-node and 8-node elements

for different mesh sizes NR=NP with 2x2 or 4x4 points

per elements used for the integration. The number of

iterations is always ten. NT denotes the total number of

mesh points. The runs have been performed on the CRAY-1
of the IPP computing center.
4-Node E1l. 8-Node E1l. 8-Node El.
NR = NP NT ! 2x2 Int.| NT ! 2x2 Int.| NT J| 4x4 Int.
! . !
11 111 1.1 86| 0.7 86| 1.4
21 421 4.5 321] 2.7 321 5.4
31 9311 10.7 706 | 6.7 706 | 12.9
41 1641] 20.6 1241 13.5 1241 244
51 2551 34.9 1926 23.4 1926 41.0
61 3661J 54.5 2761l 38.7 2761' 63.4




|
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IV. Summary

The equilibrium equation which determines a steady state

in ideal MHD theory has an elliptic characteristic if there
is no flow, purely toroidal flow or only small poloidal
flow. For sufficient large poloidal flow the equation be-
comes hyperbolic. The equilibrium is determined numerically
by using the finite element method. Quadrilateral, isopara-
metric elements with four to eight nodes are applied. The
mesh is rearranged in the iteration process to coincide with
contours of constant flux yielding the equilibrium finally
in flux coordinates. Good results are obtained with bi-
quadratic (8-node) elements, but also the bi-linear (4-node)
elements are acceptable. It should be interesting to imple-
ment 9-node elementswhich exhibits a true bi-quadratic de-
pendence in s and t. This requires an additional point in
the center of an element. Then the ¢ = ct, surface are
equally represented on every contour. The extension of our
code to this case should be relatively easy. The test cases
for static equilibria as well as the results for purely
toroidal flow demonstrate the high accuracy of the code
together with its fast execution. In the present version
the plasma surface is held constant - a rigid,perfect con-
ducting wall., The results for ASDEX-UPGRADE with a separa-
trix as the plasma boundary suggest that the external solu-
tion is equally important, since small changes in the po-

sition and magnitude of the external currents shift the
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location of the x-point considerably. In order to make

our code self-consistent we should add the computation

of the vacuum solution. At present, the code is, basically,
used as input for ideal and resistive stability studies,

where the external flux is not needed.

The code incorporates the isoparametric representation of
4-node, 6-node- and 8-node elements, the handling of gene-
ral boundary conditions and the storage and the solution
of the matrix problem efficiently - in the fashion of the
heat transfer code used already at IPP. An iteration
starting from a coarse grid and then interpolating to a
finer grid yields accurate results in about 10 seconds

on the CRAY-1.

The accurate results obtained so far encourage us to tackle
the equilibrium problem with poloidal flow. Then, in addi-
tion to the differential equation, two algebraic equations
have to be solved. As long as the poloidal flow does not
exceed a fraction of Y of the Alfvén speed this system

is solvable without any new problem. Naturally, we begin
the iteration without poloidal flow to obtain a first
approximation for the mesh and for y. Then the poloidal
flow is switched on in steps. If the poloidal flow veloci-
ty exceeds the discussed threshold interesting new numeri-

cal results - and problems - should occur |
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Figure Captions:

Fig. 1 Two dimensional mapping of 4- to 8-node

isoparametric mapping.

Fig. 2a Finite element net (NR=NP=15)

with 4-node elements.

Fig. 2b Finite element net (NR=NP=15)
with 8-node elements coinciding with

flux contours.

Fig. 3a Finite element net (NR=NP=21)
with 8-node elements coinciding with

flux contours.

Fig. 3b Toroidal current in dependence of
the radius along the axis z = o.
Fig. 4 Error of y, e(y), and of the mesh,
e (mesh), in dependence of the number

of iterations n.

Fig. 5a Finite element net (NR=NP=21)
with 8-node elements coinciding with

flux contours.

Fig. 5b Toroidal current in dependence of

the radius along the axis z = o.

Fig. 6 Finite element net (NR=NP=33)
with 8-node elements coinciding with

flux contours.
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7 Finite element net (NR=NP=21)
with 8-node elements coinciding with
flux contours for the profile of Fig.2a
but with constant toroidal flow —m0=1.0.

8 Finite element net (NR=NP=21)
with 8-node elements coinciding with
flux contours for the profile of Fig.3a
but with constant toroidal flow —wo=1.1.

9 Shift of the magnetic axis D=1-Ra(0)/Ra(Q)

in dependence of the toroidal flow for

constant ( ) and parabolic (----)

current profile.
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