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Abstract

A variational principle for two-fluid plasmas
is obtained by using Clebsch variables. A Hamiltonian
formalism is derived and canonical Poisson brackets

are defined.
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1. Introduction

There is interest in developing variational principles
in fluid and plasma dynamics within the Eulerian description to study
nonlinear fluctuations /1/. This description does not preserve a close
similarity with a system of particles as the Lagrangian one does. The
main difficulty is that the set of equations in the form originally
given does not follow from a variational principle. An equivalent
system which follows from a variational principle has to be found through

transformations and different representations of the variables.

Clebsch /2/ introduced Euler-like potential variables for the
fluid velocity to derive the hydrodynamic equations for an ideal and
incompressible fluid from a variational principle. Several studies have
meanwhile appeared on the subject. Seliger and Whitham /3/ derived a
variational principle for the equations of plasmas described by the two-
fluid model, neglecting thermal motion. They used a combination of the
potential representation for Maxwell's equations with the Clebsch po-

tentials for the fluid equationms.

With the internal energy per unit mass as a function of the density
and entropy, the scheme proposed in /3/ is now extended to two-fluid
plasmas with finite pressure. A Hamiltonian description is introduced
so that canonical Poisson brackets can be defined in terms of the (non-

physical) fields.

The difficulties in applying the same scheme when finite gyroradius
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effects are considered are also discussed. This suggests the necessi-
ty of a new representation to find a variational principle for the set

of equations which describe this problem.

2. Clebsch representation and variational principle for two-fluid

Elasmas

The Eulerian equations for the two-fluid model are
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where m, , JE‘are the mass and charge of each particle of species

A4 and Aqs

SAthe entropy per unit of mass, £ the electric field, and 8 the magnetic
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is the number density,te; the velocity, E; the pressure,

induction.




The internal energy per unit mass,q&, and ES are taken as

functions of mm and SA related to the other thermodynamic quantities by
A
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where _{; (414’ g4 ) is the temperature.

The combined representation

= Vx A , (9)

is introduced. Equation (1) can be written as
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denotes the enthalpy. Then, using eq. (7) and imposing the condition

i; +MA—E =0 (12)

’

one can reduce eq. (10) to
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Where 5 (0(4 rﬁ‘!; t) are arbitrary functions. Here &,
andfare chosen such that
F =o0. (16)
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All solutions of eqs. (1) to (7) satisfy eqs. (9), (12), (13), (14)
and (15). Clearly a solution of eqs. (2), (4), (5), (7), (9), (12),

(13), (14) and (15) satisfy eq. (1).

Equations (3) and (6) are satisfied identically by the representation

. —p
(9) and the equations forﬂA ,0(4 ,ﬁy}’ 474' 54 f X : 4 y .

(2), ), ), (1, (12), (13), (14) and (15). These can be obtained,

for the representation (9), from the variational principle
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The Lagrangian density can also be written as
2
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by using eqs. (11) and (13).
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3. Hamiltonian structure for two-fluid plasmas

From the given Lagrangian formulation it is possible to go

over to a Hamiltonian formalism. One can define the momenta con-
-
jugate to the fields p& 5 ﬁ& ,'7)4 and A :

M, = 2L = -m,, (20)
% = 55 %
%4E%J= -, %y, .
= Qf r—1E ’ (22)
ﬂ;}'S 5%, m, 5
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The Hamiltonian density given by
M= %(%ﬂ;‘ﬂ- ﬁ,ﬂf% +,7‘";14) + 54—% ”;?J -£ (24)
becomes
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The Hamiltonian can also be written as 3
H= [abz. [6 ——-r-S..B )fé_/mrn (()-.,.U)] (26) |

The Hamiltonian density obtained represents the total energy den-
sity.
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The Equations (2), (4), (5), (7)) (12), (13), (14), and

(15) can be derived by appropriately combining the Hamilton

equations of motion:

p = S T, = - S
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where the functional derivatives are defined in the standard way
—
after adding the termV, (Q'XE )to the integrand of eq. (26).
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Canonical Poisson brackets in terms of the Clebsch variables

here used can be defined as

] = P"_b(% (55 %‘g“% Sy | 5%s S
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where M and N are arbitrary functionals of the canonical fields.

The Hamiltonian structure for two-species fluid electrodynamics
was recently /4/ obtained in terms of physical variables but the

corresponding Poisson brackets are not canonical.




4. Discussion

In the preceding sections the extended Clebsch representation
introduced in /3/ was applied for the system of equations describing
ideal two-fluid plasmas. The internal energy per unit mass was
assumed to be a function of the density and entropy. A variational
principle was found, a Hamiltonian formalism was derived and cano-

nical Poisson brackets were introduced.

The Hamiltonian density obtained in terms of canonical Clebsch
variables represents the total energy density. This may be applied

to study nonlinear fluctuations in plasmas with finite pressure.

It seems to be difficult to find a variational principle for
the system of equations describing two-fluid plasmas when finite

gyroradii are considered. The term =V, due to this effect /5/

A
was added to eq. (1) and the following extended Clebsch representa-

tion was considered:

o :
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It was not possible to derive eqs. (2) and (4) from the Lagrangian
densities considered. Even for electrostatic variations it was not

— —
on 'U‘; and 8 resulted in additional terms to eqs. (2) and (4)

a—p
possible to get the continuity equation (2). The dependence of Yz;
o o3 - .
when the variations of 474 and £ were considered. In the case con-
sidered before it was possible to write eq. (1) in such a way that
the vector potential only appeared through the combination

—D —_—
mvg + 2 A
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Then, using the representation (9), it was possible to write this
equation in terms of Rs 5 O(A 3 34’ 54 and ‘74 only (see eq. (10)).
However, for the equation considered here the same combination

a
does not appear in the new term-vo'ﬂ'a. This suggests the necessity
of a different representation to obtain the variational principle

for the model considered in this section, if any can be found.

A representation similar to eq. (29) has been used to derive
a variational principle for the equations of elasticity /3/. In
this case # = © and the stresses are Just related to the internal

energy.

After termination of our work we noticed in the literature /6/
that a similar variational principle has been found. In contrast
to us Ref. /6/ restricts to X= 0O gauge and ignores the problem

of finite gyroradius.
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