THE DISPERSION RELATION OF ION CYCLOTRON WAVES

Marco Brambilla

IPP 4/209 November 1982

[P

MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK
8046 GARCHING BEI MUNCHEN




I

MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

THE DISPERSION RELATION OF ION CYCLOTRON WAVES

Marco Brambilla

IPP 4/209 November 1982

This report has been prepared under the contract JB1/9020
between the IPP-Euratom Association and JET.

Die nachstebende Arbeit wurde im Rabmen des Vertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europiischen Atomgemeinschaft iiber die
Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiibrt.




IPP  4/209 THE DISPERSION RELATION OF
ION CYCLOTRON WAVES

Marco Brambilla

November 1982

ABSTRACT - We review the dispersion relation of Ion Cyclotron
waves in a plane-layered plasma model. A simple, yet accurate
expansion valid for small ion Larmor radius (compared to the
wavelength) and small electron inertia, is obtained, which is
appropriate for use in the implementation of ray-tracing tech-
niques. The propagation characteristics of waves in the vicin-
ity of the ion cyclotron resonance and its first harmonic, as
well as near the two-ion hybrid resonances in a multi-species
plasma, are investigated in some detail.

This report has been prepared under the contract JB1/9020
between the IPP-Euratom Association and JET.
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1. INTRODUCTION

Any detailed study of rf heating presupposes a thorough knowledge
of the dispersion relation of the plasma in the relevant frequen-
cy range. In view of applications to ray-tracing and absorption
studies for JET and ASDEX, we will review in this note the prop-
agation characteristics of waves in the ion cyclotron frequency
domain, in a simple plane-layered, one-dimensional geometry, which
is a naive model of large tokamak plasmas. We will in particular
devote some care to the derivation of the simplest yet accurate
dispersion relation for these waves, and to the investigation of
their behaviour in the critical regions, namely the vicinity of
the cyclotron resonances and their first harmonic, and of the Two
Ion Hybrid resonances.

The results presented are not new, but are scattered in the 1it-
erature, and seem not always universally known. They are collect-
ed here as a convenient reference for further investigations in
this field.

The standard model for such a study is a plasma slab, with mag-
netic field in the z-direction, and gradients in the x-direction
(z replacing the toroidal and x the radial direction of a real
tokamak). It is also assumed that the wave amplitudes are uni-
form in the y-direction (poloidal) so that their wavevector is

(1) * = jgel@x + ‘?a//az

-&W is constant (e.g. determined by the periodicity of the an-
tenna), while k,is to be determined from the dispersion rela-

tion. Thus this model includes some, but not all, of the fea-

tures of a tokamak plasma: the most important limitation being
the exclusion of the rotational transform. It gives neverthe-

less valuable insight into the physics of ion cyclotron waves,
unobscured by the complications of more realistic models.




The coordinate frame just introduced coincides with the local frame
in which the plasma dielectric tensor is usually obtained /1/. Thus,
introducing for convenience the dimensionless index R'='fE/uJ s We
write the dispersion relation in the form
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The elements of the dielectric tensor are
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Here the first summation extends over the electrons and the vari-
ous species of ions, and the following notations are used:
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The notations for the plasma and cyclotron frequencies of the elec-
trons and ions are standard. Thermal velocities are defined as
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Lh(ﬁi) denotes the n-th modified Bessel function, while Z (x) is
the Plasma Dispersion Function /2/
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We are not interested in the solution of Eq. (2) as it stands, but
rather in obtaining accurate approximations including all the rel-
evant physics, and appropriate for applications to more complicated
problems. This can be achieved by making use of the existence of
two small parameters, namely the ratio between the ion Larmor radi-
us and the perpendicular wavelength on the one hand, and the ratio
between the masses of the electron and the ions on the other hand.
In the following section we will develop Eg. (2) in these small
parameters in turn, devoting some care to the identification of the
significant contributions.




2. APPROXIMATE DISPERSION RELATION

a) Small Larmor Radius Development

It is convenient to develop first for small Larmor radii, without
distinguishing between jons and electrons. Not all the elements of
the dielectric tensor contribute significantly to the dispersion
relation in this Timit. For completeness however we will give here
the first order deve]opment for all terms. We introduce the nota-
tions
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We define also the following dielectric tensor components expressed
in 'rotating' coordinates (they are not needed in the study of the
dispersion relation, but enter essentially in the determination of

the wave polarisations and in the equations for power transport and
absorption):
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so that

(11)

Capital letters are used for the terms which remain finite in the

Timit of zero Larmor radius. Well outside the Doppler broadened
resonances,
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they reduce to the elements of the cold plasma dielectric tensor
as derived by Stix /1/. We find it convenient to retain Stix no-
tations for these quantities modified to take into account the
Cerenkov and cyclotron resonances. Small greek letters are used
for the finite Larmor radii contributions. The explicit form of
the quantities appearing in Eqs. (9) and (10) is:
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To first order in 4%L(fi/2, the dispersion relation becomes a cu-
bic equation for nﬁ: ; '
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b) Small electron inertia development

As a consequence of the large value of the mass ratio M = mi/m& .
the coefficients of Eq. (14) differ widely in order of magnitude.
To make the best use of this fact, let us note that in the ion
frequency domain

w/U; = 0F) /0 =0(H)

(16)
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Moreover
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(temperatures in Kev) are also very small, respectively 0 (M”ﬁi)
and 0 (M'z’) in order of magnitude. The parallel index n
any value between zero and a few units. Indeed if

% can take

(o
(18) rn”h‘e 2>

damping by the electrons (electron transit time pumping and to a
smaller extent electron Landau damping) sets in, and the waves can-
not be made to penetrate freely into the plasma core (the increas-
ing optical thickness of the evanescence layer between the antenna
and the R cut-off near the plasma edge also makes coupling of waves
with large nj less effective).

The leading terms of the coefficients in Eq. (14) are ordered as
successive powers of M as follows:

(19) G’,‘:/\:B:C-:M_|:M:MD';M3
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With the above estimates it is easily seen that among the finite
Larmor radius tgrms, only O has to be retained, both in the co-
efficient of njf, where it appears alone, and in the coefficient
of ni , where it is multiplied by the very large factor P =
..uﬁg_/aoi (the fact that the finite temperature corrections to
Oz play such a dominant role is related to the transversality

of rotrot (E) =K x (fx 35 ). We are thus led to the following
approximate dispersion relation:
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Here the summation extends on the ions only: in R and L we have
expanded the electron contribution in cu/fl to second order
(retaining successively the contributions from the [)(B drift

and the polarization drift of the electrons), and used charge
neutrality,

Z A
(22) Dp oL N
w<l, ) W

According to above considerations, the finite Larmor radius terms
in coefficient B give a negligible correction to the roots of Eq.
(20), with one exception, however. As discussed in section q,

they become important in the vicinity of the first harmonic w=29q,
where they are resonant, while the cold-plasma terms remain finite.
In all other cases they can be safely neglected.

c) Polarization

Before discussing qualitatively the roots of Eq. (20), it is use-
ful to obtain expressions for the polarizations. To this end it is
convenient to decompose the perpendicular electric field into cir-
cularly polarized, rather than plane polarized, components:

(23) = %:(E FL Ea)
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They have to satisfy
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Let /| be the minor corresponding to the element MC' of the above
matrix. Then

(26) Zemig Mk =0 45=133

because of the dispersion relation. Hence, for any choice of the
line i, Ej will be proportional to m:*.

|
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Introducing as usual the unitary polarization vector &€ such that

(27) gre =4 E=\E\?

fl

and using the third line, we have:

2 2
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where K is the normalization constant. This procedure would express
the parallel component of the electric field as the difference of
two very large and almost equal quantities

. Instead, we use again
(25) to obtain
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The screening of the parallel electric field by the electrons makes
]eil =0 (me/mi), as apparent from this equation.

d) Waves in the ion cyclotron frequency range

The approximated dispersion relation (20) describes three plasma

waves. The smallest root is the fast, or extraordinary wave, also
known as the compressional Alfwen wave. It is this wave which is

normally excited by external antennas in large Tokamaks.
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Its dispersion relation is accurately approximated by the expression

(30) w2 _ _ (%-R) (n2-L)
e
07-5)

The other two waves are the slow, or ordinary wave, and a hot-plasma
wave, which receives different names depending on the parameter range
which is investigated. We must generally distinguish two situations,
depending on the value of @)(ratio between kinetic and magnetic pres-
sure). At very Tow ﬁ :

(31) b= Qum | o Me
B> L

the slow wave has the approximate dispersion relation
(32) g i? SR
o= = (-8 3

and the hot plasma wave

(33) M= 2
i

In the ion cyclotron frequency range “31 is so large that in prac-
tice Eq. (32) makes sense only if

2 neo§

The wave satisfying this dispersion relation is known as the tor-
sional Alfven wave below the ion cyclotron frequency, and as the Ion
Cyclotron wave near the cyclotron frequency; it displays the well
known parallel resonance (n;*?cﬂ) whencu—rgéfrom below, which is
exploited in the "magnetic beach" configuration /1/, not easily re-
alizable in a Tokamak.



- 15 -

At low frequencies, u)4=§2d, Eq. (33) is the dispersion relation
of the ion sound wave,

Z
. W = Rivi;

The condition Ki}i?@l is however no longer satisfied by this root

when (o is of the order of GLL. Then Egq. (33) is actually accurate
only in the vicinity of the points where Qz_becomes large, namely

near W= < ‘yhere Eq. (33) describes the first Ion Berstein wave,
or where S becomes very small, namely in the vicinity of the Two-

Ion Hybrid resonances described in the next section.

In large tokamaks with central temperatures approaching or above
one Kev, however, condition (31) is usually violated by a consid-
erable margin, even near the plasma periphery. Thus we are more
interested in the opposite situation, in which

(36) P) z ﬂ_n_e_
™M

In this case the approximate dispersion relations are respectively
for the slow wave

2
(37) =P = - Ope
— 82
w
and for the hot plasma wave
38 2 ‘mi—Q
(38) mt= — (M-8} /oy

In spite of the fact that Eqs. (37) and (38) coincide with Egs. (32)
and (33) at perpendicular propagation, they imply a different physics
in a non-uniform plasma near the critical points where confluences
between different branches occurs (i.e. near G ZS&iand where S = 0).
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The slow wave is always evanescent, with an exceedingly short eva-
nescence length, and never couples to the other two waves. This is
due to the effective screening of the electric field parallel to B,
as mentioned after Eq. (29). For all purposes, under condition (36),
we can ignore this wave inside the plasma altogether. It can however
affect coupling of the waves by external antennas, since it implies
the exitation of a sheath of image currents along the static magnet-
ic field on the surface of the plasma if the corresponding component
of the electric field of the antenna is not properly shielded.

At low frequencies, Eq. (38) is essentially identical with Eq. (33)
above, and again describes the ion sound wave. The only exception
occurs when

(39) my =S or Uy =W
= I e
U,X.: 2y (Lm"m!f!c )
wh L RS

happens to be satisfied; this wave is then known as the Kinetic Al1f-
ven wave. In the ion cyclotron frequency range the hot plasma wave
(38) is known as the first Ion Berstein wave (higher Berstein waves
would be introduced by retaining higher order terms in the k%é%
expansion of the dispersion relation; contrary to the first one, how-
ever, the n-th Bernstein wave can propagate only in a neighborhood

of the corresponding harmonic of the ion cyclotron frequency, unless
the density happens to correspond to the Lower Hybrid resonance near
the harmonic in question).

Since the slow plasma wave (37) is essentially of no interest, when
(36) is satisfied we can simplify further the dispersion relation by
neclecting the electron inertia altogether:

@ H= oy + [0j-8)+ B] mix 0F-R) i) = O

p= (f-R)A + y-L)e




- R

This form, which describes adequately both the fast wave and the
ion Bernstein wave, will be mainly used in the following. For these
two waves, a comparison of the results from (40) and from (20) shows
that the difference never exceeds a few parts in a thousand.

A summary of the results of this section is given in Table 1.
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3. CUT-OFFS AND RESONANCES

We define a cut-off as a zero of the perpendicular index. This is
not the definition used in an infinite, homogeneous plasma /1/; it
is however the appropriate one in the present geometry. A cut-off
will separate a region of propagation from a region of evanescence,
so that a wave impinging on it will suffer total or partial reflec-
tion there, depending on the optical thickness of the evanescence

layer on the other side. The fast wave encounters a cut-off when
either

2

In the approximation (30), on the other hand, the surfaces where

(42) 41;7: E;

appear as resonances of the fast wave (infinities of the perpen-
dicular index). Actually, of course, near such a surface, Eq. (30)
no longer holds: what happens is that the index of the fast wave
increases, and the index of the slow cold-plasma wave (32) or of
the hot-plasma wave (38) (depending on the value of ﬁ ) decreases,
so that a confluence takes place. A true resonance in the present
sense can only occur where S = 0 in a cold plasma (Tower, upber,
and two-ion hybrid): when hot plasma effects are taken into ac-
count, such a resonance goes over into a confluence of the cold-
plasma wave with a much slower hot-plasma wave. Since this is just
the behaviour of the fast wave at low frequency (QJ~SZQ when Eq.
(42) is satisfied, this extension of the definition of resonance
appears perfectly justified.

The importance of locating cut-offs and resonances for the study

of coupling, propagation and absorption is obvious. It is conven-
jent to discuss separately the behaviour near the plasma edge

(Tow density), and the behaviour in the plasma core (large density).
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A) Low-density cut-offs and resonances

The behaviour at very low density does not depend on the plasma com-
position, so that it will suffice to consider a single species of
ions with my/m, = M. Figs. la and 1b show the cold dielectric tensor

elements R, L and S versus density for < Sly and for w > Sl
respectively.

According to Fig. la, at frequencies lower than the ion cyclotron
frequency, waves with n%‘<.1 penetrate into the plasma without en-
countering any cut-off or resonance. Waves with n;'> 1, on the other
hand, which are evanescent in vacuum, encounter first a L-cut-off,
then propagate to the a resonance, are again evanescent between this
resonance and the R-cut-off, and propagate finally into the plasma.
The resonance encountered by these waves is actually a confluence

with the slow cold-plasma wave (31), since we are considering here

very low densities (@)él{ﬁ). It is a limiting case of an "Alfven
resonance".

According to Fig. 1b, at frequencies above the ion cyclotron fre-
quency, waves with n}'<;1 become evanescant at a L-cut-off, then
tunnel to a resonance, beyond which they propagate again towards
the plasma core. Waves with n;’>'1 on the other hand remain eva-
nescent up to the R-cut-off, and propagate at higher densities.
The resonance encountered in this case by the waves with q;‘<: 1
is again a confluence with the slow cold-plasma wave (31); in
this case however the latter proceeds to a true cold plasma reso-
nance (S = 0), which is the 1imit of the Lower Hybrid resonance
at frequencies approaching Clé(the conditionfn;)> 1 for the ab-
sence of this confluence is the 'accessibility condition' of the
L.H. resonance in the same limit).

When applied to the perifery of a Tokamak plasma, however, the
above description cannot be taken 1iterally. Indeed, for all but
unreasonably large values of nﬁ‘, all the cut-off and resonances
mentioned above are confined to densities about m,/m; smaller

than the central density, i.e. of the order of 10% to 10 cm—a.
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A layer of such Tow density is not well defined, and in any case

much thinner than the local wavelength (still essentially identical
with the vacuum wavelength). A more appropriate model of the plasma
periphery would assume a vacuum layer, through which waves with nﬁ')*l
must tunnel, followed by a suitable low density plasma in which all
waves are propagating. In such a model the 'resonances' described
above should appear as induced surface currents. An evaluation of

the impedance and power spectre of the antenna including the effect

of dissipation of these currents is not yet available.

B) Ion Hybrid resonances

In the ion cyclotron frequency range, and for the plasma parameters
typical of tokamaks, no cut-off or resonances other than those men-
tioned above can occur in a single species plasma. On the other hand,
if more species of ions with different Z/A ratios are present, an
L-cut-off and a resonance occur between each couple of cyclotron re-
sonances. The importance of the Two-Ion-Hybrid resonance is well-
known /3/. In this section we will give the general formulae to lo-
cate these singularities; the behaviour of the perpendicular index
in their neighborhood taking into account temperature effects will
be described on the basis of two typical examples in the next sec-
tion. Here we will only note that since these resonances are nor-
mally Tocated in plasmas with ﬁ)gzine/m{)they always couple the fast
wave (30) with the hot plasma Ion Bernstein wave (38).

Due to the fact that in a typical tokamak plasma cJ;]Sli@::O(M),

the position of the Two Ion Hybrid resonance nﬁ'= S and of the cut-
of f n2’= L can be assimilated, with an accuracy of the order of 1/M,
with the positions where S-1 = 0 and L-1 = 0, respectively. In par-
ticular, then, they are independent from the value of n;F, provided

of course that W;'<3< M.

Let )7£ = n;/ne s Zt, and Ai , 1 =1,2, be the concentrations, a-
tomic charges and masses, of the two jons.
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We first express the position of the singularities in a symmetric
form, through the value of the magnetic field where they occur. For
the cut-off we have:

and for the resonance we have:

(44) ohefoal iz Zl A %%, Al

2
e

Rea P Z‘ Al })32

. Z
(hereglcwis the cyclotron frequency of protons). In most cases,
however, a "minority" concentration of one species, say species 2,
is present in a plasma essentially composed of species 1. Both the
resonance and the cut-off approach the cyclotron resonance of the
minority species when its concentration decreases to zero. Using
charge neutrality,

45 o
(45) Zl‘vc é%( =— j_

we can rewrite Eqs. (43) and (44) in a form that makes this fact

explicit:
W’ . 2, /A
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If the poloidal magnetic field is disregarded, and Rodenotes the
major radius at which the fundamental cyclotron resonance of the
minority species is located, the position of the singularities is
given by

AR («‘% /A )
(48) e = 2 —
{Fio )c.o t 2/ 2

and ﬁ %
- - 1
(49) AR _ |[1+%R =/, -4}

N e Al
’R‘O C.0 _{ P \Z (Za//\l )
Z/A

Fig. 2 shows the cut-off and resonance in a Deuterium plasma with
Hydrogen minority. In this case (minority species having Z/A great-
er than the main species) the Two Ion Hybrid resonance is Tlocated
on the high magnetic field side of the Cyclotron resonance of the
minority species. The vertical scale of Fig. 2 is labelled in cm.,
assuming the cyclotron resonance of hydrogen to be located at Ro =
300 cm, on the magnetic axis of the JET plasma.

Fig. 3 shows the same plots in the case of a Hé§1' minority in a
Hydrogen plasma. In this case (minority species with the smallest
Z/A ratio) the Two Ion Resonance is located on the low magnetic
field side of the Cyclotron resonance of the minority ions.

4. DISPERSION DIAGRAMS NEAR RESONANCES

In this section we discuss in more details the behaviour of the
dispersion relation near the resonances discussed in the previous
section. The examples which will be presented have been obtained
for a plasma of the JET size (toroidal radius, characterizing here
the gradient of magnetic field intensity, TRO= 4 o ; plasma ra-
dius a = 1.2 m). The central density is assumed to be npo = 8.0 -
10*5 uﬁ? the central temperatures, unless otherwise stated, Tg=

1 Kev and Teo= 1.2 Kev. .
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Approximately parabolic profiles have been assumed; the density
and temperature variations in the region of interest are usually
quite small, however: the variation of refractive index is main-
ly attributable to the gradient of the static magnetic field.

A) First Harmonic Heating of a single species plasma

The simplest situation of interest is heating at the first har-
monic of the ion cyclotron resonance in a single species plasma.
In the numerical examples we have assumed this species to be
Deuterium, so that this situation is also the 1imiting case of
a D - H mixture, heated by exploiting the Two-Ion-hybrid Reso-
nance, when the concentration of Hydrogen vanishes. Scaling to
other plasmas, in particular to pure Hydrogen (a more likely
candidate for first harmonic heating in JET), is however imme-
diate.

Fig. 4 shows nj: versus position for the case n, = 0. The re-
sonance W= Zglpis located on the magnetic axis (R = 3 m) and
the distance X from this axis is given in cm, with the low
field side to the right (positive X). The main feature of this
figure is the evanescence layer just to the left of the first
harmonic resonance, in which the two roots for Qfare complex
conjugate. The existence of this evanescence layer was first
noted by Weynants /4/.

The confluences between the fast wave (branches labelled 'F'
in Fig. 4 and the Ion Bernstein wave (branches labelled 'B')
in this case is not due to a 'resonance' in the sense of the
previous section (S = 0), but to the fact that, in the limit
cT cerpendicular propagation, Cg_becomes infinite as l%map-
prcaches /2. It is indeed the relatively large value of Gy
here that is responsible for the existence of the first Bern-
st2in wave near W= 2§ZD to begin with. The confluence be-
tween this wave and the fast wave in the vicinity of the
first harmonic resonance can be easily predicted from Egs.
(30) and (38) of Section 2, with considerations similar to

those used in Section 4 to locate the two-ion-hybrid reso-
nances and cut-offs.

P



The width of the evanescence layer is easily deduced from the ap-
proximate dispersion relation for quasi-perpendicular incidence,

&0 o ~(§ +RA+Lp)n +RL=0

where, near () = W/2

2 A
~4)~ 42 WDpp Vg p )
G0 e v oy S oy e (TRl

e’::'?f::fo
2 i d
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The discriminant of Eq. (50),

A= (erR;uLe) 4Rl ~
7 L“”(A 4 +4)

is negative when -z-V§<Z\<-z+ 3, e

® UerBipi< § <-2(e-E)p

Here @D= B ’D/(TZD + TE: ) is the ion contribution to the ﬁ of the
plasma, and R0 denotes the position of the first harmonic resonance.
The negative sign in Eq. (53) means that the evanescence layer is on
the high maghetic field side of the resonance, as already noted.
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The optical thickness of the evanescence layer (number of e-folding
lengths) can be easily estimated to be /5/:

(54)

nZom- & g%PDRO-[’SD

With the JET parameters of the figure, “IOPT is about 0.2, and would
reach unity at T&J = 5 kev; this implies that 1little power can be
tunneled to the high magnetic field side, even if absorption in a
single transit through the resonance is not complete (we will not
try to estimate absorption in the present note). This is not a draw-
back, however, since waves launched from the Tow magnet1c field side
encounter first the cyclotron resonance.

It is worth noting here also that if the thermal corrections to the
coefficient of nji where neglected in Eq. (40), the width of the ev-
anescence region and its optical thickness would be overestimated by
about a factor of 2. The reason is of course again the presence of
the resonant terms in the finite-beta contributions, which are ab-
sent from the 'cold' part of the dielectric tensor. A further rea-
son to keep these terms is that they are needed to ensure energy
conservation when the problem of propagation in this region is stud-
ied using the ordinary differential equation (igL—} d/dx) corre-
sponding to the dispersion relation (50) /5/. The divergence of the
lowest thermal corrections at ()= 2512, on the other hand, does not
imply a breakdown of the K%Ef% development, since none of the higher

terms neclected in obtaining Eq. (20) contains a resonant contribu-
tion at this point.

When n, is not zero, C. does not diverge at ) = S%{Z its absolute
value has a maximum at ,xz»}- 2, where

N R O AL v
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If -A <2+ VE‘at this point, the two roots miss each other. More
important, for lxgojlsz, the imaginary part of Z cannot be neglec-
ted; in this region the two roots are no more complex conjugate,
implying absorption simultaneously with evanescence. The width of
the cyclotron absorption Tayer is given by:

V
(56) IL\X‘D e .2 [’YI//[ _C_li%DRO
Of’feﬂ'

The layer where two complex conjugate roots exist will be complete-
ly washed out by the Doppler enlarged cyclotron resonance when

(57 | % Db ey -, &

ijcp C ’ U%&D
The progressive merging of the absorption and evanescence regions
with increasing nU is illustrated in Figs. 5 (n” = 1.5) and 6
(nﬁ = 3). In the latter case condition (57) is already satisfied.
In hydrogen, the transition to this situation occurs at a value of

Vg-times smaller for the same temperature, or at a lower tem-

perature (by a factor 2) for a given ny -

B) Hydrogen minority in a Deuterium plasma

As in the previous case, it is convenient to consider first the
Timit of perpendicular propagation. In the presence of a small
concentration 1m= ”rf/"e. of Hydrogen ions, a new resonant term
appears in the vicinity of the point where

(58) W =5 = QQD

namely the fundamental resonance contribution to L from the minor-
ity species. This term, proportional to vHRO/X, makes L (and S)
vanish, as discussed in Section 3, somewhat to the left (high mag-
netic field side) of the cyclotron resonance.
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On the other hand, it is in competition with the first harmonic re-
sonance terms in the finite-beta contributions due to Deuterium,
proportional to fbd and will therefore influence the location and
separation of the confluences between the fast wave with the first
Ion Bernstein wave.

In the approximate dispersion relation (50) in this case we can
substitute:

R -
A elip B x>0
(59) 5Py C
e 2 :
RE%-‘*:J';" ;_::__ro(Hi, Eo)
S 0% 3 Hx

The confluences occur at the points where

-

(60) K%+ 2(1+K)} +4 =0

K=4+ 32

28,

For vanishing gt concentration, K = 1, we recover the expression
(54) as it should. As ¥y increases, the evanescence layer moves to
the left, and its optical thickness increases. This is clearly shown
by Figs. 7:( Y4 =0., PH = 0.005, VY, = 0.01) and 8 ( V¢ = 0.05). A
simple expression for the position and width of the layer can be ob-
tained as soon as

(61) Yy >> @D

Then the centre of the evancescence layer is at

(62) X’EJOMW"—"_— 52 i_))Hﬁo
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(XEM is always to the left, higher magnetic field side, of both the
theoretical two-ion-hybrid cut-off and resonance). The width of the
layer is:

(63) (AX)EV ~ 3Y_))H L)JH )/?,

By comparing this with the distance of the center of the layer, XEU
from the cut-off position, XCO . ;

(64) lev“ le £ ;(4_: v, Ro

it is immediately seen that the two-ion-hybrid cut-off L = 0 will
be effectively present, and contribute to the thickness of the ev-
anescence layer, as soon as condition (61) above is satisfied.

Cyclotron absorption of course sets in a finite Ny, and is con-
fined to the layer (56) around X = 0. The condition for this layer
to influence effectively the two-ion hybrid region is essentially
the same as in the case of pure first harmonic heating as long as
Vy<[d as illustrated by Fig. 9 ( Py = 0.005, n, = 1.5 and n, = 3).
For higher 'minority' concentration, Doppler broadening will domi-
nate if

b‘}ti;?\[ql o)
(8) "Y‘//l S g M

For a given ny > this congition can be used to define a critical
proton concentration, beiow which the dispersion curve is dominat-
ed by the majority speciss Hermitean contribution to the dielec-
tric tensor, and by the Doppler-broadened resonance of the minori-
ty species ("minority heating" regime); above this critical con-
centration, on the other hand, the two-ion hybrid layer is well
separated from the absorption layer ("ion hybrid" regime).




)

In a real set-up, this distinction is usually less clear-cut, since
several ny are simultaneously excited as a rule; a rather broad
transition will then separate the two regimes.

In the 'two-ion-hybrid' regime, the imaginary part of ni% near the
cyclotron resonances (58) is relatively small, as shown in Fig. 8
(in spite of the relatively large value of n, ). This does not mean
small absorption, however: it is easily seen that the antihermitean
part of the dielectric tensor is quite large, and the appropriate
component of the electric field also appreciable there;

During heating, the minority species can acquire a temperature ap-

preciably higher than the main ions. For completeness, Fig. 10 shows
an example of dispersion relation in this case. If the heating rate
is fast compared with the typical angle-scattering time, the distri-
bution function of the minority ions can also be appreciably aniso-
tropic, with T, Tlarger than TU . Contrary to a widespread belief,

the dispersion relation (40) (or the more general one (20)) is per-
fectly adequate to deal with this situation, provided that “HVY =
(2T /m)iﬁ@ is used in the argument of the Z's (parallel Doppler
broadening) and [L is used elsewhere. Indeed, the corrections to
R and L due to anisotropy of the distribution function, and not

already included in Eq. (40), are eas11y shown to be

o S é wr,( ) T 4>ac Z@”‘f}

| (% lﬁ

VR 13 A By ()

L) o W

These are not only very small compared to R and L theaszives, but
are smaller than the f1n1te Larmor radius corrections tf"A and ~
t by a factor (k ”/k ) = OUne/m{_),hence they can be complete-
Iy disregarded.

-
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C) Helium-3 minority in an Hydrogen plasma

There is an essential difference between this heating scheme and

the previous one, namely that the fundamental cyclotron resonance
of the minority ions,

(67) L) z
3 e D 3 H

does not coincide with the firs harmonic for the main plasma. As a
consequence, the hot-plasma wave in the vicinity of the Two-Ion-
Hybrid resonance is not a Bernstein wave, but an acoustic wave
with a much greater perpendicular index. In the absence of He
jons, the dispersion relation of this wave is

o ~ 0.2k vy

In the 1imit of perpendicular propagation in the presence of a small
He™ ' concentration

3
(69) M e
=
Pl 7 (ﬂe 1= QvHe)

we can substitute in Eq. (50) the approximate expressions

(70) /\ r~
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The resonant terms in the cold-plasma contributions and in the fi-
nite Larmor radius contributions to the dielectric tensor are here
proportional to each other, the latter being smaller by the very

small factor vﬁe ?34: the term R;l in the coefficient of ni can in
particular be neglected.
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It follows that the two roots of Eq. (50) exchange their role near
the point where S = 0, as sketched in Fig. 11 a, and remain real
throughout. Moreover, the value of njt at the resonance S = 0 is

Y-
(71) mj’) it 1 odb ey .
5=0 W= (PuVhe)

=lA
i.e. (Q”}VHQ’) times larger than at the confluence with the Ion

Bernstein wave in the case where the main ion species is near its
own first harmonic cyclotron resonance. We may also note that the
acoustic wave shows a 'resonance' (coupling with the slow cold-
plasma wave) slightly to the left (high magnetic field side) of
the Two-Ion-Resonance, where G, vanishes, and is propagating
(njf) 0) everywhere else. Its perpendicular index, however, is
so large, that the finite Larmor radius expansion is only margin-
ally valid for this root, even at the point S = 0, where it is
minimum, and certainly near the confluence with the slow wave.

It is therefore more appropriate in this case to neglect CZL al-
together in Eq. (50), thus retaining only the fast wave,

(72) my = RL/S

and to consider the Two-Ion-Resonance at S = 0 as a true singu-
larity of the refractive index. Evanescence is then confined to
the layer between the cut-off L = 0 and the resonance S = 0, and
its optical thickness can be estimated to be /6/:

(73) ~ T “ug

nrKOPT 30 ¢ 0" He
This point of view is confirmed by looking to the results for n4’7&
0. The condition for cyclotron damping by He;* ions to influence
the Two-Ion-Resonance can be written

Uiy 4
[, | =He 2

74 — =
(74) C QHG
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When this condition is satisfied, the dispersion curves behave as
shown in Fig. 13 ( )%ki = 0.025, n, =0, 3, and 6). The 'singulari-
ty' of the n, =0 case is replaced by a typical resonant curve
with dissipation, low at n, = 3, more heavy at A 6. Throughout
this region, the fast root is very well approximated (to within a
few percent) by Eq. (30) of section 2, provided that L and S are
given their complex value, as it should. Indeed, the Hegf contri-
butions to the dielectric tensor being complex, the approximate ex-
pression (30) will not diverge; as soon as condition (74) is satis-
fied, the two roots of Eq. (50) can no more exchange. The qualita-
tive behaviour in this case is shown in Fig. 11 b.

When condition (74) is violated, the region of absorption is well
separated from the Two-Ion Hybrid Resonance, and the Tatter retains
its character of effective singularity of the fast wave (Fig. 13).
For waves launced from the Tow magnetic field side of a Tokamak, as
it is usually the case, the evanescence region associated with this
cut-off resonance pair screens the absorption region. If the optical
thickness (73) is not small, 1ittle heating can be achieved in this
case. At the density of the examples, this Timits the allowable con-
centration of He to one or two percent (since 7]09? increases line-
arly with the plasma dimensions and with the square root of the den-
sity, this condition is much more severe in JET than in small toka-
maks). In other words, in the case of He minority in a H plasma, ef-
ficient heating can be expected only in the true 'minority' regime.

Such a limitation in the allowzble minority concentration is not en-
countered when He§+ is added to Deuterium, since in this case the
Hybrid layer is located beyonc zhe cyclotron resonance of He. An
example of this situation is illustrated in Fig. 14.
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FIGURE CAPTIONS
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Qualitative behaviour of R, L, and S, near the plasma
edge. '

Position of the Two-Ion Hybrid resonance and cut-off
versus plasma composition in a D-H plasma. Toroidal
radius at the cyclotron resonance of H, RO =3 m.

Position of the Two-Ion Hybrid resonance and cut-off
versus plasma composition in a H-He plasma. Toroidal
radius at the cyclotron resonance of He, RO = 3 m.

Perpendicular index squared versus position in a pure
Deuterium plasma near the first harmonic of the Deu-
terium cyclotron resonance (at X = 0). n =8 104>

Te = 1 kev, Te = 1.2 kev, B_ = 3.5 T at X = 0. Purely
perpendicular incidence. °

1.5

Same as Fig. 4, with ny

Same as Fig. 4, with n, 3.0

Perpendicular index squared versus position in a D-H
plasma, for very small concentration of H. Purely per-
pendicular incidence. Other parameters as in Fig. 4.

Same as Fig. 7, with 5% of H. ny o= <

Same as Fig. 7, with 0.5% of H (minority regime) for
various values of Ny -

Same as Fig. 7, with 1% of H (minority regime), with
TD = 2 kev and TH = 6 kev. Other parameters unchanged.

Qualitative behaviour of the fast and acoustic waves
near the Two-Ion Hybrid resonance in a H-He plasma.

Perpendicular index of the fast wave near the Two-Ion
Hybrid resonance in a H-He plasm&a, for very small
concentration of He{™ (0.5%), various ng Cyclotron
resonance of He§+ at X = 0. Other parameters as in Fig.

Same as Fig. 12, with 2.5% of Heg+.

Same as Fig. 12, with Deuterium instead of Hydrogen as
majority species.
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