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Abstract

Stochastic acceleration and turbulent diffusion are
strong turbulence problems since no expansion parameter
exists. Hence the problem of finding rigorous results
is of major interest both for checking approximations
and for reference models.
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Since we have found a way of constructing such models
in the turbulent diffusion case the question of the
extension to stochastic acceleration now arises.

The paper offers some possibilities illustrated by the
case of "stochastic free fall" which may be particularly

interesting in the context of linear response theory.




1. Where the problem arises

In a hot plasma, for example, the heat flux is carried by the charged
particles. Owing to the presence of instabilities these particles are driven
by electric fields, which can be considered as stochastic, i.e. resulting
from superpositioning of various unstable modes with random phases. The
transition probability of a test particle under such conditions is thus of

interest.

Two limiting cases can be distinguished:
- The magnetically dominated region

For gyrating particles we essentially expect a drift according to
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where the electric field ought to be considered as a stochastic one.
This kind of problem is of the type termed "turbulent diffusion™.
. . 1)
In an earlier paper the author started a rigorous treatment.
- The electrically dominated region
The dynamics of a test particle is then governed by a Langevin
equation of the form
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which, unfortunately, cannot be split into two equations of the

&
M

former type in a general way. The previous methods thus cannot

be applied directly to the present situation. It should be added




that stochastic acceleration is of widespread interest extending to
the diffusion of finite-mass particles, e.g. an aircraft landing in

turbulent air.

In the following, an attempt is made to extend the method of turbulent

diffusion to the present situation as far is reasonable.



2. The "winter" case

If we assume that the right-hand side of eq. (2) does not depend
explicitly on x, it seems natural to describe the stochasticity in terms
of a suitable Gaussian distribution (Einstein and Hopf). Subtracting the

mean field (linear response theory), we end up with an equation of the
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which has been extensively treated in the context of the theory of
Brownian motion (Wang & Uhlenbeck, Doob?) Such a treatment even
allows for any causal dependence of the right-hand side upon x, as is
explicitly demonstrated with the Brownian oscillator as well as with any

other theory based on Fokker-Planck equations.

The other extreme would be to have the right-hand side not depend

explicitly on t, but merely on x in a purely stochastic manner. The
author has already treated this "time-independent" situation to some

extent in the case of turbulent diffusion, where it was referred to as
“frozen-in" turbulence. The present situation is thus called the

"winter" case.

In the following, attention is essentially confined to the one-dimensional

case. The corresponding differential equation,
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can easily be integrated if we proceed naively without reference to

a possibly underlying Wiener process (thus neglecting the discussion

around lto-Stratonovich). We end up with two congants of integration,

the energy and the "starting time":
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Hence we find ourselves in a situation which closely corresponds to
that of turbulent diffusion. However, the "frozen-in" case is replaced
by a whole family of such cases depending on a parameter v . This
is the situation we are dealing with in "winter" times. We have only

to identify our previous S with -to(x/vo)
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3. Family problems

S, or in our case ? , depends on two parameters, Vo and x.
Unfortunately, the dependence on the initial velocity is not completely
stochastic but causal in a rather trivial way. Accordingly, we are

dealing with a family of stochastic x-functions. Instead of @ we use
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from which we obtain @ by differentiation with respect to o/. In

principle, this family can be characterized by the differential
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which ought to be considered as a "boundary condition" for the statistics

equation

of @ . However, it seems difficult to pursue this line. Hence we may
proceed as follows: Let us assume that we know the statistics for a
given fixed value of ¢ . We may then ask whether we can obtain at
least some information for another value. In fact, this is possible at
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least for the lower moments and hence we may apply the ASUCON
method in order to obtain the scaling laws for the corresponding diffusion.

This can be illustrated by the formula
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4, Scattering

If the potential energy is essentially bounded (vanishing probability
for very large values of V), rather fast particles will not get trapped.
A
If we thus assume Q ()(‘0(‘-—)0&) to be known,this immediately
leads to a simple relation for our potential after expansion of the square

root:
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Hence from the statistics of © we also obtain that of W, which in turn
A
allows us to calculate, for example, the average value of g (X IG()

for any other finite initial velocity by means of
x
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This formula only makes sense as long as trapping does not come into play,
e.g. if the corresponding potential is a monotonically stochastic function
or if the initial energies o are large enough. - The problems connected
with trapping will first be considered in the context of turbulent diffusion

in a forthcoming paper before it is applied to the present situation.
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5. The stochastic "free fall"

The concept of linear response is connected with the application
of an external constant field of force. A test particle under consideration
will experience, in addition to the agitation of its surroundings (the field
particles), a somewhat disturbed external field due to the perturbation of
the field particles (polarization effects, etc.). Hence we are led to con-
sider stochastic potentials which, at least in the mean, behave like the

external one:
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Accordinglv, we may designate this problem as "free fall" with noise.
As an example which allows scattering states we choose:
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where u is the Ornstein-Uhlenbeck process. Using the ASUCON method,

we obtain for the dwell time
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For large values of x this tends to
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which is in keeping with the causal situation.

If we had chosen instead of u the Wiener process:
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we would have obtained
X
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For small x, using asymptotic expansions of kb, we get
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for the dwell time behaviour, whereas for large values of

X, since KO behaves essentially logarithmically, we obtain
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This formula shows a surprising deviation from the expected

behaviour (t ~ ./2J( ) in the causal situation. In a cer-

tain sense, this reminds one of the law of iterated logarithms. 3)

So far, however, the connection is an open question.



For a better understanding of this result, we compare it
with the motion of the mean value: From the equation of

motion
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we obtain by averaging
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and hence the conventional result

x> ~ %7&1 (26)

The centre of mass of a cloud of test particles would
thus behave normally, which is evidently wrong where the
movement of a quantile is concerned, this being the case

when t is calculated.



6. Fokker-Planck techniques

Very often the underlying stochasticity is based on
Wiener processes. In the last example this was precisely
the case, even for the Ornstein-Uhlenbeck process. One
may ask whether it is also possible to obtain expressions
for the whole transition probabilities themselves. With

conventional techniques, the answer is B)f)
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with the initial condition
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for this family of frozen-in situations ("winter case").

If no analytical solution of such Fokker-Planck equations

can be found, one may doubt the advantage they offer com-

pared with the direct Monte-Carlo treatment of (5).

However, the latter introduces two sources of error:

i) The representation of a statistical ensemble by a
finite sample.

ii) The numerical integration.

At least the first point is avoided, if the Fokker-Planck

equation is used as a starting point - unless it is again

treated by Monte-Carlo methods.




No discussion of equation (27) will be given here. It is
merely stated that extension is possible even to cases which

are time dependent.
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