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Abstract

The inclusion of high—f and first-order toroidal terms
in the reduced set of (resistive) MHD equations affords the
possibility of improving the study of tokamak plasma behaviour
by three-dimensional numerical simulation. A new code, GALA,
based on the reduced equations is developed. It is used to ana-
lyse the linear and nonlinear behaviour of the internal kink
mode in equilibria which are generated by a simple relaxation
procedure. We find that the inclusion of toroidal effects in

high-B equilibria provides considerable stabilization.
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I. Introduction

For the analysis of tokamak and stellarator equilibria, a power-

ful method has been developed in the last few years. By expanding in the
inverse aspect ratio € << 1 the reduced MHD equations, rid of the

fast magnetosonic processes, were derived. Thus numerical

analysis is much easier and dynamical studies in three dimensions

are more tractable.

For tokamaks, the reduced equations were first derived in the special
case of low pressure (B=0(52)) in cylindrical geometry (Strauss 1976,
Rosenbluth et al. 1976). Strauss (1977) generalized to high B plasmas
in cylindrical approximation and Edery et al. (1979) as well as Carre-
ras et al. (1980) included effects of finite aspect ratio in the low
B case. The most general reduced equations including both high B and

first order toroidal effects were derived by Schmalz (1981a).

In this paper we report on the first application of these generalized
equations in a three-dimensional nonlinear code GALA. In section II,
the reduced equations are presented. In section III, axisymmetric
equilibria are created by a relaxation procedure. Linear and nonlinear
stability, especially for the (n=1) - mode is studied in sections

IV and V. In section VI we draw some conclusions.



II. The Reduced Equations

Our length scale is the minor radius a which is € times
the major radius Ro' The time scale is the toroidal Alfven transit

time Ro/v Assuming the consistent ordering B¢ = 0(1), B, = 0(e),

A
v, = 0(e), v¢ = 0(32), B = 0(g), we derive to first order in €
ap R’ n
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The meanings of the symbols are
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B = magnetic induction (, means poloidal)
j = current density
¢ = poloidal flux / 2w
W = toroidal vorticity
U = velocity stream function
¢ = electrostatic potential
p = pressure
y = diamagnetic potential
n = resistivity
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We use cylindrical coordinates (R,y,¢) with R = 1+ex. All variables
are dimensionless and of order one, the € dependence is explicitly

noted. So we have e.g. V¢ = e, and all e's in the denominators

€
R —b
cancel.

The operators are defined by

DE = 2w [ET]

Dt at
f,¢:= 3%,
Ay := g—i2+—g—§2+%%{ and
poi= o oay -2 g% ;
0] := vixvw.e =220 af 3u

is a useful abbreviation because of certain invariance properties

under coordinate transformations. The poloidal velocity has the form
2
v, = R" W x vp

Our philosophy is to keep as far as possible exact terms like R2
instead of expanding them to the required order. This should help to
improve the equations further.

The equations (1) - (6) contain two simplifications. First, it is
possible to keep v¢ in order ¢ and solve one further equation for v¢.
However, Strauss (1977) has shown that this order vanishes as long

as B+Vp = 0. We assume that this condition is fulfilled, if necessary
by additional fast nonideal effects like thermal conductivity along

the magnetic field. Thus the v¢ - equation remains decoupled. Second,
we solve the continuity equation for the mass density by simply setting
p = ﬁ% . These assumptions leave us with six equations for the six

quantities Y, W, U, p, ¢ and X.Only three of them are time-dependent

of mixed type, the others require the solution of elliptic operators.

In the appendix, we write the equations 1 - 6 in general curvilinear

coordinates (p, 6, ¢). This is for later use of flux coordinates.



III. Equilibria

As a first step and to gain the input for the dynamical calculations,
we generate stationary axisymmetric, toroidal resistive equilibria.
In this case, equations (1), (2), (3) and (6) are solved with g% =0
and boundary conditions y = 0, W =0, U=0 and p = 0 at the wall.

We give a class of initial current profiles of the type

i T —p(x2 + y2)
3 =], cos (EX) cos (Ey) e

and relax by adding an artificial viscosity term v A; W in eq. (2)
which removes kinetic energy. The pressure is initially set proportional to
2
v,
T 1 . c
In phase I, the resistivity W, = o equals zero and is switched on

€S
in phase II after the ideal MHD equilibrium has established. Then, a

5 1. = . .
time dependent 1 = —%Q qr is inserted and the resistive (quasi-)
o

equilibrium develops.

For these calculations, an Eulerian code was advanced on a Cartesian
mesh. The interval was -1 £ x £ 1 and - 1 £y £ 1 with up to 256 x 256

points. Eq. (6) was rearranged to

32U 32U W

oxZ ' oyZ T RZ

im
-

and solved by the Buneman algorithm (Buneman 1969) with iteration on
the r.h.s. The mean number of iterations k for e = .2 is plotted ver-—
sus accuracy & in fig. 1. The time iterations were done by a simple

explicit two-step procedure:

wt+1/2 _ wt—1/2 — [?t_1/2’ Wt—1/%] N
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Eq. (7) contains a non-centered term which is in all cases small.

The inversion of the Laplace - Operator (eq. (8)) is of course the most
time consuming part of the computation. In the early phase of the re-
laxation, the main time step limitation comes from the viscosity according

to

At/(Ax)z g

v
In phase II, v was considerably reduced below n, and the time step was
limited by the resistivity especially in the outer regions of the inte-
gration domain where n was large to simulate vacuum conditions. Here some
improvement was achieved by using the Du Fort - Frankel technique in
eq. (10). Sometimes weak dissipation is needed to couple the different

meshes together.

To illustrate the effects of resistivity on equilibrium, we compare figs.
2, 3 and 4. Here we have plotted contour lines of ¢, Rj¢ and p as well

as a vector plot of v, and a 3-D plot of j¢. In fig. 2 a high B ideal
MHD equilibrium has established with the typical current sheet and re-—
versal to the right. The initial current profile was rather peaked (u=5).
In fig. 3 the end of phase II is shown with a high resistivity N, = 10&3.
As the computation time T = 200 is comparable with the resistive time-
scale in this example, the j¢ - profile has the tendency to adjust to

the n_1- profile. By contrast, in fig. 4 the original current pro-
file is conserved because of the low resistivity n, = 10_5. Only the
edges have smoothed out. In this case, the two timescales are safely
separated. This seems necessary in order to get clear answers by the dy-
namical calculations. The g-profiles in the case p = 5 are shown in

fig. 5 for both low and high n in the case € = 8 = 0. In fig. 6 the shift

due to € and B effects is demonstrated. The safety factor on the magnetic

axis q, with which we end up in a particular run depends not only on

jO but on the resistivity.



Fig. 7 shows this dependence which is clearly ~ 1/jo for n, = 0
but somewhat complicated for higher n,- Some more examples of such

self-consistent resistive equilibria are given in Schmalz (1981 b).

IV. Linear Stability

In order to investigate the stability of the computed equilibria, a
three-dimensional code GALA (= Garching's Large Aspect code) was de-
veloped. With its help we are able to study the linear and nonlinear
behaviour of low and high 8 plasmas including toroidal curvature effects

in tokamaks. In this section we concentrate on linear stability.

a) Qualitative Description

In principle, the computed equilibria of section III are perturbed
to a small extent and the three-dimensional evolution of all quanti-
ties is traced in time. In linear stability analysis, the equilibrium

fields are kept fixed and the equations are linearized. After an initial

adaptation phase, the perturbations develop self-similarly =~ ert and

for T > 0 the linear theory breaks down at some time or other. The mo-

dlnf
dt

and, independently, for the kinetic energy, which

mentary growth rate T =

(1

is derived at each time step for the per-
turbation £ = ¢
grows at the rate 2I'. Figure 8 shows a typical example of an unstable
mode. The response of a stable equilibrium to a perturbation is only

manifested as oscillation like those in fig. 9.

The linear code was written in two versions. In one of them the fields
are Fourier analysed in the toroidal direction and only the n = 1 con-
tribution is retained. This is especially effective for the analysis

of n = 1 modes. The other version uses finite differences in ¢, too.

This was mainly used for testing the accuracy. Typically, the
three-dimensional grid was 32 x 32 x 15 or 64 x 64 x 13 mesh points.
The limitations were imposed by the storage capacity available in
Garching's CRAY-1 and the computer time required. (With the fine

mesh, one time step consumed roughly one second of CPU-time.)



With this type of meshes one would expect the m = 1 mode to be
best described. So we concentrate our attention on this so-called
"internal kink" instability. As a reference mode we consider fig.

(1 V;(1)

10 where the perturbations VY 5 Rj(I), p(i) and are plotted in

the plane ¢ = 0. This is the pure mode (m = 1, n = 1) which varies

el(me‘n¢). eFt (6 = poloidal angle).

as
As an additional diagnostic, we use a subroutine which follows a
field line and denotes the points where it pierces a given poloidal

plane. This program was made available to us by W. Lotz.

Some examples are given in figs. 11 to 13. In fig. 13, the original
island structure is dissolved into a large "ergodic" region. This

becomes meaningful in the non-linear calculations.

From fig. 14 we see how the mode structure changes qualitatively if

we include toroidal effects: the perturbations are shifted outwards,
have a modified structure and new features appearing to the left. This
becomes more drastic if we go on to high B as shown in fig. 15a for

& =0 and in fig. 15b for ¢ = 90°. Here the mode hardly resembles the
simple m = 1 picture. The perturbation fills more and more of the plasma
volume and higher poloidal harmonics are generated. This mode coupling
effect becomes even more obvious in the case q, > 1 which is plotted in
figs. 16 and 17. Here the (m = 2, n = 1) mode dominates, being plotted
in its pure form in fig. 18. This type of instability is called the
ballooning mode because it is driven by the plasma pressure in regions

of unfavourable field line curvature.

b) Quantitative Results

As a first test of the code we reproduced the well-known stability be-=

haviour of an analytical circular-cylinder equilibrium

2
. 2 2 2 2
i, (1 - %*) , (r7:= x"+y")

.
1

v=13, (‘1736 - et = 9x2 + 36) /144 )




Here the flux surfaces intersect the boundaries x = * 1 and y = + 1,
For N = 16, 32 and 64 we find (fig. 19) that the growth rate depends

rather sensitively and roughly linearly on Ax = 2/N. This is because there

are thin layers which cannot be resolved in coarse meshes. The theore-

) . : —_ -1/ :
tical growth rate of the internal kink mode is given by TI' = § 3 (Coppi
et al. 1976). The converged values of fig. 19 verify this dependence.

The ideal MHD mode is marginally stable.

To shed some light on what may happen in such calculations, we
report on a phenomenon which occurred when we changed the boundary con-—
ditions to y = const. at the boundary,with unchanged current distribution.
The converged growth rates did not essentially change. However, the numeri-
cal errors grew substantially. Most interesting, even the qualitative be-
haviour changed at N % 24, So it seems absolutely necessary to use fine

grids and converged growth rates.

On the other hand, in high-f calculations the dependence on Ax
was weak. Typically, the growth rates only changed about five per cent

when passing from N = 32 to N = 64.

Next we analyse the influence of a viscosity term on the growth
rate. From fig. 20 we learn that there is a considerable slowing down
of the dynamics for v > 10-4. So we have to keep v as small as possible.

In many cases we were able to do without any dissipation.

For the computed equilibria with p = 5 we examined the
dependence on 9, The drastic variation apparent from fig. 21 shows
that s has to be adjusted very carefully, This is not always easy,
as becomes evident from fig. 7. Other effects may thus be masked by a

rather small variation in q, and accompanying large variation of T.

The main results concerning the linear behaviour of the resistive
internal kink mode are summarized in figs. 22 to 24. Here we have plotted

' versus the peak poloidal beta eBp = 2 B/e. The volume averaged value is



typically 0.2 times the peak value. The parameters are n_ = 10_3,

u =75, q, = 0.7 in figs.22 and n, = 10_4, u=2, q, = 0.7 in fig. 23 .
We see that high-f effects alone are destabilizing (curves € = 0, cf.
Holmes et al. 1982), while toroidal effects in themselves tend to sta-
bilize (see fig. 25, eBp fixed)., This is in contrast to the low-B

case treated by Carreras et al. (1981, see also Edery et al. 1981).
Figure 24 (qo =1.6, w=5, n, = 10_3) corresponds to the kink
ballooning mode behaviour found by Ogino et al.(1981). Now the combi-
nation of both high B and € generates a considerable stabilization
which leads to a completely stable region for moderate EBP.

The curves for € # 0 descend more and more with growing € and S. In ge-
neral, for small eBp the mode is mainly resistive (giving rise to so-
called sawtooth oscillations or internal disruptions) and becomes the
resistive internal kink mode for higher eBp. A further increase of eBp
should lead to a second stability region where the internal kink mode
is stabilized and the tearing mode character reappears as reported by
Tokuda et al. (1982). The onset of this stabilization is seen from fig.
22b, where the growth rate begins to decrease for eBp 2 3. However,

eBp - values higher than 4 are hard to obtain.

In the case treated in fig. 23 (e=1) the stable region extends from
sBp = 0.5 to eBp ~ 1.5. This stabilization is primarily due to the new
interchange terms such as j+Vp appearing in the generalized reduced

equations.

In this context we wish to comment on the case e =+ 0:
In analytical work one often treats a long, straight cylinder
with the requirement ka << 1, where k is the wave number of
the perturbation (see e.g. Rosenbluth et al. 1973). This so-
called "large aspect ratio approximation" is in principle
different from our "cylindrical" case € + o because for e#o
we always have a curved geometry. This should be kept in mind

when comparing results.
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Nonlinear Calculations

The main advantage of the approach we choose lies in
the fact that the code is able to follow the three-dimensional
nonlinear evolution of an equilibrium. This is absolutely

necessary when the modes are of finite amplitude.

As a reference example, we treat the m = 1 tearing mode

in a circular-cylinder equilibrium (see also Waddell et al. 1976).
In figs. 26a—e a time series of the mode structure is plotted

from T = 60 to T = 180. Here instead of p(1) we plot the heli-
cal flux function yY*:= | + %rz.
Figure 27 shows the temporal behaviour of the (n=1) perturbation

amplitude ¢(1)

(t) := ¢(t) - Y(t=0) and the kinetic energy, their
momentary growth rates T'(y) and T(E) and the total energy balance
testing the accuracy of the code. We now give a brief description
of the mode evolution: By T = 120 the perturbation breaks through
the plasma, generating a three-island structure. The safety factor
q is raised to a value slightly above one, having a flat profile
in the inner part. The current profile j¢(x) (plotted in fig. 28
at T = 105) changes from peaked to flat, peaks somewhat again

and so on. Up to T z 200 the mode thus oscillates several times.
The final state looks like fig. 26e and exhibits no circular
symmetry. From fig. 27 it is seen that the evolution of the mode
up to T = 50 is very similar to that in the linear case. The
growth rate F($(1)) then begins to drop below P(Ekin) and nonlinear

(1

effects become important. At T = 90 ¢ reaches its maximum

~

amplitude and then declines somewhat by T ¥ 120. At this time the

kinetic energy is largest. The mode now grows again etc.

In general, it was found that the circular-cylinder equilibria
were easier to handle than the noncircular ones. The nonlinear evo-
lution of the latter led in low B cases to full reconnection of the
magnetic field lines, leaving a large ergodic region inside the

q = 1 surface like in fig. 29.
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However, when the linear growth rates were sufficiently reduced by
coupling of high B and toroidal effects, nonlinear saturation was
observed. As an example, we consider the case € = .15 and efp = .5.

In fig. 30 the saturated island structure is revealed. Besides the

m = 1 mode, there is a contribution from m = 2 localized near the

q = 1 surface. The saturated island width is roughly one-tenth of the
minor radius. A small (m=3, n=2) mode is also visible. However, the
central region is hardly affected by the perturbation. This is clearly
a high-B effect similar to that reported by Holmes et al. (1982) in
the limit e+0. Now we are able to influence the process by varying the
aspect ratio. Qualitatively, we find that the behaviour of the n = 1
instability is almost completely determined by the plasma B. The main

toroidal effects are

- 1lengthening of the time scales as suggested by the

linear calculations,

- generation of higher - order modes via toroidal mode coupling.

The appearance of higher-order modes driven by low-m perturbations
is a common phenomenon in nonlinear and toroidal calculations. A further
example is given in figs. 31 a,b , where the parameters are € = .2 and
g8 = 2. Besides the initial (m=1, n=1) mode there are clearly contri-
buiions from (m=3, n=2) and (m=2, n=1) at T = 90. These grow fast and
overlap, and at T = 120 the outer region has already become ergodic.
This behaviour is frequently observed and indicates the importance of
the higher order modes, especially in our geometry. However, the ade-
quate numerical treatment of these modes must await the introduction

of flux coordinates.
In general, the reasons for studying these effects are evident:

The nonlinear behaviour of the (m=1, n=1) mode is generally believed
to explain the "internal disruption" in a tokamak. Ergodic regions lead
to enhanced energy transport. The interaction of magnetic islands such
as (m=2, n=1) and (m=3, n=2) is suspected of causing the "major dis-

ruptions" in tokamaks, which have to be avoided in large devices.




VI.

Conclusions

The new code, GALA, based on the generalized reduced

equations works satisfactorily:

- The relaxation procedure used to generate high-pressure

toroidal (quasi-) equilibria is quite natural and flexible.

- All known effects such as nonlinear saturation, mode coupling,
high-B behaviour, etc. are reproduced in three-dimensional

dynamical calculations.

- The combination of high-B and toroidal effects provides con-

siderable stabilization.

- Nonlinear saturation saves a high-f plasma core from re-

connection.
Nevertheless, the convergence behaviour of such codes advocates

caution and, quite generally, the numbers derived with rather

coarse meshes should not be taken too seriously.
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VII. Appendix

The reduced equations in general non-orthogonal curvilinear coordinates

(p,8) (the toroidal angle ¢ is retained):

¢

Jacobian J=Vg = Voxve-veé = = [p,6];
J:= J/e;
: ; -~ pp 2
Covariant metric coefficients g = lyp| ;
00 2
g = [ve|";
g”® = vp.ve;
Invariant quantity J {f,g):= J(f,pg,B - f,eg,p)
1
=z [£.el
PP 66
Scalar product (f£,g):=Vf « Vg = ¢g f,p 85, tg f’e 8sp

)
+ g° (f,pg,e 4 f,eg,p)

In axisymmetry, we have e.g.

By* WiL= % B;‘ﬂ =J {f,y}

o0l—

If p is a flux coordinate p(y), w,e vanishes and

m =

By YE=-J, f,q

In general, our equations then sound

L I - B
¥ ¢,¢ + JR7{U,y} + eR” (U, x,¢) (1)
{%? = JR2{U,w} + JRZ{A*¢,¢} + (1-8p) A*¢,¢ +
(2)
8 .3 . 2 %
+ 2 . JR {x,p} + Bp,¢A ¥ B(p,¢,¢) + eR7(A w,x,¢)
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%E = JRZ{U,p} + 2eypJR{U, x} 3"
* *

A ¢ =- (1-8p) AU + B(p,U) 4")
A,U = ";%2 (6")
with

% pp 66 pb

£ = T e L
. 5 Pp B 86 & PO

+

2 pp pb
JR f,p((f%;r),p + (%%;r),e)

2 pB 66
IRE, ((Be), + (B, )

+

po 06 )

* 2 6
Af+ 2 (U,p(gppR,p + g° R’e) + U,e(g R,p + g R,e

=3
[
Fh
I
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Figure Captions:

Fig. 1 Mean number of iterations k versus accuracy &
for the solution of the Laplace-like equations using the

Buneman algorithm.

Fig. 2-4 Contour plot of poloidal flux y, current density Rj¢ and
pressure p; vector plot of the flow pattern v, and 3-D
plot of j¢ for the parameters given in the lower left

corner. B stands for g, wM is the maximum of Yy, etc.

Fig. 5 Safety factor q for the peaked (upper curve) and the

broadened (lower curve) profile (case ¢ = B = 0.)

Fig. 6 Shift of the g-profile due to toroidal and high-B effects.

The parameters are B = 1. and € = .2.

Fig. 7 Dependence of q0(= q on axis) on j0 and resistivity for

u=5,¢e=8=0.).

Fig. 8+9 Growth rates of the n = 1 component of the flux per-

(1)

turbation V¥ and the kinetic energy (dashed line).
In fig. 8 an unstable case is considered, whereas in

fig. 9 the equilibrium is stable.

(1) 1y (1) (1)

Fig. 10 Perturbations v 3 Rj¢ s P and v, for a pure

(m =1, n = 1) mode. The parameters are listed to the right.

Fig. 11-13 Field line tracing at times T = 50, 100 and 150.

Fig. 14 Corresponding plot of the perturbations. The change in the

mode structure is due to toroidal effects.
Fig. 15a,b High-8 mode structure at ¢ = 0°and ¢ = 90°.
Fig. 16 Mode structure for 9. ® 1.

Fig. 17 Field line tracing corresponding to fig. 16.

Dominant modes are (m=2, n=1) and (m=3, n=2).
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Pure (m=2, n=1) mode,

Convergence behaviour of the linearized version

of the code. The poloidal mesh was given by N = 16,32
and 64 with various 1, = values as indicated. Figure
19b differs from fig. 19a by changing the equilibrium

boundary conditions.
Influence of a viscosity term on T.

Dependence of T on q, for a peaked profile and fixed

resistivity.

Linear growth rates versus peak poloidal B. Parameters
are q_ = 0.7, n_ = 102 in fig. 22 and n, = 10™% in fig. 23.
In fig. 22b the value of <58p> is derived from volume

averaging.
Same as fig. 22 for q. = 1oaBie
Dependence of T on & for fixed B .

Nonlinear time evolution of a circular-cylinder equilibrium

till T = 200.

Amplitudes and growth rates corresponding to figs. 26.
The third plot demonstrates total energy conservation.

Toroidal current profile at time T = 105.

Nonlinear evolution of a low-B computed equilibrium

leading to full reconnection inside the g=1 surface.

Saturated state of a high B toroidal equilibrium with

€ = .15 and eB = .5
P

Simultaneous development of (m=1, n=1), (m=3, n=2)

and (m=2, n=1) modes in a high-f equilibrium.



bk
4 5 '/
+4

+3

12 -t

4 1

1. 5. 10,

 _d
- lo‘yJ




/
/
\

__//\

.———SE%{
. . = N
0 \ ] \

@ o= o &3
- - - 1 ’

¢ / ] 7/

-
-

L4
-
-
-
-
~

~

’M\:\\M
& ""“‘“‘-l//

\ !
\ - ) \ ' ] v - & / 1
\ ) i
\ \ § \ - - ] ' ¥ - - /7 ; / H ‘}}
\ NN . 7 / 'l ™
o [T My 1y
LR N & & / ;g!{,',l;'n',',',l'n},}m.," i
\ s I3 / ..{.'lll.,,',"l'h,',',l'm,#'; Iij;
\ Y RN Y o S -— / m{{s{{{ﬂ""'lf""i”'l’l’?‘"l‘l‘]}.-
S e EOFEF T TN T N R Y \\\\\{{{{Q{{'{{{ﬂl’f,‘.’{l==
J S L s = \\\\\{{{\“=‘==
e > \\\"
L o o
o — M O
o O Cl) O
{0 I Y (R T B Y | .
x o O O N C
O © n N .
2% e N I b
* . . . ol
O D O O my
O T R .
z z p x
> D 2o PR
o o O
' W o
L
S QO O o o M O
o — O O o o N 0'3
N O O OO0 C g o
N . * @ * . * * 0 * CD
m o o - o o o Wh - ? 1p]
] I ™
I n o ono >
1l + . % 8_ 1
o o
> 7 W g o 2 o= 8 > Y




0000° 00c = L

rr ot !
/

/

!

!

!

t

\

5

.

NN -

/
1
!
{
!
t
1
\
RN
-—
\\*-.--._.__‘:7

/
!
!
!
!
I
|
!
t
!
t
\

'
1
f
!
f
I
f
!
!
1
1
!

\

Vv vy
X
\
!
1
f
!

Y & x X

\\*-..-\\\ Nt /////(
\
i
i
\
|
I
!
]
f
]
!

d
T e o . B .

-—-——-———-—-““““““‘“m\“m.h-am\mqm.h ¢ 934 20-3169° 0=[A°d]
ﬁl’..--—--——-—--.-ﬂ..“% S0-30v8°0 = WNS
////,Zn..--—-—-—“-“-ﬂ“m“m\\\\“\m\@@m 000°s = %4
/z,’: -————-—- gases \_.‘V\N\\WWW 20-3001°0 = %o
\__.-m. s = 1 20-3001°0 = U
€0-3001°0 = &
00 3e12°0 = "4 0001 =4
€0-30¥£°0 = "n 010°0 = } V
10 3s6z 0 = "p 002°0 = 3
r 00 38Sk°0 = "4 2E =N

e A ry

v

.




-
-
~

-

— ot o e e - e
- -
.

-

-

~
-
’
[
[
.
.

e

0.
o = N O
o O C|) o
RN
o M~ © — n =5
n <+ <+ .
. * * * ” (o]
o O O O L:
T (T [ 1 .
b x xr b
2 D D 0
n <+ " N
e O O 0 O O
| | | | | o
Ll Ll Ll ! W <
o O 0O O O O o M~ u o
o o= O 0 8 O O v e *
0 ¢ 'Y * * * ° “ . . (o)}
- O o — O O O In o ? —
Il I ; ; I r-:;
I 1 1
1 I + I > -
o o o I Q.
Z W g P = & > O




19




49

o'

I



Fig. 7




o
—O
N
T
L L
— p— -
wwm o
oM @
. 9
o O i
I n
o
— 0N
L
- 4+
0
L
e 0
3 o
L x4
b
4 | o
I
L
NN .
2 Ll “a. s
SN *
— J
P
_||k|._..——~—u_..——u__._—__-—-_u_h__-_0 L
(=] Te} o wn o n (=]
¢ H 4 = = g @
o o o o o o o




10 32810
g0 3120
c0 3821°0
00 3581°0

0000° 001
000" 0
gool-o
008°c
0-30071 "¢
cl-3001%0
0°0

goo* 0
0S0° 0
000" 0
IE

id

.....

Ird




. ? P P
OS = 1‘ I=03'€SS00gE3 “SNY0L
= e e s e s o § i &
- L eam see L.
© -, -
l‘ Lo L LI "
e el ‘314
- T T LT e T - Ll T
. asrs e 0 LRETTRL " NP -
' e e Ly RIS L
. o o ' ooy Pt N kg
- lllI- Y ll
, Lo P .....'...... -
\.- .u...\ - -o...o..o...;.... IFTETIE TN ......”- - -.-MI
’ . Lot it -
¢ P o et et N
X} K i i
[ \\. ..... 9 °0.- - .J/
¥ . 4 vt fo, " AR
L .‘... . F— L) N
O o papenere et *tene,, | " . l’
. e o -t L % ),
q. .....s 3 \..\.ﬂn\.ni\- 4 S, .... - b)Y
]
. f
. _-...
. “
i h
Z H i
. "
. . 0 !
: i i
. x H
: P s o
g 4 Y
i H
: i -
-
. . i : .
LE Aekesie 6€
T " - - _
. 2w
y : '
. ot
[l "o, =
4 . e gy =
Y 5 " et 4 remman oo
' S s,
. e B L T .
1 .—a..- . .... =.-...........|.ﬂ|......|nl..w..l...\.
. ./... o
. oo
.. /... 5t
3 . i
» ntl -
[ Tt .
* e L i
9 e ot . s\...\. \--
" o ean e .
/O = IHd s o i
= . ot
- . . . i .- - B ..
o g T
f.-tlll..-.....o..r.!ltuo-n-.-O
Z1lO7 S P gves3y
01




T SR

LT

LR TR

st LV A

MALLITTTA,
* et i,

-t .

Ve

"y

‘001~ L 1=03‘€SS00ge3 SN0l

2L 314

i
i
: : FoAi H % -
- M m... [- ) ¢ . mn
1.9 - ors |, e -
" ; : i C ;1 i
: i i : i
d S F G i .w i
. s v \ ..
i Ly . A\ *
.. : “ \ | "...
. % N . b
. % . o _ ;
. ‘n" / . . I.J.f -~ \\..\S ( i
. f/ . e o :
. ...-.. .. e G . /#”. M.. .1 ...tn!ll.!l\?u..n-. =
L = . . iy e
nu [
-- o
: . T9 O gk L
: o g
h o e SRSV RI RIS PR Rl e
v /O = IHd e,

Z1071 SA

071

LyeSd




05T~ L

1=3E€SS00gET ‘S0l

clL *3tg

y "
4 .
P@..o@cl
: \
o \
; '
;e '
i b
. T \
! ¢ e f R
A . * |
1. 3 ¢ / b . . |
4 i 7 i )
Y R\ R : .
1°9 SRS MR i leg _ 66
: : ; T : 83C
[N i # H g
- . P \\ \ ; :
i i fn“/l.\ k4 H '
. % v
L J '
. / _
2" ¥ s prs
., ) oy cagemn T 7
LA - ’
\
~
-~
-

-

01

8vyes3d




I
00 J4€9°0
§ L= L~ O
10 3d8€2° 0
10-3525° 0

0000 0S1
000" 0
gool*o
000°S
20-32001"0
2c0-3001°0
€0-3001°0
0S0° 0
020°0
0oe" 0

B

1l
o

ct

Il

I
W

0
=

:

L

-3

T

d

Id

P P et e oy my oy

4 e e e = %

P il ey i vy i, m w, % B w =

\.\\\.\\.\\\\s\\l

f

\

.

-~

S e ———— N

'
s
'

p/f...

- ~ '-r-ll-l|.‘|l.‘ll..0|l PR o P

-

\\

x\\\\

l....ol.l...lunl..r

N

- W Tel e, A S

it e \,

\ U)'// ...nll\\V\\ ’

N ey e S 2y PR |

- \l!l-l.'ll'\l.l'.rrl.l. ~ v

2 7
/// '

- e e e

..,,,/
\\\\

N S, S = e

L

“IA

~

5\




\-\\\.ﬁ...ll'.l'l..ﬂlr.ﬂ.ff/ ! ——— /.ﬁ>
\ ”\N|FIVJV/V/V//h - \ W i

20 3Fee* = "id . -
Voo NN\ ;

- _ W i \
10 JovzT0 = MiIn NN AN
r o (ENCNRARA I B . i
€0 3se2°c = "Ir oo \\\,\ﬁ,/u ’h
™ ™ ~
10 3486°0 = "14 N — —_— S
\l.ll\..lllll.lnol.llu|||cllllll..r.lll ] \\l-lv-
st i & ek %
S - [
00007001 = 1 [ 1 L1 /7
/707 \\\\\\\/ )
000°0 = ¢ \/\,mu\\\\\\r\\\.
S 4P i .
0001°0 = °l& //rii\\ g ~'r 7
.rlr.r.l.‘.\..“lﬂ‘-\“\t ,lr.llJ.l.lli.\\\.\ .
. _ 0
000°s = °r o
20-3001°0 = %
20-3001°0 = °Ul
0°0 = A\
000° 1 = §

0S0"0 = 1+ V

000 0 = 3
PA = W
2= zE = N




N N il m ot NJ
Ll Lud ] -’ L Ll Ll Ld Lud
| & o O o O (o] ) O (&) w OJ =t =
o 1p] o = o O O (o] ¢ - N QO ¥
o o o (=] v i o ~ . o @® N m m
o Qo . . . ° . ° . . (=) (= . . 0 .
m m o o - o o (e ip] O o)) =t o (o) o (] —
I Il 1} 1 1 I
I I 0 I I
I Il : 1] (= 1] 1l x x x p 2 Il
o o o -l — - -— i
Z ¥ W g e 2 o= 8 T 5> e 5> o D 0o E
0
be
.
(5.1
o 8 i
- 7 //—-":——-H—hw_\\ -
o \: It + - - . SNy ) 1 of ~
/ \ AU Y A - - N Vo / v, \
N TR
NN £Ad e
e A A
~ \\‘\‘-.-o—-.-.—..._...__.'_.// / P
i \ N o e e e e e ~ / -
' N ow — b e dm e = = / '
1 [ > - - - - - . N , f
\ |
\ \ 7 7 e N m e e e ey /l
\ \_...//.—a._---—a-—--_..,.._‘\_./ r
N S R et T N
Y . . ~ \‘-.‘-.-‘—.....____./ - P . '
9“ - - - - - P - - - - ->




10 3Ly

00 3#99
¢0 30ES
10 3JETI

00co° o

oogo-°
0001 *
00s”
&0=3001 "
eg=3001%°
€0-3001°
00s”
020’
00e”

I
0
"0
“0
"0

0c

m o o o o o o N o O

=i

ek

|

li
< o =2

I
Z X

</ ]
-

— g

/ TN ——
.

\.a!.\l!lll-ll\.‘ll‘ll ~

\..\\\l\.......,//

N e
\Vlw/r/r/r/.
RIS
{2y SN\
7.{,;:

|
!

/

b

1

<N\

AU B B

n.TII../. Y

e

+ %

4

/
}

N\

§ = 7 %
S S T S

-..,,-“"'.-

—

\
— F

R T N

*.---b‘-/

e

NSNS T TS T -7

|

e @ B P mP el - m m gem g wm m W™

1A

L] - - - - .

. . " % = e = .

Th




e

IHd

Z1071  SA

‘00Z = 1°Z1=-03‘€550823 ‘S0l

- . - >
s & - "L nV!ll ’ ) -
e NPT 2 il
- P~
. . P . \‘l - Ci g .
L. F g M T B e " . i .
i e i ‘e
. . - 3 ' \ h i
. i LY
*a
Lo At
. " a.’. = = et =0 bl Rt A, fa,,
e Too-
i . N "
. .u... e et = T2
. . v |.t : . et b ﬁlnol - -..-.
. . ) - s
v ’ v N —J.
W8 1\- - SoReE pes w0 i B bl T ......A‘n..
- -.. = T - l:': e
.. " . . . N - ’lq.l ",
; G e ————
ﬂ. . \ul\\ I!l.l.-l s
f T / o P e .
a .- 3 s . 7 \\“...- ML LE LY TN lto...rln. l.[. .f
% . PO » P ol L P, 1N
Y E Y gy b e ebe. % W%
.« ¥ \s-| ey / '
e Y " [
i i . p | B v k ...w -—
- : s 1 .
. 196 |, S i
T t X . :
Sa R LB R 4 ‘o } ]
FI t. @ L A ;
VR % /_o. < y
”. 2 . \ d/.l ‘00 3
H oy [ L NN ol h.
. 2o Y “ e PL 4
e 4 - g ee® o _\
S ®tageans*® -
N . S e \\ \\
-.‘.-
. /- -.ll-l.-.l.llll‘-....\\ \-\
' e e
s - -
\. ®a » ‘.\
. * S e s o P
-
. % s
A LT+
g W et - ﬁ\ -
L] ....\ T ma l.’? | e
¥ et e ey atamme -
L.
. . Lo ™ sy : "
. Y] - *sq. T * .
‘..(. P— e ..tltsm (@t—nt.‘ i
. L)
.o e " N .
. g C e s i ML e’
” . i.lf.‘ll . . —-. i » i L] » Ll .
ﬁ- e . & . vooe
~. LS ’
. N toe T
; T A ’
. : »
. -..-.bll-o e fast e .
. .
07

LZZS3H




v0-3ddce” 0
¥0--348%° 0
10-3Fe6% "0

£0=348E" 0

0000° 1
000° 0
o001 "0
oce" 1
0°0
0°0
0°C
000°0
001°0
000° G

i

il

It

li

li
<] x 2

I
w

"
zZ

Gl

*314

Id

B e el R e vy M
o~ /,/ \ A i _w %
\\‘\f// \\\/./,

\ ,// \\.)/,

~ N\

k r \ \ N
,/// \/ Il h
VN N\ W e A G
/I..IJ.../I..IT'IRT\.\\/ L\\W\)\.\\
\\-\\\\\.\1 lr...r.....rrrla........
P/ \\\\\\. f!//;/ / \
ﬁ\\: ( RN A
RN ,,,3.,
,/// \M?
v N\ \1\\
N \ //H\\\
\\u\_\//rlrr 5

T




Zg - xv

4
|
_
_

g



¢ XV ¥
| _ ! |
| _ |
| | _
| | |
| | H
| |
: “
| ]
i _ |
_ ﬂ
| _ _
_ |
| | [ S0
| |
| |
_ |
| |
Qv |
¢ I
Qv _
’\
Qv _ ¢
m\
LAY
4
0 aq 6, *3Td

JVy



Ok}

.01 ]

19072

Fig.

20




s r

.05

.01 ]

——
>y

Fig. 21




L

...
<%f2>

J Y

\so

QQ@

4

—150°

J v



%/3

.
—

"2

J v

lso

LQ\w

\l 5o

av



...,--

. %’“.f

Ul

25

Fig.



g 30010 =

20~-330e"0 =

Ud 350 =

il

il 75

"1

20-304F°0 = "14

0000° 09
000" 0

60610 = %1a

0L ¢
c0-3001°0
20-3001°0
0°0

000" 0

gl g =

000° G
el




I
10 3001°0
20-3815° 0
00 IP¥E"O
c0-3v84° C

0000°SL
00GC" 0
oool~0
AL
20-3001°0
e 0=300U1 " 0
0" 0

000" 0
gi0° 0
000" 0

el

li

IA
Wiy 9 S
..\\\\\\\\l‘ e v e e
1N _.\\\\ﬁ.x/;r//_.ﬁ
_..,_ﬁj ..\\/.-!.Illlll...l. — v
.a/ !!!!! T — .1../ /...
- SNy A S
\\Ir?.\\\iﬂ/\_\ o
. T
- NN T o,
N ////WJWI\\i L
H& ...ll.lrf.l-nl\‘\\\\\..
AT DT
_ 0
- o LA
Hoe
= @
= i
= 3
1V
= 3
= W
= N




!
[0 300170
20-39S8° 0
00 326¥°0
t0=312t ™0

0000~ 06
000° 0

0001°0

QLe*e
20=3001°0
20-3001L*0

0°0

0000

010°0

000°0
El

2= v9




1 w

10 30010 = "1d
to-3szi-o0 = "In
00 3929°0 = "Ir
10-3t¥1°0 = "4

0000° S0l = §
000°0 = ¢

0001°0 = ‘14

o2z ="r
20-3001°0 = %o
z2o0-3001°0 = °U
0°0 = 0N

000°0 e

010°0 =1V

000°0 = 3

el =W

2= 1 v9 = N




10 3001

1 0=3&<21

U@ 3818~

10-3402°

0000"0

000°
o001
Uig”
el=3001"

20-3001 "

"0
"0
g

0

=

0

I

1

I




-

I'I'IIIIIlrll_rl'rllTilllllll!!.'l

A=15448
+ /38

rl_'l_'l'l

0~ 3J0EL “ 0~
SU~3S0L" O

(I d
() d

Cre
0 2- Le 314
O =
G0
]
0Qe 09, oei s [0]2 0
m 1 _ 1 —r 1 _ 1 _ 1 — L — — 1 _ L _ i m'
"
]
B
¢
ks
!
It
|¢|
INI
— 0
01 L
—- 2
szm_ moa
A#HCVH_H mwoa
51 - F




)

-0° ¢




LOTZ

VS
PHI

RESB97

e ———

20a

".
.0
5
- .
E
% 5N
3 H
2 . :
' .' l! .
: 1 - -
. S
. . : !
b -, '
F 3 - |
. o % g
- H :
| B : ,
f ' !
wi = - -
]"r\} R S
S <1 . :
o Y:¢ i o= —
. ' : : . 1
= i kB T
1 ' | E I
. 2 3 ¢ s :
- : . ; s .
oL Lo T
<N L
5 Y N ;
. : -' « F 5 o
i Vi | 4 .
s 4 [ : .
: .
' .I .‘: . .
I :
LA j B
I . _ ,
H % '
s 4 . I
: E L s 3
. - . ; ;
: B . :
* -. . :
LY " ‘ !
1 .
L] kY . .
- L] " P . Ve e et L, I
\ . - Mg w sty ER e e A..
\-.\ T LR T ot L, [ ”.“_._'_____... ”
i R B I T T AR
. See Sorm: G e ab o
.".,_ T mm ome m sap s ass s RN
’ ’ R - = - te . " a et ey ..
2 o
15 =

=5, T

EOBOS3 ED




1’9

LT

i

02k=1"5=03 £50803

q6e *314

/0 = THd

Z1077  SA

. mpm

[9°0

R bl

)

-
o

.

869534




T=03 £55dS13

o¢ *3T1d

e e e
-~
- ~ 5
- ’ Ay . g
- = - .
\» P % i, 2 -
oy . a - . . ..
- . ~
3 F o o : 9°0-" " '
*: o Y .
: o] IR S s ey - l{l..r . h
P . [ e e ~a, h *
. , a .
] i e - £ .
. R ~-d o 3 :
2, .t 3 — b "% Y ks A\
e G i . a..J ' "
i e e N
- = - N Y 3
’ A - " .
: R R — Y
! . - e . % P i
i s i P ~, b " A ¢
i - ; ~ N, y N\ ..- ' .
. & 7 g . u Y ... = . i
i : o - - Ay \ 3 :
t ) g .If/ k. ae - § 1 . t
2 . U ;] f ~ N \ ' . \
¥ ¢ v 5 v [ . A . 3
. i . 2 L s . ] L ; )
. ‘ H b [} 4 4 '
5 : : : 1 1 i
i . ' . N _ H : i H .
. i : Lney 04 iy i1.g ! . a's
m_ L - 3 ' *w. h ' LI H ¢ & th, & i }
T 1 LRI w ] u. [ i N : : ,
: . : 5. & 8 R " : ; 1
. . . . ] N
: . ; Y 5 g ’ . : : f
L ) v . [ : f h H :
. oot ¢ . by H .
g 1 S Y § I . = . . .
' 1 A ,..d # J : .... ? z : ..
. .o - - T EA s ;s i :
S ¥ k e o e 4 - & T { 5
i . hY v o 5 P ' i
. N g P - \\. £ 4 : ;
. .. o - # a
L . . o e e as meut v 5 K
- - ../ Rl g i o 7 \.\ i .
. . -~ - - i s
e ~ . * -.-\.\ r K ‘__
% T -. g l-- .t\\ \.1. K
4 R ICT PR T I o a
-~ * Heg g
% et - . o h
s K hJ Bt Y —— R s i
. - -, S - s
’ - . LY Tq-o e -7 .
-~ L) H
i L Ta .
"u h S Y -
- . = * - e me . . - e ” \\. :
‘. R -
- s
/0 IHd ¥ gy SRS

Z1071 SA

18953




06 ¢

1=-3¥ES1923 “SNH0L

e "I

.
- .
" ..
. s e
. » )
] a
» -
4 " af.. R
» \-. . ..-. .
. - i . LN
u. . - . ~-
[ . L , wesman s cimas . . y % .
. . e e B RS g By RN S . .
. ) - P e ., b - " _/ “ -
. . . . i - e ee e, ‘. N, e -.r ‘
. L St - . i . .
. 2: i \.l\ . % o
by L] S K e P R L s, / . »
= o % s - g BOR 08090 . et .- _
by . ... K P ‘e o . .
: ' ’ \a. £t LY b2 s ! :
= 5 i g * . -
ao d gr JP S T e, N\ A O
R : R b %, A 3 -
I .\..J,, ST
s wig ¥ .o. . R . 4
H o Y L L Ly
Lyt " Y ot s N Y
LI Do ) ' \ v 1o
.- T % 8 Voo i
LN R . L a Lo t s da
: R | H < . 1 : - : .
: 8 - . :
.Hnm N s OO B wn : S o um ° i ..vne.- : m“ﬂ
o : * . : ] .
MR IS HERE Dl
e g P | i i . ¥ .
R T | L T } i s ', : 3
. i g w8 i I Y H
1t o ‘4 I | ! ! !,
[ . . 1 3 . E 4 1 ; 3 S
t + T . ! ] . i ¥ S .
[EIE S | w v R L. S [ I ¥ 4 2
g : . 2 . /._UI o~ S [ / / F o, A .
[} . . .. - e S \\ ! % M 2 I
1 . ", o % WX kU P Pe s.. = S . .
0y L Ty N AT E W . < ¢ - & I
. e 4 N, . LI 0 & ¥ - £ i
£ [ LA LS ., %, o A e >
: T R w - I ‘. .7 o ’
oy $ L ¥ - .. - T e . L - 0
. L Bl M ., - " eem @ - o - Fd &y K §
O Yo T L T R 3 o P 2 H
% = e, -, . . - H
. . i S i o \.\ .\. o .M
5 - " B o L " £ "
S J O T o . H
' NS T e e - o ¢ o ’
. % e a9 A ¢z
. W fa e S . ’ g 4
\ . e ] \.\ ) " . u. c\
L e, S .w.;o . o : .
. . e, s PR ] E
D - "ee I T R T R ¢ i 7 E
i o— T e vnia e smew ¥ vt -
., Y Pe o @ aas e ™ it
/0 = IHd * R
"% .~ w e " -
- = * e ™
fre . . e R °

Z107 SA

0°1

88Ys3y




. ' .
S | i T
B . .. “ * u.
vt a5 b ‘
o .l- .
\lh“
- "
o Ay
. T
o~ - as it
-

s A

e qv

=1¢ 1=03‘7€S7623 ‘SNA0L

ak¢ "91d

6,'E

-

P

4.- -—
- - .
B i
3 -
{ / ..
-Fuo 3
_\(l. - i
el e e
“lln‘ -
- -

01

o ..‘,




