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Abstract

Various guiding-center drift theories are presented that are optimized in
respect of consistency. They satisfy exact energy conservation theorems
(in time-independent fields), Liouville’s theorems, and appropriate power
balance equations. A theoretical framework is given that allows direct
and exact derivation of associated drift-kinetic equations from the respec-
tive guiding-center drift-orbit theories. These drift-kinetic equations are
listed. Northrop’s non-optimized theory is discussed for reference, and

internal consistency relations of G.C. drift theories are presented.
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1. Introduction

When guiding-center drift theories [i.e. theories with E= 0(g) J
or guiding center theories Li.e. theories with E; = 0(1), .E": O(E)J
are derived from non-relativistic particle mechanics by an expansion
in the small parameter € and gyro-averaging (see Appendix A and
Refs. [l, 3 4J ) the following situation obtains. The particle
motion in an electromagnetic field is described by six independent
first-order equations of motion, but several dependent equations are
equally important (see below) because they express certain internal
relations and symmetries. When g -expansion and truncation are
performed, the dependent relations are usually lost as exact equations
if appropriate precautions are not taken (see Sec. 3). This leads to
a mutilated type of G.C. orbit theories that are, moreover, unsuitable

as a basis of rational G.C. kinetic theories (see Secs. 2, 3, and 7).

In this paper optimized guiding-center drift theories are presented,
i.e. ones that have most of the symmetry relations exactly preserved.
The advantages of such theories will be shown; in particular, they
allow the exact and direct derivation of associated G.C. drift-kinetic
equations from G.C. drift mechanics (see Sec. 2). The first advance
in this direction was made by Boozer [2] ; but a real breakthrough
was accomplished by Littlejohn [3, 4] . These two authors focus

their attention on the G.C. energy conservation theorem (in time-




-independent fields) and on Liouville’s theorem. These two theorems

are in fact indispensable for constructing rational G.C. drift-kinetic
theories in which equilibrium distribution functions assume a simple

form (see Sec. 2). Littlejohn [41 mentioned another point in favor
of Liouville’s theorem, viz. that its validity excludes the occurrence
of limit cycles and strange attractors, in agreement with Hamiltonian

particle dynamics.

If conservation of energy is also to hold for the drift-kinetic G.C.

plasma, i.e. for the corresponding continuous system in phase space,

then an exact power balance equation (of an appropriate form) for

single G.C. particles must be satisfied. It has the following form

(see Sec. 2 and Appendix B):

. 1w 9B
W, = dtw = eEy - pemE (1.1)

where WR is the G.C. kinetic energy, e.g. to lowest order in € ,

WK = -12“—-\/,,2 —I~/AB ) (1.2)

/,L is the vectorial magnetic moment, /u is the scalar magnetic moment,
~

:{'is the G.C. velocity (without the gyration), and vy is the "parallel"
component of V. (For more details see Secs. 2, 3 and Appendix B).
Equation (1.1) implies energy conservation of single G.C. particles

in time-independent fields and, at the same time, conservation of total
energy of a system consisting of a G.C. plasma and its electro-

magnetic fields (see Sec. 2).



In special systems, with appropriate spatial symmetries, canonical
momenta are also conserved, and exact preservation of these conservation
theorems in G.C. drift theories may be desired. This question will not
be considered here. Another important symmetry, Galilei invariance,
can be artificially postulated for non-relativistic mechanics of charged
particles. It is an interesting question whether this symmetry can be
preserved when constructing a G.C. drift theory; but, again, considera-
tion of this would exceed the scope of this investigation. The optimized
G.C. theories and G.C. drift theories presented in the literature

[2, 3; 4] and in this paper are not Galilei invariant. It may well be
that formal restrictions exist which forbid the existence of optimized

Galilei-invariant G.C. theories and G.C. drift theories.

The following three categories are important for classifying "derived
g P ying

theories" that are approximations of more accurate "generating theories".

1. "Accuracy" describes the degree of agreement between the derived
theory and the generating theory, e.g. expressed by the truncation

order in € .

2. "Intrinsic symmetry" (or "intrinsic consistency") indicates the

availability of exact integrals, conservation theorems, and other

symmefries.

3. "Extrinsic consistency" describes what symmetry properties of the

generating theory are preserved by a derived theory. This category

must be distinguished from category 1.



In order to visualize these categories, one may pick relativistic
mechanics and non-relativistic mechanics as generating and derived
theories, respectively, with € = V/c. In this paper the categories
refer to non-relativistic mechanics (generating) and G.C. drift-orbit
theories (derived). We shall focus our attention on categories 2

and 3, which are usually not properly taken into account. The term
"exact", e.g. in "exact energy conservation" and the like, will be

used in the sense of category 2.

Section 2 gives the theoretical framework that allows direct and

exact derivation of associated drift-kinetic equations from the respective
G.C. drift-orbit theories. Sections 3 through 6 document individual
G.C. drift theories. Section 7 presents the internal consistency
relations of G.C. drift theories. In particular, G.C. theories that
take only E x B drifts into account are critically examined. Section 8
presents the conclusions. Appendix A explains the drift ordering,
Appendix B derives the G.C. power balance equation, and Appendix C
derives the leading-order expression for the "effective current density"

of a G.C. component,

Throughout the paper Gaussian cgs units will be used so that Maxwell’s

equations have the form

P L VUxE

9t ~

QE -
36 = <V E g

(1.3)

(1.4)



V'E “-:O,
V'E = ('ALTS,

and the Lorentz force is given by

m¥ = o(E+L1V2B),

with the gyro-frequency defined by Jl= eB/mc.



2. Drift-kinetic theories from guiding-center drift mechanics

It is preferable to derive G.C. drift-kinetic equations direct from the

G.C. equations of motion (rather than by expansion of particle kinetic

equations) because then the G.C. orbits are exact characteristics of

the resulting drift-kinetic equations. This is a special application of

the general principle that theories with exact symmetries and exact

internal consistency relations are more valuable than others where such

relations are absent. We give here a theoretical framework that permits

constructing drift-kinetic equations from G. C. orbits (in G.C. phase

space), including such cases where a Liouville’s theorem is not available.

Consider a 5-dimensional G.C. phase space with coordinates o, (i =1 to 7

Later on the X, will be specialized to become {occj — {h}f’ V;l ’/J.} )
where X is the G.C. position, vy is the G.C. velocity component
parallel foﬁ at the G.C. position, cmd/.g is the (lowest-order) magnetic

moment (see Sec. 3). The volume element in G.C. phase space shall be

defined as
de = J(«;,t) Mda, = T de, .1
i.e. with

dr, = 1 de . 2.2)

[}

1

The collisionless G.C. drift-kinetic equation (DKE) follows from the

requirement that the number




f de e

of guiding centers in the co-moving volume element dr be constant

in time, viz.

-il—({ dr) - 0. 2.4)

Here

d 3 . 9
T =3 * 2 %5

is the total time derivative in phase space, and o¢ E /Jt is

(2.5)

]

the total time derivative of & . One has, of course, 'Boc;, /‘at = 0/

-ao({ /Bxg = <S:J' ( cg;i = Kronecker symbol). The quantities c;(;’

are functions of time and "phase", i.e.

“t" = d'l: (f, «1 r e “5.) ). (2.50)

see Secs. 3 through 6. By using the relation [5_]

d 95t 4 dJ
"It—‘(clt) —_-{2 T T ' ] dt (2.6)

eq. (2.4) can be transformed to yield

_:l%_ -+ Sﬁ = Oy (2.7)

with S defined by

d O ; 1 dT
ok det- TR+ L

Equation (2.7) is the collisionless drift-kinetic equation. The quantity

S vanishes identically when Liouville’s theorem applies with respect to

the chosen Cl't' (or I). The left-hand side of the DKE is then a total
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time derivative in phase space, whence f = const along phase space
trajectories. If Sz 0, then f varies along phase space trajectories.

It is important to note that egs. (2.7), (2.8) can be transformed to

w @)+ 7 ag (874 =0,

as an alternative form of the DKE, and S can be written in the form

s= #{F %),

<
as an alternative to eq. (2.8). The form of eq. (2.9) is the same
whether Liouville’s theorem is satisfied (S= 0) or not (S$ 0). In
the form of eq. (2.9) the DKE is better adopted for forming moments
to obtain the equation of continuity, etc., while eq. (2.7) is more

suitable for obtaining solutions for the distribution function f.

In order to derive the equation of continuity, we specialize

{“L} -5 {’}S' ) \,;l ,)J. E p SE..V.. The phase space volume

element is factored thus:

dt = Ch.'x' d'Cv )

with dt, = &'y and dr, = T dy, 0\)1 . In addition,

one defines the G.C. density

m;.‘J'jﬂ de, =

T E—:ji:' / de,, ij ;ﬁ dv, du .

Sy
Q...'
e
L
-~
Gl
e =

(2:9)

(2.10)

(2.11)

(2.12)

(2.12aq)
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Here the ranges of integration are =@ & V€ @ and 0 € M < o0,

By multiplying eq. (2.9) by (i\/u d}l and integrating over (Vu ’).L)

space one obtains

?&*vr""jd/"j’d“'av, : Tf) (2.13)

where)k:O has been used. The i integral vanishes whenever

(\.’ujg ) goes to zero for V" —> * 0 , which leaves one with

the equation of continuity.

The G.C. drift fluid described by eqgs. (2.7) and (2.9) also satisfies

an exact energy theorem if the guiding centers obey an exact power

balance equation of an appropriate form, viz. (see Appendix B)

©_ dWe [35
WK:TL_’EH = -QE'X "/U"""— (2.14)

where Wk is the kinetic energy of a G.C., defined as

I

WK = 2 'f'/AB (2.15)

.
and A{, —/.k,?r [fy B/BJ is the vectorial magnetic

moment of a G.C. Equation (2.14) implies that the total energy of

a G.C. is conserved in stationary fields, viz.
m | ,2 —
w-—_—__.' QCP + T \/“ - /AE = COHSt) (2.16)

where qu = « E . One should note that the exact G.C. velocity

-~

A
Vv (not merely v“g) must be used in eq. (2.14) in order to obtain

eq. (2.16). Exact energy conservation and validity of a Liouville’s
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theorem (see below) are both necessary conditions for expressing
equilibrium distribution functions ﬁo solely by constants of the motion.
In fact, any normalizable ¥° (W‘ }1) is then an equilibrium distribution
function, while <Fo (}A) is not normalizable and therefore not a
distribution function at all. (It yields infinite moments, e.g. infinite

densities owing to the i integration).

If eq. (2.9) is multiplied by WK olV" o‘}* and integrated over
{V“ | }1} space, the following exact energy theorem for the G.C.

fluid follows:

—:g—%—-fv-f = E-(ef[ +cV¥M),

Here

d= W D de, = fW TP dy du

is the kinetic energy density, and

F = F, +cﬂf‘:(>r’Ev

~ Lo

is the effective energy flux, with the definitions

Fo= [y Wefdn = [yWe 7 dy dp,

~4

M zgkﬁd'tv z\“{ Tg dv, du,

the latter being the magnetic moment density. The bracket on the
r.h.s. of eq. (2.17) must be identified with the effective electric

current density(jeFF of a single G.C. fluid, viz.
i~

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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L# = e£ + cvv’f‘j. (2.17a)

This is necessary for establishing a conservation theorem of total energy,
including field energy (see below). It is shown in Appendix C that
eq. (2.17a) agrees to leading order in € with the true current density
of a charged-particle plasma component. The G.C. energy flux density
must be identified with F rather than Fy an. (2.]9)] in order to

Lo
make eq. (2.17) compatible with Maxwell’s equations (see below).
The term ¢ M x‘E’ in eq. (2.19) describes a "difference effect" arising

from changing the mode of description. Mode 1 uses a Taylor expansion

of E about the G.C. position (see Appendix B), while Mode 2 employs

the effective current density as expressed by a Taylor expansion of M.

Without this change of description (effected by a partial differentiation)

the energy theorem would read

%% +VE = <E[ +cM (VxE). (2.17b)

Obviously, this equation is formally less well adapted to the energy

theorem valid for the electromagnetic field, viz. eq. (2.24) below.

We define the total effective electric current density of the G.C. plasma,

with the components o= i, e, by

«Z,é‘fﬁ = iZ(euEQ +c V*M«). (2.22)

4ot
~
The energy theorem of the G.C. plasma then reads

3D, ;
Z(ae *TE) = £ jue -
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On replacingj by j’rot in Maxwell’s equations, too, the energy theorem
A ~~
for the electromagnetic field reads

L %—(EH B’ + ‘@%‘V‘(E"E) =~E 4 o2

in

Contrary to convention in the theory of diamagnetic media, it is not
appropriate here to move the magnetic moment density M to the left-
hand side of the Maxwell’s equations and of eq. (2.24) by introducing
a new field Hag-hg. Adding eqgs. (2.23) and (2.24) yields an

energy conservation theorem for the system consisting of the G.C. plasma

and the electromagnetic fields.

It is not useful to derive also a conservation theorem of momentum (by
forming a first moment of the drift-kinetic equation). This is so because
a simple expression for i would be needed [by analogy with \;\Ik of

eq. (2.]4)] in order to obtain a useful momentum theorem. Such a
simple expression for :\!' is not available in G.C. drift theories because
the simple equation of motion of a charged particle has been thoroughly
complicated by the G.C. expansion in € and by using explicit expressions

for V.L'

The above treatment demonstrates the following points:  The derivation of

drift-kinetic equations direct from G.C. orbits together with an appro-

priate form of the power balance equation for a single G.C. particle are

the basic starting points of an exactly consistent G.C. drift-kinetic theory.

Independent of the validity of a Liouville’s theorem, such a theory has
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exact conservation theorems for the G.C. particle numbers and for total

energy; in addition, there is exact energy conservation for single G.C.
particles in time-independent fields. Exact conservation of the number of
G.C. particles is necessary in order to avoid contradiction with Maxwell’s
equations (which imply exact conservation of charge) without being forced
to expand Maxwell’s equations and electromagnetic fields in the G.C.
parameter € . Exact energy conservation seems important in order to
prevent a theory from yielding spurious low-frequency instabilities that

might arise from violation of exact energy conservation,

Contrary to the above conservation theorems, the availability of a

Liouville’s theorem is more important for practical reasons. If Liouville’s

theorem holds (for a certain choice of d‘c), any normalizable distribution
function 120 (Cv) that only depends on the values of constants of the

motion, €, , of G.C. particles is an equilibrium distribution function,

i.e. it satisfies
1%
o _ O 2.25
St (2.25)
and eq. (2.7), with S =0, i.e.
ddo
;o

It suffices, of course, for a Liouville’s theorem to be available in time-

= & . (2.26)

independent fields in order to construct equilibrium distribution functions

in this simple fashion (see Sec. 6).

In the alternative case, when a Liouville’s theorem is not available, the
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equilibrium distribution functions fj are no longer constant along G.C.
trajectories in phase space. Hence they can no longer be expressed

as fg (cy ), with ¢, being constants of the motion. In particular, a
Maxwell-Boltzmann "distribution function" is now not a legitimate
distribution function at all because it does not solve the time-independent
G.C. drift-kinetic equation. This may also be important for numerical
computations of drift orbits when a statistical evaluation is intended by

postulating a distribution function.

In order to determine equilibrium distribution functions in the case of
S* 0 (no Liouville’s theorem available), eq. (2.7) must be solved in

the form

2« —L —L Z (°< T) (2.27)

D
with 3)?0 /at-_—' O and, because the (self-consistent) fields are then

time-independent, %T/Bf = (. The solution can be facilitated by

choosing {0(;} = {x, w’ }A.} , with w :/.1': 0.
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3. Northrop’s non-optimized G.C. drift theory and partial optimization

thereof

The optimized theories of the forthcoming sections agree to the leading
orders of their terms with Northrop’s non-optimized theory [l] when the
latter is adapted to drift scaling, i.e. E = 0(ge). In order to enable

the reader to verify this agreement, Northrop’s adapted theory is listed
here and its properties are discussed. In addition, an improved theory

is presented that is a partially optimized modification of Northrop’s theory.
Appendix A should be consulted for details of drift ordering and questions

of notation.

Specializing to drift scaling, with ’E: 0(e), BB/c'af::' O(g), the

leading orders of Northrop”s [I] equations are these (see Appendix A):

>'r:-.x = v"% +Vy 3.1)
S, e _ M 9B 3.2
a T o E" wm as  * o

}l = 0, , (3.3)

with the drift velocity given by

_ (3.4)
Vy = Ve Xvs t Ve )
" (3.5)
XE = E~xg / '
~ ~

~VB Q)Bu /,?3 * VB 5s2)
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2

V“ A é, 2 A A' A
FhvgE = FEVh)

Q

i
Hi

Y

The notation has been explained in Sec. 2 and Appendix A.

The magnetic moment can be expressed to leading order in € as
g p

p= 75 U)o

where B and the perpendicular direction (with respect to B, and
expressed by the subscript L. ) are determined at the guiding center

<
position, and <UJ.> is the appropriate gyro-average over the
square of the perpendicular particle velocity relative to the G.C.
position. Note that to this order V| = <V">, that is, the
parallel G.C. velocity equals the gyro-average of the parallel particle
velocity, where, again, the "parallel direction" refers to the direction
OFE at the G.C. position. Hence, the kinetic energy is defined to

leading order in g as

W meovp o+ pB

K !

il

Equations (3.1) through (3.7) and (3.9) form a closed, self-contained
set of equations whose properties can be investigated. Let us consider

first the question of the power balance equation. After some mani-

L
pulation one finds Wk in the form

. 9
wx="°',~E,'¥ +}‘:’§_§_—MW§XI’. s

1T ~TN

This does not agree with the desired form [eq. (2.]4)} and, more-

(3.8)

(3.10)
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over, does not yield energy conservation in time-independent fields.

On defining the total energy

\/\/ = \/JK 3 24) (3.11)

one finds in fact

. 0
-;l'-\%w-_:_wz-—/mv,f r\f»b"a; * 0, (3.12)

A Liouville’s theorem is not available either in Northrop’s theory.

If one uses the lowest-order phase space volume element, viz.

de = 25 B L% dv, du 3.13

i.e. Je¢ B, then one finds
S = <5 [-<E+nV8] (VxB)

- Yo v Lk (veB)] 4

= O ) (3.14)
with S defined in eq. (2.8). Hence dt"i 0 , ond Liouville’s

theorem is violated. Since we are dealing with a leading-order

theory, it would not help to consider higher-order corrections to d't’

(see below).

It follows that Northrop’s theory, as listed above, is non-optimized,
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since it does not conserve energy, lacks a Liouville’s theorem, and
contains a power balance equation of an undesired and unphysical
form. It should be mentioned that Northrop and Rome [6] have
recently published higher-order corrections to Northrop’s original theory
without, however, considering the problem of preserving exact

symmetries of particle theory.

Northrop’s theory can easily be partially improved so that it satisfies
energy conservation and obeys an appropriate power balance equation.

On postulating (see Sec. 2)

i d W, B
We = S5 = 2EY A .7

instead of eq. (3.10), with W

K still defined by eq. (3.9), the equation

)1: 0 and eq. (3.1) for the G.C. velocity ¥ may remain unaltered.

One then derives the following modified expression for v , viz.

3

¥ e
V" = n—n‘Ell - L— = + V" Vy ¢ ) (3.16)

b=
)
oS
[P

14
Q)l
"

which replaces eq. (3.2). Energy conservation (in time-independent

fields) is then obeyed, viz.

\’J = WK + P.(b = CO‘hSt. (3.17)

It is important to note here that the simple trick of constructing \'I“
from the power balance equation together with ):).:O and the expression

for xonly works when the expression for v is of appropriate form. If,
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instead of eq. (3.4), an expression for V. is used that either lacks

~D
VVB while keeping Vg or vice versa, then, wnthr: Q the

~J

resulting expression for \:fu will diverge for \4I - 0. This does
not occur when both Ve and ZVB are kept because then two terms

exactly cancel owing to the relation

~

This relation means that the gain of electric energy eq’ caused by
the velocity component VVB is exactly cancelled by the loss of
"
internal energy f'lB caused by the velocity component Vi It is
therefore no surprise that the conventional G.C. theories with )1_—_-0
A
and V= V fr + V_ do not conserve G.C. energy, i.e. eq. (3.17)
~o " ns (o d I
is then not satisfied whatever non-diverging expressions for \.Iu are

employed. If one insists on the mutilated expression

A

)'(
r~ ~ o~ NE

- - * . -
it is necessary to abandon )\:0 in order to save energy conservation

(see Sec. 7). Clearly, energy, as an exact constant of the motion,

is more important than}L , which is only an adiabatic invariant.

On using the improved \'I” of eq. (3.16) and the phase space volume
element dt of eq. (3.13) one now finds the Liouville quantity S to
be given by

1 ’W‘Vlzg. 3..5_ —
S = "\°-En+(}” B )Bs
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0 A A
—_ & 2 ; ( x )]
el Vii s [& v % El'k 0 )
i.e. c‘t is still not conserved, with S = 0(&). By choosing instead
the volume element corrected for first-order terms, viz.
* 2T ¥ 3
dt :—m_—B d'x 0(Vu d}*}
with
¥ /VV\C-V"
3" = B+ — & ,
A A
B'c‘ = % ' (Vx &) )
one obtains instead
&
A
S_N’_ Vi B‘Go _+V.(8, vV )_'_zgv ,_.,(_a__’:.
= 1ot o ~) °~D O9s ()
2 A
i.e. S = O(E.z) Here V is the nabla operator, but with Vi und),L
kept constant when the spatial derivatives are performed. If one wants

to obtain a d, with S, = 0, d = 0, so that Liowville’s th
o obtain a T‘l wi - Vs 4—- )soi‘at iouville’s theorem

is exactly obeyed, e.g.

3
J; d X qu (‘J/A )
then the condition for J

A is given by [see eq. (2.10)]

(% &) =0

1l

dr,

I

d
T w
with {x;} 1.2

requiring solution of the drift-kinetic equation in the first place

vlr ) /1*5 . This is tantamount to

[ put I¥+ 3-1 in eq. (2.9)1. In order to avoid this and still

(3.18)

(3:19)

(3.20)

(3.21)

(3:22)
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obtain a fully optimized theory, the G.C. equations of motion must

be modified (see Secs. 4 through 6).

It follows that both Northrop’s theory []J and the above partially
optimized theory (Northrop corrected to obtain enery conservation)

do not obey a known Liouville’s theorem. Hence equilibrium distri-
bution functions cannot be expressed as fo( \A}) A ), but must be
determined by integrating the pertinent drift-kinetic equations, as was

explained in Sec. 2.

Notwithstanding this complication, associated, exactly compatible G.C.

drift-kinetic equations follow from the above partially optimized theory

*
together with either one of the definitions dN = fdt or dN = f der¥

[eq. (2.3)J , viz,

(R + vV 47 "av,; +S) 1 = 23

or

('?%c_""y,'f] \./u’av +S)£ (3.24)

where v and \.l" must be taken from egs. (3.1) with (3.4) through

A
(3.7) and (3.16), S and S" from eq. (3.18) and (3.22), and V has
been explained after eq. (3.22). Alternative forms of the drift-kinetic

equations are

2%_(59 + P (v Bﬁ) + %;u—(\"u Bf) = 0 (4:29)

and
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%{(B*F*) + 9 (y ka*) + %a“(/‘; (% B*f*jr 0. 3.29

For both partially optimized G.C. drift-kinetic theories conservation

theorems of G.C. particle number and energy follow, as explained

in Sec. 2.
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4. Boozer’s theory generalized: an optimized theory with parallel drift

Boozer [2] constructed a G.C. drift theory valid for time-independent

fields that contains an energy theorem and a Liouville’s theorem. This

theory can easily be generalized to apply to the case of time-dependent

electromagnetic fields. The resulting optimized theory is presented here.

The equations of motion are

Vu

'VVB V$)

3
2=
+
o

m
-+
b

= X = V|
G = (2E-2ve)[f+rdvi],

where XE and’k'/vB are again defined by eqs. (3.5) and (3.6), and

Jls eB/mc. A peculiar property of this theory is the presence of a

A
"parallel drift", i.e. V - B is not equal to v , as can be seen from

~
eq. (4.1). This is not a mathematical inconsistency, however, since
the parallel drift is of higher order in g than Vi itself (see Appendix A),
and the theory only has to agree with the original particle equations of
motion to leading order in €. Physically, reservations may be had
because no physical content of this drift is visible, and the dependence
on the sign of electric charge (via Jl) seems strange. Kinematic contra-
dictions do not occur because the parallel drift vanishes for v, = 0.

The perpendicular component of the last term of eq. (4.1) is, of course,

(4.1)

(4.3)
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identical to the curvature drift '!K: of eq. (3.7).
We now show that this theory is optimized because a well-behaved

power balance equation, an energy conservation theorem, and a

Liouville’s theorem all follow as exact consequences of the above

equations of motion. (The derivations will not be given because

they are elementary.) With the kinetic energy defined as

— M Pt
the power balance equation is of the desired form, viz.

\/:/k :Q’E'Z +/k:<§-%“)

and energy is conserved in time-independent fields, e.g.

W = 9 +\/\/K ~ const.

Use of the zeroth-order phase space volume element

dv = 2B &% dy, da

leads to Liouville’s theorem in the form

S:O)

where S has been defined in eq. (2.8). Note that the definition of

Wk does not include the parallel drift velocity; but, again, the
mathematical deviation is of higher order in € and hence irrelevant.
The above equations, together with the definition of particle density

in phase space, dN = gd‘t’, can be used to derive an associated,

exactly compatible G.C. drift-kinetic equation of the form

(4.4)

(4.5)

(4.6)




0 v.V 4 ¥ l) =0 (4.9)
5o ¥ V+hag)l =0, |
or, alternatively,

%(BE) % 6(\4 Bf) + -,;%I—l(\'/u Bf) = 0., @10

A
Here V is again the nabla operator, but with Vi and){. kept constant

when the spatial derivatives are performed. The conservation theorems
(continuity, energy) derived in Sec. 2 immediately follow from the

above equations.
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5. Littlejohn’s theory modified: an optimized theory without parallel

drift

The impressive paper by Littlejohn [4] gives a G.C. orbit theory

[i.e. with —EJ- = 0(])1 with an energy theorem and a Liouville’s

theorem. Littlejohn’s work emphasizes the following aspects:

a) a new method of derivation that employes Hamiltonian theory

with non-canonical coordinates,

b) inclusion of higher-order correction terms,

c) the preservation of the conservation theorems mentioned, from

the basic particle theory.

On the other hand, Littlejohn [4]does not give a G.C. kinetic theory.

In this paper we only consider a modified, leading-order version of

Littlejohn’s theory that obeys drift scaling i.e. E =0(g) . Itisan

“~

important merit of the form of Littlejohn’s results that a whole class of

theories with exact energy and Liouville’s theorems can be extracted
from them. It will therefore not be necessary to repeat his derivation
procedure (with modified scaling assumptions and modified truncation)

in order to arrive at the modified theory below. It is somewhat annoy-
ing that Littlejohn [3, 4] has used special units, e.g. with ¢ =

m = e = 1, and has dropped the sign of the particle charge. We have

here restored normal cgs units and also taken sign (e) into account.
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¥ % *x *
Following Littlejohn [4 ] , we introduce the quanfi‘riesrlé # B ; B ; $ 5

~ N

which are functions of (t, X1V

I ¢
A %
v. B — O )

)L),that are to satisfy the relations

*

A 9B
CVY,E\;%:—‘S-E’ )
B = Vx4,

*

% A ® i’aé
E = -V -5

A
The symbol V has been explained after eq. (4.10). The abbreviation
* 1 *
B £ B
Lo ~

* o
is also used; note that B" is not the magnitude oF’_E}_' . By means of

n

these quantities we can define the following class of optimized G.C.

drift equations:

. B* c *F 2 M A

X=X =Vigw g brk + w8 VB,
¥

. B e ¥ M

Vuz'—B-F'KE —_"M_:VB))

),1-_-:0.

¥ %
Here JU = B /mc, and W mN b, i.e. no "parallel drift" appears.

-~

It is easy to show that eqs. (5.6) through (5.8) conserve the energy

expression

\)\/* = —';—i‘- vf +)AB + 14’*

(5.7)

(5.8)



30

in time-independent fields. The power balance equation is given by

% BB
= 0 E . e —_— 5.10
WK = X / at ) ( )

where the kinetic energy Wk is again defined by

W, = LoV o+ )&B & 10)

2

When the phase space volume element is defined by

27 % 3
= v, o (5.12)
then a sufficient condition for the validity of the respective

Liouville’s theorem, i.e. for

is given by the validity of

* A

35 = Mc Uxk (5.14)
vy £ e

and "
3E

The quantity S is, of course, still defined by eq. (2.8). Littlejohn

[_-4 ]does not explicitly mention these conditions of eqs. (5.14) and
¥* *

(5.15). He rather gives particular expressions forE and E that

guarantee the validity of Liouville’s theorem. Equations (5.14) and

(5.15) possess the general solutions
* wmc V,

A:—:é-i"

A

cp* = ¢ + S¢(t,§,/¢)} (5.17)

;@7 +Sé (t,,\’f;}‘)) o 1)
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or, in terms of asterisked fields,

R* = B + 2V Vx,é; + J(\B{(t,x,y«) (5.18)

e ~ Q

and

34
E* = E - m:v,, 36 J\E(t,gg,/u), (5.19)

In the following we only consider the particular solution of egs. (5.14)
and (5.15) with 0A = fo = dB=8E=0. the optimized
~ A ~F

G.C. drift equations of eqs. (5.6) through (5.8) then assume the

particular form

A
' 4
Xz V = v,,% +Vy ) (5.20)
£ oY)
. - .3 ).L B x. ~ (5.2])
Wem oo B e tah e
M = @ ) (5.22)
with the definitions
* - * X 3 S (5_23)
Ny = ¥e tVp e TV )
% C 4
vi= g Erd,
A
V* o M & x VB ) (5.25)
~ VB mq‘n_* s
vt = Vi @_ o o4 ) (5.26)



* Va9 pA (5.27)
XCD = Jl* & X 3 ’

4 Y[ g (Vx ﬁ;—) 2
B = B+ —— |4 ) (5.28)

* *
Jl = QB//"“C . (5.29)

Equations (5.20) through (5.29) conserve the usual energy expression

Wz Ws= 22 Ve o+ B o+ e® (5.30)

in time-independent fields. The power balance equation can be

formulated as

] —a§
W, =eby — po== ) (5.31)

'

the kinetic energy Wk being defined by eq. (5.11); but the vectorial

magnetic momentﬂ has an unusual and counter-intuitive form, viz.

m V,

A
M= -)AN,@ + o X: ) (5.32)

Still, the conservation theorem of energy in the form of eq. (2.23)

follows. In addition, Liouville’s theorem is, of course, satisfied,

according to eqgs. (5.12) through (5.15). From the above equations
and the definition dN = fdt [eq. (2.3)] an associated, exactly

compatible G.C. drift-kinetic equation of the form

(-,-;—b-,-c-— + ,\5"} ‘ \./“ an)f, (5.33)

or, alternatively,

(Bl V(B (48 -0 e
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A

can be derived, where V has been explained after eq. (4.10). Again
the conservation theorems of G.C. particle number and energy follow.
When comparing eqgs. (5.33), (5.34) with eqs. (4.9), (4.10) one must,
of course, remember that the definitions of dt’, f, e and \;“ , differ

in the two cases, if only by non-leading-order terms.
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6. Quasi-optimized theories with improved power balance equation

Littlejohn’s theory, as presented in the previous section, has the
somewhat irritating property that the power balance equation, as given
by eqs. (5.31) and (5.32), has a complicated and counter-intuitive
form. In this section two theories are presented that contain a power

balance equation of the simpler form

again with the definition Wx B (%/2) \/"2 +j,{B One pays for

this by having a Liouville’s theorem only in the case of time-

independent fields. This suffices, however, to obtain equilibrium

distribution functions by the ansatz Fo(c-"' ), where the c,, are

constants of the motion. The first of the two theories is of the form

A
%avzv% "’,\J; 6.2)

—
o

£
I
o
o
<
4
B
'3
A
o

s
P

W
N { 3
=<~

+
e

o
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S 2V, 3‘@_(@ aﬁ

= — ¥ et (6.8)
JUt ot ~ s/
so that d& = 0, S = 0 for time-independent fields. The quantities

¥ a3
V~, B , JU are again defined by egs. (5.23) through (5.29).
~D 9

The second of the two theories has the form

¢ = Loev® + v+ v
@
o _ e _ M B ) ok 2
Vi = E U (V Vi, fr (6.10)
=0, 6.1)
. ‘aB
= . + )
W, = eEv + pas (6.12)
m 2
, e _._...2 v" e }AB) (6.13)
¥ 3
dr = B d'x c(vu o\)u j (6. 14)

S = "X{Ti '?t[ (V &)J (6.15)

Again, d€ =0, S =0 for time-independent fields. In both theories

the vectorial magnetic moment is given by

A
= o (6.16)
o= opk
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The form of the exactly compatible G.C. drift-kinetic equation

obtained from either one of the above two sets of equafions, together

with the definition dN 3 fde eq. (2.3)J , is the same for both sets,

(FeexVridg+s)p -0, en

v
or, alternatively,

‘«%:—‘(B*g) + ﬁ‘ (X B*f) * '“";'97“(0“ g*£) =0, .8

A

where v has been explained after eq. (4.10). Again, the conservation

theorems of G.C. particle number and energy follow.
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7. Internal consistency relations for guiding-center drift theories

When expressions for the guiding center velocity v, the G.C. kinetic

energy Wk’ and the G.C. power input Wk are given, then the
expressions for both \frn cmd/ﬁ. are essentially determined. In a
. o . . . »
leading-order theory}; must vanish to leading order, i.e. C/A//m = O(E)
a
at least; otherwise the expressions for v, Wk’ Wk do not define a
consistent and accurate theory (see Sec. 1). In order to derive \}'

c:nd}l we define

= V

e =3

1<

-+ YD ) (7.1

where !D is not yet fixed, and

— rn 2
W = 5w + uB, 7.2)

K 2

W, = eE'y +/*%%‘ 7.3

(see Secs. 2, 3 and Appendix B). As explained earlier, the full G.C.

L]
velocity ¥ must be used in Wk in order to ensure the validity of con-

servation of energy in time-independent fields, viz.

W = \/\/K + e(f) = cm«st) (7.4)

while in W, the term (m/2)v: = 0(€% can be neglected. From eqs.

k D
(7.1) through (7.3) it follows that



. @ M 9B
i = TM_E"_W S

o
B . 1 _
~ el )‘*"“B‘Xb'(‘ig )*VB) : 7.3)

It is necessary to eliminate the singularity at v“—-> 0. This is done

by first decomposing YD i.e. for simplicity

2
fy,b 2,\530 + VY XM + VY —\\ﬁaz )

where f!Do , xDﬂ,’ and xDz are either independent of vy ©or may

show a non-dominant i dependence, e.g. in the fashion derived by

Littlejohn [4] (see Sec. 5). It follows that

2 sl .
# (U * % ¥ ) (ZE -2=vB), oo
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om Ay (E-pvB). oo

In order rhat)lzo hold, the r.h.s. of eq. (7.9) must vanish. This is

trivially satisfied for V_ =0 and non-trivially for
~ PO

4 = (7.10)
Yoo = Mg Y Xyp )
with YE and X vB given by egs. (3.5) and (3.6). The latter result

rests upon the relation

(7.11)

QE'..\,/VB = /U.VB'V

Theories that use YYo= g or XDG=XE can only be made compatible
with energy conservation and eq. (7.3) if}l* O (at least to non-

leading order in € ) is admitted. It follows from eq. (7.9) that then

M= “%XE'VB = 2 0(¢), 7.12)

which is compatible with a leading-order theory. Clearly, conservation
of energy is more important than conservation of magnetic moment for at
least two reasons:

a) Energy is an exact constant of the motion for charged particles in

time-independent fields, while is only an adiabatic invariant.
P }1 4

b) Without W = const (and Liouville’s theorem) equilibrium distribution
functions cannot be expressed by fo(W,/l.L) or fo(W), but must be

found by integrating along characteristics (see Sec. 2).
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The above analysis can be extended to the case of G.C. theories, with

XD=!E =0(4). Equations (7.1) and (7.3) then remain unaltered,

while eq. (7.2) must be replaced by

A R R

Equation (7.7) is then replaced by

+1n___?_(vg)+.23%_&.\7(v;) . 714

The singularity at v »0 can only be avoided if

]

‘ M : _om 9 .2 |
‘m

- TE) +0(w), e

which implies that C/:L/Mn = O(i) . This contradicts adiabatic

invariance of}g to leading order. It follows that fY‘D=xE =0 (i j

together with energy conservation [and eq. (7.3)J , is not compatible
L4 . . .
with Cﬂ//m = O[E) , that is, these assumptions yield a theory

that is inaccurate to leading order. It is, of course, the unphysical

assumption OF:.'! =:x = 0(4) that is to blame for this failure.

D E
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. . L]
On the other hand, G.C. theories with o= XE = 0{4) ondﬂ =0,
but without energy conservation are not attractive for the reasons

given above.
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8. Concluding remarks

It is a surprising aspect of plasma theory that G.C. theories and G.C,
drift theories of past decades have not provided for exact energy con-
servation (see Secs. 3 and 7). To appreciate this fact, let us just
imagine that relativistic mechanics had been invented first, with non-
relativistic mechanics derived later by expanding in € = V/c. To
leading order, the relativistic energy theorem would have degenerated
to become m_ 2 = const, i.e. a useless relation. However, we may
assume that the appropriate energy theorem, as an indispensable relation,
would immediately have been recovered. Even though the situation is a
bit more involved in the G.C. case, it seems to remain somewhat of a
mystery why conservation of energy was disregarded in this case for such

a long time.

This paper presents a list of maximally consistent ("optimized") G.C.
drift theories, including kinetic theories, and a theoretical framework
that allows direct and exact derivation of drift-kinetic equations from
G.C. drift mechanics. Earlier results of other authors [2, 3, 410re
used, but had to be either generalized, specialized, or modified.
Boozer [2] only considered time-independent fields, while Littlejohn
[3, 4] only investigated G.C. mechanics, but not kinetic equations
(nor the associated moment equations). The present account reveals a

considerable formal simplicity in that G.C. drift orbits are exact
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characteristics of drift-kinetic equations and equilibrium distribution
functions can be exactly expressed by constants of the motion,

viz. FO = Fo (W,}.._). Conservation theorems hold for single G.C.
particles as well as for the system consisting of the G.C. drift plasma
and its fields., Liouville’s theorem can be exactly satisfied, and

this in more than one way (compare Secs. 4, 5, and 6). Guiding-
center drift theories have now the same formal advantages and merits
as mechanics and kinetic theory of charged particles do (except for

Galilei invariance).

For simplicity, only leading-order, collisionless G.C. drift theories
have been considered in this paper. Existing higher-order theories
have been cited (Refs. 4 and é). Collisional drift-kinetic equations
can be constructed by supplementing the above collisionless drift-
kinetic theories with appropriate collision integrals that also satisfy
exact conservation theorems. Of course, such theories are only appli-
cable to plasmas (or plasma problems) where drift effects are dominant
because the collision-free drift excursions are large compared with the

gyro-radius.

The internal consistency relations involved in G.C. drift theories have

been systematized in Sec. 7. It follows that G.C. drift theories with
}l;‘é 0 (to non-leading order) must be admitted if energy conservation

is to be preserved when xD is inappropriately approximated,
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e.g. !D; 'V_E = 0(g). It is also shown there that conventional

G.C. theories with v = V

Xp=Xg "~ 0(1) and )1= 0 cannot be improved

to become consistent and accurate theories (see also Sec. 1).
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Appendix A: Drift ordering

The expansion parameter € is defined as the ratio between the gyro-
radius Rg and a typical macroscopic length L, i.e. € = RJL. The

conventional drift ordering assumes that

L . 2B 06,

e T VB

eEut ""O(i)

m Vi
Here th is a typical particle velocity, Jl= eB/mc, t ~ L/Vth' and

the notation is otherwise standard. It should be noted that there are

at least two quantities € , i.e. Ei and €e’ for ions and electrons,
with Ee« Ei & 1. The above orderings for E; and E; imply that

=~ 0(1)

for a fictitious potential difference P if one assumes E,~E, ~$/L

1/2
and Vth ~ (T/m) / It should also be noted that B does not enter

eq. (A.3). Another consequence of egs. (A.1), (A.2) is that

Vtg_ th., VH. Vt&

in the notation of Sec. 3. Often the physically relevant or inter-
esting plasma times are larger than t~s L/th, as can be seen from

numerical examples.

(A.2)

(A.4)



For simplicity, it has been conventional in G.C. and G.C. drift

theories to use dimensional representations of the G.C. and G.C.

drift orderings. That is to say, some dimensional quantities are

attributed an order in €. In the present case of the drift ordering

one conventionally puts

Lt~V ~ %~ ~ 00t)

and

L, » (c)
-~ ~ E Vs Ve ~ Vo~ Y 0 .
It should be noted that B alone, ¢ alone, E/B, or Vth/c are "free",
i.e. they are not attributed an order in €. Often one finds that

the magnetic moment}.A. is attributed an order, or fhcf/.g, is expanded

in €. On remembering eq. (3.8) it becomes clear, however, that

only the quantity c)},/m ought to be given an order, viz.

£~ 0(1).

Different notations have been used by various authors. For example,
Northrop [1] replaces —Zl by € throughout and uses E, = 0(g).
Littlejohn [3, 4] replaces e by e/t, and uses the prescription €= 1
for numerical evaluations. In this paper, G.C. drift theories are
only considered after truncation, i.e. as closed theories. Then g

does not appear in the equations. Only occasionally, the order in

(A.5)
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of a particular quantity is indicated. This is in agreement with
common usage in physics; for instance, non-relativistic particle

mechanics is not usually adorned with terms 0 [(V/c)mj or the

like, but is written as a closed theory in its own right.
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Appendix B: Derivation of the G.C. power balance equation

An informal derivation of the power balance equation for a G.C. particle

[fo leading order in €, see eq. (2.]4)] is given here. For a charged

particle the power balance equation is simply

' d W,
WKE(,H: ZGE‘A\J/)

with X the particle velocity, and WkEE (m/2) V2 the kinetic energy.

On decomposing Y = v + U, , y being the G.C. velocity and U

being the gyration velocity relative to the G.C. position, one obtains

W, = eE'v + eE-U .

AL A~

Here the U, motion will be approximated by a circular one, and the
~
term e E - H.L is approximated by its gyro-average, i.e. the average

over the phase of the gyration, viz.

2/
<€'E..—UL> 'Z%"SQE‘QJ_ dt

2
__J_L_S
27
0

~ Jte 11 df - (VxE)

)

rR?

E - dg

o

©

Il

x
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ol ._._‘%E. R; p; (VxE) . (8.3)

On using eq. (1.3) and

de jr = 75 (U) = p 0.0

one obtains

A
<eE > /A’%:‘a’_‘t""-"-/u'-é—‘ (B.5)
Hence, to leading order, eq. (B.2) becomes

. L=
\;\/K = e E v +/A:§'%') (8.6)

A
which is identical with eq. (2.14) iF}.l.= —/42 is substituted there.
It should be noted that the full G.C. velocity N including drifts,
must be used in eq. (B.6) so that exact energy conservation (in

time-independent fields) follows, i.e.

W

k T 2P = const . (B.7)
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Appendix C: Derivation of the effective current density of a G.C.

component

We shall show here that the expression of eq. (2.17a), viz.

by = el + VM .
&“ -~ ~t

~

agrees to leading order in g with the true current density of a charged-

particle plasma component. That is, one is entitled to identify jeff of
~

eq. (C.1) with the effective current density of a single G.C. component.

Let us first agree what "leading order" in € is to denote in the present
context. First of all, according to Appendix A, quantities with the
dimension of an electric current density have not been attributed an
order in €. Instead, one may use current densities divided by (ne) as
quantities whose order in & is well-defined. Secondly, it is the
parallel and perpendicular components (relative to the direction of B
at the G.C. position) of eq. (C.1) whose orders in € must be sepa-

rately considered. The result is that

er'h/me ~ 0(v) ~ O(’l) | . (C.2)
QEJ./’“'Q ~ O(Yab) - O(E)f (C.3)

and

c VxM < Uf
fze” ~0f n.)l:) NO(JLL

) ~ O(g) ) (C.4)
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in the notation of Sec. 2 and Appendices A and B.

The current densifyI of one particle component of a plasma is given
~

I(X) = joltv V F(X, V) .5)

where 2‘(' and V are the position and velocity of a parhcle, F is the
T : d 3\ .

particle distribution function, and Tv = is the volume

element of particle velocity space. We may introduce the particle

phase space volume element

dv. = &'X I’V (C.6)

P

and decomposeI into the respective contributions made by the G.C.
As

velocity v, and the gyration velocity U, , i.e.

I :,Ivi + ,I:z ) (C.7)

Lad

with V =v + U, and
~ ~

~

T (X,)= QJX(:{) F(X, V) § (X -Xo) dr, , (9

1,(X.)= (U, &) FOX W S(X-X) de, . e

Note that v and ’l‘J'_L are defined as functions of G.C. variables
(;c', i ,/A, ?), where ? is the azimuth of Uy for brevity the

notation ,‘!.(?9' ’leJ_(x) is used in egs. (C.8) and (C.9).

In the above equations the particle variables may be expressed by

G.C. variables, using
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X = X + Q (C.10)
and

FKX;Y) Gh’p = ‘-f(?!,;vn;/“'; ‘F) aT,

Here Q = 0(€&) is the vectorial gyro-radius and dt is the G.C.

~

c.1n)

—

phase space volume element in the form
'y £ dy, du d
dr Ix = dv, op de (C.12)
It follows that

L (?So) = QJX { S(i‘.*g“,)fo) dT (C.13)

L

~1
T, (o) = efU D Slerg-X.)dr. (c.14

For brevity of notation we shall use in the following a Taylor expansion

of the S-funcfion [7] in the form

S(xvg -X) = $G-X.) + -V (x-X,)
+ 0 (52) ; (C.15)

where V denotes the gradient taken with respect to X, and with

(v‘ ,/), P T) = const, Equation (C.13) then becomes

I, (%) % e[y 4 S(x-X) de 1

or

I,(x) =~ efx £ de, = e[ (x) (€.17)

~
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to leading order in € as defined by eqs. (C.2) and (C.3).

The transformation of the diamagnetic contribution Izis somewhat

more involved. Equation (C.14) becomes

L,(%) = o]V, ¢ S(x-X.) de

vefl ) ¢ VI(-X) de

+ Mne: O(‘éz) :

Here fo'ér =0 + 0(€% may be used because the O(g) terms have
been eliminated by subtracting the drift velocity V. The first term

on the r.h.s. of eq. (C.18) then vanishes, yielding to leading order

-;[,z(Xo) e ej,g.l. / ?68 (x -X.) dr.
On using EJ\J_:U_L é_[_and -
g = A QL"@ + 0(e?)

~S

this becomes

LK)~ [$ U4 [(2, % 8)- 98] de.

Here one has

e

IU-E == QC}L.

Averaging over the azimuth ? and using the definiﬁon}u = _)*

'~

(C.18)

(G119

(C.20)

{C.21)

(C.22)
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then yields

IZ(XO)% S[}L X V§ x - Jf dr . (C.23)

On using eq. (C.12) for dt and performing a partial integration

one further obtains

I. L e ‘“_V ZTB

~2

)[8 (e-X) & dyy dps. .20

This is identical to (substitute X by x):
~0 ~r

-.E.?_ ()_5) & € votj}iﬁ cl't‘,, 5 £ V* k‘(g) . (C.25)

It follows from eqs. (C.5), (C.7), (C.17), and (C.25) that }eff of
eq. (C.1) agrees withI.' of eq. (C.5) to leading order in e.ﬁos
defined by egs. (C.2) through (C.4). That is, the "effective
current density" of the G.C. drift model represents, with sufficient

accuracy, the true particle current density.
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