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Abstract

Standard vector analysis in 3-dimensional space, as found in most tables
and textbooks, is complemented by a number of basic formulas that seem to
be largely unknown, but are important in themselves and for some plasma
physics applications, as is shown by several examples.




1. INTRODUCTION

It has apparently gone unnoticed that conventional, 3-dimensional vector
analysis, as presented in tables and textbooks -1

, is incomplete in the
sense that several basic relations are not listed. This paper derives and
lists these missing identities, which are important in themselves and for
applications in physics. This will be demonstrated by several examples
originating from plasma physics. It would probably be advantageous to in-
clude these formulas in standard tables and textbooks.

Let us examine a conventional list of vector-analytical formulas 1'11.

Expressions for vV « (aa), V x (aa), V(aa), V « (3 x b), V x (3 x b),

V(a + b), and sometimes V - (ab)are given, followed by cases of higher-
order differentiation, special coordinate systems, and integral theorems.
Inspection shows that the 1ist of formulas involving two vector fields
and one V operator is incomplete, and that formulas involving three vec-
tor fields and one V operator are absent, even though they are needed for

N and in guiding center drift theories 13. This

applications, e.g. in MHD
paper concentrates on these two types of vector identities, while cases
involving higher-order differentiation, special coordinates and integral

theorems will not be considered.

In vector analysis, simple methods of derivation are the use of partial

differentiation on the one hand and algebra of dyadics (= second-rank

tensors) and vectors on the other. In particular, any algebraic identity
involving a dyadic field T yields an analytic identity by substituting
I~ VE. Many results can be written as commutation, or anticommutation,

rules. This helps in systematizing tables. Looking for such rules also

assists in detecting missing formulas.

The following notation is used in this paper: scalars are denoted by small
Greek letters, vectors by bold-face, lower-case roman letters, and dyadics
by bold-face, capital, roman letters. The nabla operator V operates only

on the next field symbol to its right, except when otherwise indicated by
brackets.




2. BASIC FORMULAS

In this section, algebraic identities involvinga « T, T - a, a x T, and
Tx a (a=3-Dvector field, T = 3-D dyadic field) will be derived. Ana-

~ ‘e

lTogous vector-analytical identities will be obtained by substituting

T > Vb, where appropriate. The V operator will operate only on the next
field symbol to its right, except when otherwise indicated by brackets.
Pseudo-vectors and pseudo-tensors will simply be termed "vectors" and
"tensors", respectively. The reader is assumed to know how to express
symbolic vector and tensor formulas in terms of Cartesian components.

In the following we shall need the definitions of "vector of a dyadic" and

“"transpose of a dyadic". The "transpose of a vector" is identified with the

vector, i.e. row and column vectors are not distinguished. The transpose IT
of a dyadic T is obtained by permuting the indices of its Cartesian compo-
nents. It satisfies the following identities:

a-I'=T-2: I -a=a-1, ()
2*1T=-(I,X,§,)T, : (1a)
IT*,§,=- (gxl)T, (1b)

and further relations that are obtained by forming the transpose of eqs.
(la), (1b).

The "vector of a dyadic" is defined as 14

t=vecT (2)
with the Cartesian components

t ]

k=~ kmn 'mn °® (2a)

where the €mn 2Te the components of the well-known third-rank, invariant,
antisymmetric e-tensor, and the summation convention is used. (In some
texts 15 differing definitions of the "vector of a dyadic" are used). Note

that t = 0 for T symmetric, and

vec(Vb) = curl b =V x b . (2b)




The "antisymmetric part of T", i.e.

1

- =

(T-T

~ ~

) > (2c)

e
where IT is the transpose of T, can be reconstructed from vec T by

A
T=- ?-l x Vec l = -

~

M| =

(vec T) x 1, (3)

where 1 is the unit dyadic. Note that the vector products of the unit
dyadic with any vector a obey

LTS LR (3a)

contrary to the commutation rule for the vector product of two vectors. An
operator that transforms any vector glinto a dyadic may be defined, viz.

A = dyad a , (3b)
such that
vec (dyad a) = a {3c)
and
A A
dyad (vec T) =T . (3d)

One simply has to put [see eq.(3)]:

—

dyad @ = -5 1L x a= - L ax 1. (3e)

~

After these preliminaries, let us list some vector and tensor formulas
that follow from simple considerations and can be used to obtain several
vector-analytical identities. They are easily verified by writing every-
thing in Cartesian components. We shall first obtain identities for

vec (ab), vec (a x T), and vec (T x a), ab being the dyadic product of
a and b. Firstly,

vec (ab) =y vec (ab-Dba) =axph. (4)
It follows from eqs.(1lc), (2), and (4) that

lx(axb)=ba-ab . (4a)




On applying the divergence operator V « to the two sides of eq.(4a) and
observing that

Ve(lxc)=Vxc (4b)

Vx(axb) =V (ba-ab) (4c)

as a basic identity to be used in Sec.4. The "divergence of a dyadic",
viz. V + T, is defined here in the natural way, i.e. with components

~

el

(7 + I (4d)

axi
Consequently, the divergence of a dyadic product is defined by the compo-
nents

o anl,
16

3
—_ (aibk) : (4e)
axi

Some authors use a deviating definition that violates the systematics

of symbolic notation and should therefore be avoided.

For vec (a x T), etc. the following identities are obtained:

vec (a x T) =T+ a - (trace T)a ., (5)

vec (Txa)=a-T- (trace T) a, (5a)
whence

vec @xT-Txa)=T-2-3-] (50)

[compare eq.(6b)]. Of course

trace T = T.. (5¢)

and

trace (Vb) =V + b = div

o
—
(@a]
Q.
~—




Rather than substituting T -~ Vb in eqs.(5) to (5b), these equations will
be used in Sec.3 as auxiliary formulas. Equations (5) and (5a) can also
be put in an alternative form by applying the "dyad" operator of eq.(3e)
to both sides. The result consists of two auxiliary relations, viz.

axI-@xD'=1x(trace ) g~ 1" al
= [(trace T) a -T-alx] (5e)
and
Txa- (Tx E)T =1 x [(trace T) a - a « T]
= [(trace T) a -a«T]x1. (5f)

By substituting T - Vb one obtains two vector-analytical identities that
will be used below and in Sec.3, viz.

axvh-(axw) =1x0(V-b)a-Tp-al
=[(Veb)a-Vb-alx]l (59)
and
Bxa-(Bxa) =lxUV D) a-a- ]

[(V+b)a-a-ulx1 (5h)

It should be remembered that the V operator operates only on b in egs.(59)
and (5h).

An important identity can be derived by considering the expression

a-(1-1

~ ~

2 =
11

2a - )=a-T1-T-a, (6)

for which the alternative expression

A
2a + T=-a-+(lxvecT)=-axveclT (6a)

~ ~ ~ ~

obtains. Comparing eqs.(6) and (6a) yields the commutation rule for tensor-
vector scalar products, viz.




Le@=g - =% e L (6b)

or, on substituting T - Vb,

~ ~ ~ ~

Vb +a-a-Vb=ax(VxDh). (6¢)

This relation is usually not recognized as a basic identity; when found in
a textbook 7, it is then mostly in a non-standard notation and/or as an
auxiliary equation used during a mathematical derivation. The book by

11

Shkarovsky et al. is an exception. It may be instructive to compare

eq.(6c) with the relations

<]
hE=%
o
—
I
<]
1

-b+Vb-a (6d)

~ ~ ~ ~

<]
.
—
a1}
o
~—
1]

(V-a)b+a-Vb (6e)

that follow from partial differentiation (and some algebra).

A further relation resembling an anticommutation rule can be derived for

tensor-vector cross products. Consider

A
2axT=ax (I -1

~ ~

yzaxT+ (Lxa) . (7)

~ ~

Here the alternative expression

A
2axT=-ax(tx1)=(-1)L1-ta (7a)
A
exists, with t = vec T = vec T. Comparing eqgs.(7) and (7a) yields

1]

axT+ (Txa) [a - vecTl1-(vecT)a (7b)

and

e
x
i
+
—
Q
x
—
~—
]

[a «vec Tl 1-a(vecT). (7¢)

~



On substituting T -~ Vb one obtains two auxiliary relations, to be used in
Sec.3 and immediately below, viz.

ax W+ (1 x 3)f

[a « (Vxb)l1l-(Vvxb)a (7d)

and

vbxa+ (axv)=[a-(Vxb)l1l-a(Vvxbh). (7e)

~ ~

By combining egs.(5g) and (7e) one obtains an anticommutation rule for the

cross products:

ax+Whxa=1lx[(V-h)a-Theal

~ ~

+0a+ (Vxb)l1l-a(vxb). (8)

On the other hand, combination of eqs.(5h) and (7d) yields the alternative
expression

ampEVExE=1 % iTe DYg - 4" sl

+[a-(Vxpb)l1l-(VxDh)a. (8a)

Forming the difference between eqs.(8) and (8a) yields

1x [Vbe+a-a-+Vb]l=(Vxb)a-a(Vxbh), (8b)

~ ~

which can be transformed to recover eq.(6c). Equations (8) to (8b) may, of
course, be generalized by substituting vb >~ T, Vv x b >~ vec T, V « b~>trace T.
The above identities may be compared with the relations

which derive from partial differentiation (and some algebra).

Vg EDL) =W A0 - VIR (8¢)
px{@hl= 0 =3l b= g=N0 (8d)
Ve(axb)=b-(vxa)-a- (vxh), (8e)




For completeness the following remark is added. The right-hand sides of
egs.(5g), (5h), (8), (8a) could be written in an alternative form owing
to the identities

WD w3 = Ve Bl = (g8 VR D (9)
and
a VR_(V°R)§,=(2"V)"R“,‘1”(VXR)' (9a)

This application of the operator (a x V) does not seem to be particularly
useful, however; hence this notation 17 will not be used here. Some authors
also derive

(axV)+b=a-(Vxb), (9b)

a relation that does not seem very useful either.



3. THREE-VECTOR FORMULAS

The formulas below, all of algebraic origin, are again derived by repre-

senting Vb as a general dyadic T and later letting T + Vb. The following

identities derive from eqs. (6b) and (6¢):
grl-c-c-T-a=(axc)-vecl (10)

~

and

a*VWec-ceVbea=(axc)+ (Vxb). (10a)

~

Equation (10a) is also found in ref.7, p.126. By repeated alternating
application of eqgs.(6c) and (6d) one obtains moreover

24 »Vbec=a-V(b-c)+c-V(b-a)-b-V(a-c)

~

+(bxc) - (Vxa)+(bxa)- (Vxg)+(axg)- (Vxb).| (10b)

~ ~ ~ ~ ~

Of course, eq.(10b) is only useful in special cases where the r.h.s simpli-
fies. Sucha case (from guiding center drift theory 13) is briefly discussed
in Sec.5.

The rest of this section will be devoted to the following list of ex-

pressions:

(axc)-T=a-(cxD=-¢c-(x1), (11)
Tr(@xg)=(ITxa)-c=-(ITxg)-a, (11a)
g lxc=(@-T)xgc=a-(Txc)=-cx(a-T), (11b)
axTec=ax(T-c)=(axT)-c=-(T-¢)xa, (11c)

and further ones originating from permuting the vectors a and c. The
reader might substitute T - Vb for himself in order to visualize the cor-
responding vector-analytical expressions. Several commutation rules will
be derived that relate various of these expressions, leaving out, of
course, trivial modifications of earlier two-vector formulas. One may
first derive the identity




ge Cupagn Eafie L {32 S0 1) 4 (12)

either by forming the vector product of eq.(6b) and ¢ or by forming the
scalar product of eq.(7b) or (7c) and ¢ (and then permuting a and c). Sub-
stituting T - Vb then yields

g+ Vbxc+cxvbeg=cxlax(Vxh)l. (12a)
Further important formulas are

a+Txc-¢c-Txas= [(trace T) 1 - T1 - (a3 x¢) (12b)
and

axT-c-cxTra=(axg)- [(traceT) 1 -T1. (12c)

These formulas can be derived either by using eqs.(6b) and (5) or (5a) or
by scalar multiplication of egs.(5e), (5f) by c. Again substituting T - Vb
yields the following vector-analytical identities:

3=V uesgeVh «a

~ ~

[(Vv-b)l-vbl-(axc) (12d)

axVec-¢cxVb+a=(ax c)« [(v+5h} 1=¥b]. (12e)

~ ~

These two identities can also be obtained by scalar multiplication of
eqs.(5g), (5h) by c. This completes the Tist of three-vector relations.
For the sake of brevity, three-vector formulas involving partial differen-
tiation have not been considered. Section 4 gives a systematic list of

vector-analytical identities.




4. SYSTEMATIC LIST OF SOME VECTOR-ANALYTICAL IDENTITIES

The identities listed here contain two or three different vector fields
and only first-order derivatives. Scalar fields, second- or higher-rank
tensor fields, and integral theorems are not considered; they should be

1~1.1

looked up elsewhere . Part of the identities listed have been derived

in Secs.2 and 3; the others are well-known 1'11. The reader is reminded
that the V operator only operates on the next field quantity to its right,

except where otherwise indicated by brackets.

The first five formulas follow from partial differentiation (and some al-
gebra), viz.

Va-h)=Va-b+vb-a, oL
V(@ xb) =Vaxb-Vbxa, (L2)
Ve(ab)=(V-3)b+ta-vw=(V-a+a-V)hb, (L3)
Vx(ab)=(Vxa)b-ax?b, (L4)

Ve(axb)=b-(Vxa)-a- (Vxb). (L5)

Here the divergence of a dyadic product is defined by the components

0
(v - (22)]k =5'“" (a‘ibk) > (L3a)
X
3

and the curl of a dyadic product has the components

3
v x (2R = €imn 2~ (2P (L4a)
m

The next six identities are purely algebraic in origin, viz.

vVe(ba-ab)= vx(axbh), (L6)
Vb+-a-a-Vb=ax(Vxb), (L7)




= 12 =

axVh+ (Thxa) =la- (Vxb)ll-(Vxb)a, (L9)
axVb-(axW) =1x[(V-b)a-ub-al, (L10)
vhxa- (Wbxa) =[(Veb)a-a-ublxl (L11)

Equations (L6) to (L11) were derived in Sec.2. Of these, egs.(L8) to (L11)
are useful as auxiliary formulas (see Sec.3). When using egs.(L10), (L11),
one should remember that eq.(2a) holds for the vector products of the unit
dyadic with a vector.

The conventional formulas for V (a « b) and V x (a x b) are obtained by
combining eqs.(L1) and (L7), viz.

V@ +b)=a-Vb+b-Va+tax (Vxb)+hbx (Vxa), (L12)

(bevVv+Veb)a-(a+V+Vea)b. (L13)
Combination of eqs.(L8) and (L10) yields
axp+xa=lx[(V-p) a-Tb-al
+[a+ (VxDb)]1l-2a(Vxb), (L14)
while combining eqs.(L9) and (L11) yields the alternative expression
axV+xa=lx[(V-p)a-a- bl
+[a-+(Vxb)ll-(Vxb)a, (L1567

where eq.(2a) should again be remembered.

The following three-vector identities, all of algebraic origin, were de-
rived in Sec.3:

arVb-gc-g-Vb-a=(axg) (VxDh), (L16)
fcWEEEexiy-a=g kg (%s Dbl . (L17)
3+ VWxc-¢c-Vbxa=[(V-Db)l-Vbl-(axc), (L18)
ax%-c-gcxvVh-a=(axg) [(V-h)1l-vb]. (L19)




23

Lortz has observed that egs.(L17) through (L19) can all be derived by

appropriately multiplying the fifth rank tensor

ijﬁmn - ij €omn T Gjﬂ €onk ¥ 6jm €nke T Sjn €kam =

with the vectors a and ¢ and the dyadic Vb. This null tensor can be derived

from the well-known null tensor of fourth rank, viz.

§ + 8. 6

2 Skm * Sjm Skg 0

Njkkm = 5kp Samp ~
by an appropriate multiplication with a further e-tensor.

The identity

23+ -c=a-V(b-g)ltc-V(b-a)-b-V(a-g)

b(bxg) s (Txa)+(hxa) s (Txg +(axg) - (Txb)  (L20)

is also listed; it will be used in Sec.b.




5. PLASMA PHYSICS APPLICATIONS

Some applications to plasma physics (MHD 12 and guiding center drift

theory 13) are presented in order to show the use of several of the above
vector identities.

In MHD and guiding center drift theory velocity fields v (X, t) are often

applied in a special way s

. When a plasma in a slowly time-varying, spa-
tially inhomogeneous, electromagnetic field is investigated, it may be ad-
vantageous to consider velocity fields v that "conserve magnetic field
lines". This means that all points coinciding with a field line at a certain
time will also coincide with one field line at later times, while they are
moving according to the field v. It is even more useful to consider velocity
fields v that also conserve the magnetic flux through an arbitrary surface
(or any surface element) that (locally) moves according to the field yv. The
conditions that v must satisfy in order to be line conserving and/or flux
conserving are most easily derived by employing some of the new formulas of
Sec.4. When an appropriate v (x, t) has been determined one may speak of
"moving magnetic field Tines" or, if v can be identified with a material ve-
locity of the plasma, of "frozen-in field lines".

We start by deriving the (total) time derivatives of moving line, surface,
and volume elements. For a line element d% one has

di = dg - W , (13)

as can be seen by writing dg = Xo = % and using a Taylor expansion of v.
Computation of df is more involved. Let us define

df = dg; x dg, . (13a)

It then follows that

L

d'&l + Vv x d&z + d&l X (d'Sql_‘2 . Vx)

d&l « Vv x Q&Z - d&z © UV x d£1 (13b)
However, di is required in the form

df = 1 - df , (13¢)

~



with T an appropriate dyadic. This transformation can be performed by means
of eq.(L18) yielding

df = [(V+y) 1-vy] - df =(v-y)df-vy-df. (13d)

~

Finally, by defining
dr = df - Q&3 (13e)

one easily derives the well-known result

dt = (V + v) dt . (13f)

Let us now derive the condition to be satisfied by v (x, t) in order to con-
serve the magnetic flux through an arbitrary surface F that moves with v.
The flux is defined as

P = J B . df , (14)
F
with B the magnetic field, v - B = 0. It follows that
dlj) BE .
— = f (—— + Vo VE) « df + f B - df . (14a)
dt F at F
On inserting qi from eq.(13d) this transforms to
dy 3B
— = f [—— +ve-VB+B(Vev)-B- Vl] - df . (14b)
dt at
On applying eq.(L13) to transform the integrand one obtains
dy BE 'I
— = f [—— -V x (v x E)J - df . (14c)
dt ot
The velocity field conserves magnetic flux through an arbitrary F [i.e.
dy/dt = 0] if the integrand vanishes identically, viz.
B
Vx (yxB)=—, (14d)
ot

which is a condition for v (x, t).




Comparing this with the induction law

o8
= -cUxE (14e)
at

yields an alternative condition for flux conserving velocity fields, viz.

Vx[E+=yxBl=0. (14f)

For given fields B (x, t), E (x, t) this may be solved 18

to yield a whole
class of permissible velocity fields. It should be noted, however, that the
special ansatz
C
lz.‘LEEEzE*E’ (149)
where‘ylE is the well-known E x B drift velocity of charged plasma particles,

~

is only compatible with eqs.(14d) and (14f) if
(vx,.l::,u) EO 2 (lqh)

which is a severe restriction of admissible electromagnetic fields. Here E,

is the vector component of E parallel to B, i.e. E = (E - b) b, with
b = B/B.

Next, the condition on v (5, t) for conservation of magnetic field lines

will be briefly derived. Let us consider a field of line elements df paral-
lel to E at a certain time to’ i.e.

B x dg

0 (15)

at tO for all x. In order that eq.(15) hold at the later time t0 + dt, when
the Tine elements have been moved according to v [eq.(13)], the requirement
on v (x, t) is given by

d

g (B xd2) =0 (15a)
or

e

(—+x-vg‘)xd&+§x(d£-v£)=0. (15b)

at



By using eqs.(L18) and (15) this assumes the form

3B
(—'“+£-VE—"B“-VF\L)xd‘&=O, (15c)
ot

which can be transformed by means of eqs.(L13), (15) and Vv « B = 0, yielding

3B
{43 - Vox (v x E)] x dg, =0 . (15d)
ot

This condition on v says that the vector component perpendicular to B of
the square bracket must vanish. Combination with eq.(l4e) yields

[V x (E+<yxB)]xd=0. (15€)

Comparison with eqs.(14d) and (14f) shows that the conditions for line con-
servation are less severe than those for flux conservation. The result
agrees with that obtained by Newcomb 18. We have directly proved only con-
servation of parallelism of line elements to field lines. However, usually
the field of line elements will uniquely determine the magnetic field Tines.
Then global conservation of field lines is also secured by eqs.(15d), (15e).
This is seen by explicitly doing a global analysis where "magnetic coordi-
nates" 13 a and B are employed to identify magnetic field lines. Equations
(15d), (15e) are so recovered. Note that the logic of this derivation is
clarified by avoiding the usual supplementary condition Va x Vg = B; i.e. o
and 8 ought not to be specialized to become "flux coordinates".

13

The last example is taken from guiding center drift theory “~. There vector

expressions are derived for the magnetic moment of a particle gyrating in
20

an inhomogeneous magnetic field “°. These expressions contain several terms,
of which we consider only the following one:
m2CV“ ~ A
Sy, = - (bxv)=+Vb+v . (16)

Here b is the unit vector in the direction of the B field, v (t) is the par-
ticle velocity, v and v, are the components of v parallel and perpendicular

to the direction of B, taken at the position of the "guiding center" 13 of
the gyrating particle, viz.
.-anE.«Y;.p.,’ (163)
v Ev-(veb)b=-bx(bxy). (16b)




One is interested in averaging 6uq over the azimuthal angle of e This can

be done either by expressing the r.h.s. of eq.(16) by Cartesian components
or by using eq.(L20), which simplifies considerably here because Q,.gl, and

W=bx v, are mutually perpendicular. Hence
20 - Tb ey e (T -y (V)
. VJ_2 é o (V x E) : (16c)
Because the azimuthal averages of w « (V x w) and v - (V x 31) are equal,
the final result reads
2<w Wb -y>=-< b (Vxb), (16d)

where the pointed brackets indicate the azimuthal average. This completes
our short list of simple examples from plasma physics.




6. CONCLUDING REMARKS

When tables of vector formulas are compared with tables of integrals, deri-
vatives, or series, it is surprising to see how comparatively fragmentary
the vector tables are. It is hoped that the present paper may contribute
somewhat towards a more complete documentation of elementary vector ana-
lysis.

Problems of notation may have played their role in impeding the development

of a more complete set of vector-analytical formulas. We think it useful to
discuss briefly a few pertinent points. Obviously, one or two principles are

needed to arrive at a rational and consistent notation on which most authors
could agree. Firstly, a "principle of permanence" ought to be observed in
questions of notation. As an example, some authors 7 have the V operator
operate on all field quantities to its right without indicating this by
brackets. Such a notation should be avoided, however, because it contradicts
the usual rules of differential calculus. The convention of this paper is
recommended, namely that the V operator should only operate on the field
quantity immediately to its right, unless otherwise indicated by brackets.
Brackets are properly used for indicating the sequence in which operations
are to be performed, not to denote operations. Other uses only occur in
special instances (where confusion cannot arise), e.g. to denote averages,
expectation values, matrix elements, matrices, binomial coefficients,
Christoffel symbols, etc. The use of brackets (rather than dots and crosses)
to denote scalar and vector products . leads to unnecessary difficulties in

vector analysis and should therefore be avoided. If possible, a notation
should at the same time be clear, economical, flexibel, descriptive, and
mnemonic. For instance, it seems better to write a - Vb than (av) b or

(a + V) b. Inspection shows that the notation a « Vb has a unique meaning,
uses a minimum of symbols, is analogous to its component representation, and
is easier to use as a part of more involved expressions.

Some authors 21 have proposed abandoning symbolic vector notation altogether
and using only components. However, the obvious advantages of symbolic nota-
tion, viz. economy, descriptiveness, heuristic value, and mnemonic effect,
may bestow preference on symbolic notation whenever it is applicable.
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