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Abstract

The electrostatic drift instability arising from the reduction of shear damping, due to

toroidal effects, is assumed to be the basic source of the anomalous electron transport in
tokamaks. The Maxwellian population of electrons constitutes a medium whose adiabatic
nonlinear reaction to the instability (described in terms of an effective dielectric constant

of the medium) determines the stationary electrostatic fluctuation level in marginally un-
stable situations. The existence of a random electrostatic potential implies a fluctuating current
of the Maxwellian electrons which creates a random magnetic field and a stocasticization

of the magnetic configuration. The application of recent results allows the calculation of

the related radial electron transport. It is found that the confinement time under stationary
ohmic conditions scales as 1'2'/" and is proportional roughly to the cube of the geometric
dimensions. Moreover, it is deduced that the loop voltage is approximately the same for all
tokamaks, irrespective of temperature and density and to a large extent, also of geometrical
conditions. These results are characteristic of the ohmic stationary regime and can hardly be

extrapolated to other heating regimes.




1. Introduction

In our simplified model the plasma is considered as a medium of individual fluctuating
particles on which a sme‘ared.out collective (Vlasov) electrostatic configurotion_is super-
imposed. Then any (in general non-collective) cha‘rge Fllucfuafion around an electrically
neutral equilibrium will take the general form
& = &(v ¢) + ﬂ’# (1.1)
Here o represents the collective Vlasov configuration, associated with a givrﬁffreq‘uency w;
6’4,% describes the ;real additional charge (in addition to o‘b and répfeseﬁting then effectively
the departure from the Vlasov configuration described by o ) excited by the individual
particles of the medium, fluctuating in the presence of the collective field. Thus one can
formally introduce a dielectric constant & which cdhnecfs the total charge e Qith the
additional charge a’,# fhrougfr the relation o’l-_-‘o’.zgi/g . Hense g describes.the reaction of
the medium of free particles to the collective field and n;nusf be such as to satisfy the relation

¢ - o(w ) = &6 | N i




After introducing the Poisson equation 6" = ~A&f (&, is the total charge density multiplied
by 41 ) the equation above can be considered as a definition of the dielectric constant &

in terms of the potential ? . We shall only consider situations with one undamped collective
mode with a single frequency, so that dispersive or dissipative effects are ignored. More
precisely we assume that a reference frame exists in which &(w), (f) is static, thus repre-
senting a true collective equilibrium. This is an essential requirement for applying the methods
of statistical mechanics in order to calculate the fluctuations 6"“ around the static equi-
librium & by means of a suitable canonical average (Minardi, 1979; see also Section 2 of this

paper). We also assume that the collective part @ can be expressed up to second order in ?

in the following form

‘(”}‘f) = ""f ‘31& (1.3)

where the reference potential must be so chosen as to satisfy the condition

<2 =0 (& » denotes the average over a wavelength), namely such that

£22.25 @',)2 ¢*> (1.4

Eq. (1.2) then becomes
(3
| +.L-cf+.!.~cr=..£A‘f
t A
f A 21’;
or after Fourier transform

O A A T

where & is represented in Fourier space by the matrix £i B =& BE 1 t+& E. 2

(&, is the part resulting from the linearization in ?) 30 one obtains from (1. 5)

ol (1.6)

\ !
—— o = e
L'}; V .h'z?n ?i)' (f?- K’ ki Ea) 'ﬁ’. R kl ‘fx’;

In the case of a Maxwellian equilibrium ( 67~ 2 £xp e.tf/Te ), X, is equal to the
Debye lengthY"Fad £ , which is positive, describes the reaction of the thermal background




; _ . 2
to the presence of the mode k. But situations frequently exist in which ’l, is negative
and correspondingly a real value W, H-hof w,R can exist such that &, vanishes (in general A,
will depend on w and R ); moreover, in the neighbourhood of R, the linear part of the di-

electric constant can become negative

Ay ' (1.7)
(% )5k <¢

The corresponding modes K = km*‘AR are inherently unstable linearly (Minardi 1974,
1979), the mode kh'-' lx‘l., being the marginally unstable mode. However, in a situation
in which a population of particles constituting a thermal background exists, one may have
a reaction of this population to the collective growth, which modifies nonlinearly the
dielectric constant in such a way as to damp the instability by counterbalancing, in the
second order of P the negative value of the linear part &, . The system may then
stabilize in a new inhomogeneous equilibrium with a finite amplitude ¢ . nonlinearly
neighbouring to the originally unstable equilibrium and which corresponds approximately

again to a situation with a vanishing dielectric constant, as is described by (1.5) with

£ =0:

2

Acr‘—:-;{?‘f*z—i;;‘f (1.8)
An example of this situation occurs in the case of the marginal modes of the collisionless
drift instability in the slab model and in the absence of shear (Krall and Rosenbluth, 1965).
In this case the electrons are essentially Maxwellian, responding adiabatically to the
collective field, and provide the required thermal background. The linear dielectric constant
becomes negative in the unstable neighbourhood of the marginal point, defined by R=
- h_m + AR with A R>0. The nonlinear response is positive with the coefficient

given by the expression (Minardi, 1979):

Cw
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Here ‘A::

response being negligible at second order with respect to the electron response, provided

is determined only by the Maxwellian electrons (with charge-e), the ion

that the phase velocity of the mode along the magnetic field is much larger than the

thermal velocity of the ions and much lower than that of the electrons.

The reactive process considered above, which leads to the saturation of the instability,
can be naturally interpreted in terms of the statistical thermodynamic description of
Vlasov equilibria in interaction with a thermal background which was developed recently
(Minardi, 1979; for a more complete description of the statistical formalism see Minardi
(1981), Section 2). Some aspects of the statistical procedure will be indicated in the next
Section. The instability corresponds to an equilibrium with minimum entropy while the
saturation is associated with a neighbouring configuration with maximum entropy. This
configuration agrees qualitatively, near the marginal point, with that described by the
solution of the nonlinear equation (1 8) The statistical method predicts the following

mean square average for @ (see Section 2)

R

512‘ _ e prok (1.10)
Te 27e“m k,‘

This  equality shows that :f’: decreases with increasing density, according to the
intuition that the reaction of the electron medium should be more effective at higher
electron density. The same scaling is obtained from the relation between wave-number
and amplitude resulting from the solution of the nonlinear equation (1.8) in the neigh-
bourhood of the marginal point (see Minardi, 1979, Appendix), namely for AR/R <2«R-"Zt. As
we know, this solution describes a pure Vlasov equilibrium, with vanishing dielectric
constant. However, the stabilizing reactive process of the medium, as described by the
thermodynamic formalism, is not necessarily related to the rigorous vanishing of & .
Indeed, as can be seen from the equation (1.5) for £ , one obtains in general a non-
vanishing dielectric constant. Accordingly, outside the immediate neighbourhood of

the marginal point (for Ak“\??. h\'f; ), the behaviour (1.10)of ?‘ as a function of R ,
predicted by the thermodynamic method, differs from that of the nonlinear solution (1.5)

with & = 0. Then the non collective contribution (described by the term with&% 0) of the
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reactive medium to the saturation level cannot be entirely neglected outside the marginal
point and although the thermodynamic method cannot be applied too far from this point (the
reactive process can be overwhelmed by a too strong collective instability) it can never-
theless include situations more comprehensive than purely Vlasov equilibria. In fact, outside
the marginal equilibrium, one can have a collective configuration which is not an equilibrium
in the sense of Vlasov, because it interacts with the free particles of the thermal background,

but which is still in thermodynamic equilibrium with the fluctuating background.
Although in the slab model the instability above is stabilized by shear, the result (1. 14)
remains physically significant in the light of recent results (Connor et al., 1979;
Chen et al., 1980; Johner et al., 1980; Hesketh, 1980), whichv show that the toroidai
effects in tokamaks can create localized modes not subject to shear damping and which are
then unstable, basically reinstating in this respeét the shearless situation of the slab model.
In the present paper the equation (1. 10)is rederived on the basis of our statistical procedure,
in the case of the toroidal drift instability mentioned above and applied to calculate the
fluctuation level near the marginal point. The random character of the electrostatic
potential o which is implicit in our statistical treatment, is automatically reflected
in the random character of that part of the electron current which depends on the
fluctuating ¢ . Thus this current creates a random magnetic field and, in view of the
high = number of the in;fobilify, this results in a stochasticization of the magnetic con-
figuration. One is then in position to apply the recently developed theory of the electron
transport in a braiding magnetic field (Rosenbluth et al., 1966; Zaslavsky et al., 1972;
Rechester et al., 1978; Krommes et al., 1978).
The resulting electron thermal conductivity in the collisonless diffusion limit depends in
general on the detailed structure of the instability near fh.e marginal point. However, in
the case of ohmically heated fokqmaks in a steady state, one very simple and general

property emerges : the loop voltage in the ohmic steady state of all tokamaks is independent
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of the temperature and of the magnetic field and only depends, although not strongly,
on Z and on the geometry of the machine. The calculated loop voltage is ~ 0.5 Zz/3 Volt.
The magnitude and the scaling of the electron thermal conductivity with respect to density,

temperature and geometry agree reasonably with the observations.

2. Stabilization Associated with Maximum Entropy

We introduce here, for the reader *s convenience, some basic relations derived from our
statistical treatment of a collective plasma equilibrium in interaction with a thermal back-
ground. Let the configuration be described by an electrostatic potential ¢ and a so
called information variable & , whose definition implies the physical characterization
of the system under study. In our case & is related to the charge density and will be

defined later.

In the statistical formalism a pure Vlasov equilibrium corresponds to absence of correlations
between the fluctuations of the part of & pertaining to the thermal background and the
collective potential of this equilibrium. This implies that the electrostatic interaction energy
between the collective configuration and the background is vanishing. On the other hand
one can define in the formalism a parameter % which plays the same role of a temperature
and which is related to the fluctuations of the background by the relation
2 v
T = (2.1)
Zoy

)
where Aﬁ"-m is the mean square average of the fluctuations of & in a cell with volume AV,
excited by the individual particles of the medium. Considering variations of the collective
quantities such that ¥ is kept fixed ("isothermal" variations) one finds that the interaction

energy is expressed by the relation

2= = @+ AoV

C}N =T 2 j("“‘?"‘f ¥~ %o (2.2)
v

where the reference potential ¢, is taken equal to the space average <47 satisfying (1.4).

In the linear approximation, identifying & with the total charge density o\ =- A«f and

remembering (1.6), @.‘.t is equal to the opposite in sign of the total electrostatic energy




of the plasma (including the medium):

) ' ' \
¢, = o 56.01(?-%)” ¥ (2.3)

@ vanishes at the marginal equilibrium &, = 0. Thus outside the marginal collective equi-
librium, @ describes an energy transfer from the background to the plasma related to the

"isothermal" fluctuations around a pure Vldsov (collective) equilibrium with zero inter-
action energy.

In general, taking into account the nonlinear terms and remembering (1.2) and (1.3) the

total electrostatic energy of the plasma is given by the relation

_5,:( S'e“:(‘f“f.)m-‘ 8l jo‘ de ?)ngfj,6+l'cr o\ .‘fLX? cp (2 4)
v

v

According to the physical interpretation of the interaction energy (2.2) given above in the
linear case, we now identify, also in the nonlinear case, the total electrostatic energy
(2.4) With‘§h§ . Comparison between (2.2) and (2.4) shows that this is possible provided
that the definition of the information variable b4 is extended fo the nonlinear case as

follows:

() (2.5)
The entropy of the system, considered as a statistical assembly of cells with volume AV ,

characterized by the information variable & , is expressed by the equality (Minardi, 1979,
1981):

e i~ ~ Y >
S )= e PO P

where %=<¥7 is the space average of & . Using the equalities (2.1) and (2.5), S takes the form

5(&%) =- zA*'vas’.‘ y(d +1\5;cg+_\:,\1(<f 6> ))oW (2.7)

where 6"=-'AT. For illustration sake let us assume that the system is perturbed by a single




-9-

mode, say ¢ =%+ ¢, mz; +¢ A E'; (ffo is O(q%)cnd can henceforth be neglected).
After substitution into (2.7) one finds, in the case § <0, that S has two extremum, a
minimum for ¢, = ?'. o, which corresponds to the unstable homogeneous equilibrium and
a maximum for (f + tf 9’1;’. IE ‘ which corresponds to the saturated ampllfude of the
originally unstable mode. Summing up with respect to the two signs of R, we obtain the

saturation level already given in (1.10) in terms of the Fourier transform ?? :

i ¢4
Lodal L1 gig)tdan]efe T itk
\V 1‘;& ) 1’;&(?\ crt) T2 v l 2"(311 E» (2.8)

In the case & >0 at the contrary, S has only one maximum for ¢ =0 and the system is
thermodynamically stable.
The probability distribution of the fluctuation amplitude Py is given by the basic relation
P(?l) ~ exp S( "fl) of statistical mechanics. After averaging (1.5) over the
distribution P and taking into account the quasi-neutrality condition (1.4) (which fixes ‘P;l'
for K= 0 ) one finds that

-———'_— k’

Zptrpte

£ =0 (2.9)

for every R . This result shows that, consistently with our procedure above, the system
fluctuates around the pure collective equilibrium associated with a vanishing dielectric

constant.

3. Linear Dielectric Constant of Toroidal Drift Modes

We start from the perturbed charge density related to long wavelength ( ka‘: <« ()

drift waves in a large aspect ratio torus (Hastie et al., 1979)

2
R e
N .

L
where a?'; = LM Gquz'_ B ) R= Ng /'I— (N , toroidal wave number) 9= 7.3/239,

=qE& =1, /R'r, Y= Te,/TE X 'Zq: :.'r:u'n/Jq,’ 4= ('l/q)ﬂlq/d'b’ W= kT;/eBZ—n, =%
with Jﬁi(ﬁ,} =M (integer) and B s the poloidal angle measured from the outside

of the torus.




Introducing the transformation (Connor et al., 1978)

¢lbe)=5 ‘“f/""‘"y/"‘f/;*?- cho fy- 7.[]”’57/47 (3.2)

where % is an arbitrary phase, one obtains the following expression of o’ in the
0

F representation :

“’af‘-) l Yo e - }Z‘af'-
vt

L
_ tnen :.4.) i #
S = e (r*u [ 7+

g R a, u *rw (3.3)
=i b, ‘f;j (m(qz +"[’)+ 391 1(%(7*7J+%41&(’(1"UD%“)} F
Limiting our considerations to zero order in the parameter h = khlaﬁx
(where 9/90: acts on F ) one obtains (Hastie et al., 1979)
= L1(wk)F
where
kS
(Jk Wt'n o Ua}%ic {———-luk/fU wk}
n. a), -W
w k) '—M) ( % c.) .»rw)
U (n,w, h/ - = B" [,77- + Z o (CV)(’QP’I‘) T At (4(*"],))} (35)
wktatv.s - O fm
$2 oo
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We are interested to express & outside the marginal collective equilibrium,
remaining in its neighbourhood, but neglecting all damping effects. In this case F

is an eigenfunction with eigenvalue 7\” of the equation

M [1«“ ] U(“l:kw“’m)]F:' Z (3.6)

where the Landau damping term, which should appear in the 2.h.s.  (Hesketh, 1980)

is omitted; W, , km are real marginal values of w, k determined by A :1(‘1{‘, “).
Then one has from (3.4) D’F( ) m) 79} (w ] )F"O Now let R = ﬂ + dk
correspond to an arbitrary non collective fluctuation outside the marginal Vlasov
equilibrium while @ and F, which specify the collective equilibrium, are fixed (@
change of F outside the marginal equilibrium described by (3.6) could only be due

to damping). The increment Ok is associated with a change A(ﬂ F) of ¢

given by the expression
(W, k= km*Ak) = A(—QF) =(l-\-0-)r = (3.7)

_ 4nén ("‘*‘3‘5)%.) (4 )+ d( h)-Ula m)}F.—:

Te

G ey, Wa U(R)" Wi w,(k) [ +1) [+Anam |t ]
= T (‘Y ) ()7, B W M(’??) ! (,??G)

¢

P (- B)0r)d




Transforming back into the ¢ space, one has the following expression of the charge density
fluctuation (non collective) in the neighbourhood of the marginal collective equilibrium with

the marginal frequency W,

en iy (R)-w (% «, (k)-« (k. ‘p)
hid (r+U(k/}{;_/_._(_"f) s ———“)Z‘:——-——'/éo:lﬁf 1w‘9/z-9_%¢)f

72 T % (k/ * 'f“)m

o n
~ (% -é‘/(/'é%r)ﬂf'f?’ (3.8)

o (ou )=

The first term in the parenthesis is the same (noting that w,, =~ w, (oP,“/ ) as the
leading term in the slab model (Minardi, 1979). The second term represents the toroidal
correction and the last term is a contribution of second order in #a..

The linear dielectric constant is now obtained from the definition (1.2) which can be
written as follows

’ (., k) ‘ 6(w,, k.} 3 (W, k)

£ = |- = ="

! v, "B . K@t
Dt

(3.9)

where in the last transition we have used 2@/ o -‘.k°<( and applied the limit
2 qt .
k 10 <« | 2’[) is the Debye length). Retaining the leading term only, one finally obtains

from (3.8):

£| . Te Wy, R"(a"u) 'j( ) i ( ‘)
(3.10)

-

te
where lj(k)i R [ Rue = lim(cnl9+§m'u9{{ +0(X a‘.)

RM R+Y km

One has %(R)é B-—EEE provided that c‘.'“é—i- . Here Ru, is the lower marginal point
2%

of B , as(3.10) only holds in the limit k,zaf'—-yﬁ . It can be shown (Hesketh, 1980),
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that the system is unstable for R > K, and eventually an upper marginal point kH

exists (the point kH was proven to exist for small values of Z,L/R @o.%)(Hesketh,
private communication)); in general we expect stabilization of drift waves for Ra 2|

The exact Y (R) is then expected to be of the form

- R
y(1) =22 g (k5907 9)
”» (3.11)

with 502) 20 for ku<k < }ZM . The dielectric constant £, is negative in

the unstable region so that the saturation mechanism outlined above can be applied.

4, Saturated Toroidal Modes and the Stochastic Magnetic Field

The equation (2.8) expresses the mean square value of the random variable @ in
terms of the linear dielectric constant &4 , and is directly applicable to the present

situation. One has that

z’/{; Rﬁ’(o‘*—'}z ‘2' ‘ = .2_‘%;:;; ht(4t'+l)(l("1’) ﬁ(h)

(4.1)

_:ékf_f _E__ kl(g"“)(nr)g(k)—é Te hz(qt.g-l) R- Ry
Y 2nedm nem, “ (4.2)

where (h- hm )lkn@ ] and + was assumed of order unity. In order to include all

R one must perform an appropriate summation with respect to the unstable

R in the range kh< k(km.
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Since the electrons behave adiabatically, the electron axial current in first order is
j, =4 “f/Tr Clearly 7, is a random variable because: ¢ is random.
The axial current J/ creates a random radial magnetic field 52 z 4y 9?/&7}

whose mean quadratic value will be

B = —Z L ._f. 8"4 (°+l)7;' (rr:)j[‘/

2 k"

(4.3)

2

Let us neglect all effects related to the current profile. Noting that 4 —3/271?7/

where 4 is the safety factor, one obtains

Boe BY U+ )Te 7ol 5(/

B" wetn Rq 1 (4.4)
In order to see whether the fluctuations of B’L give rise to stocasticization of the
magnetic field, we examine the stocasticity condition (Krommes et al., 1978)
X 51
A (4.5)
where 8 and the island width W qre given by the relations
A - "
Az 2 w=4(usu}
4 (4.6)

Here Lg = Rq /é is the shear length, R = Ml’L)A'&is the radial extension of the mode

~7
around the resonant surface %, and A  is the number of excited resonances

N

]

£, = anig [dn,

) AR, (4.7)

where AM is the number of the excited poloidal modes; one can put Z‘; 4 'f_z A/ﬂ,
Y/



because the E,, modes are supposed to be closely spaced and the connection
length in the parallel direction is 27{@1 ;i 4 Ry is the spreading of ’l”(t]:w'ﬂi)lak

along the extension A% of the mode

d ,
Al -1
"Rt o, de (4.8)

The stocasticity condition then becomes

>[ ¢ / “.9)
314 Ko MM g g :

-9
Since bz 10 | this condition is well satisfied in practical cases for [4 M|~ IMl2 So,

5. The Radial Transport Coefficient for the Electrons

The electrons attached to the braiding magnetic lines are subject to an anomalous radial
thermal conductivity whose form was recently investigated in a number of papers
(Kadomtsev et al., 1978; Rechester et al., 1978; Krommes et al., 1978). We shall use the
form given by Krommes et al. (1978) in the collisionless diffusion limit (vf < @ J Vv

collision frequency)

(9:1)

2.1 3
Xe 7 e 4 . ZMJMHL

Here the M summation is performed with respect to the poloidal modes on the resonant

surface with M = 3(%).” RA&A R" =0 . The k“ integration takes into account

that the mode extends radially of an amount A%z 187 centered at the resonant surface.




We shall assume for simplicity that the poloidal and radial extent of the mode are

-l !
comparable, namely 3k ~ Y .st/’l . Hastie et al. (1979) have constructed with the WKB |
3, tf3 |

method explicit solutions whose radial extent is 4 2= (37,1,,‘ ]z) (4 M
For simplicity we take 42 ~ ZZ-/Ile) . This is a good approximation for general

cases. So one has

db) 1ty - R 2 ) -
X¢=Va¢”71“zzmj !cl_?.-}bh"v*“m meoﬁ

ar
e + 1/ Te
=20 XGRT,, B = S :/,,f:g_/ Z, 40
5.2)
Here g — j”
Z;Mb =2%>o% :T%‘ (M' ) ( 7‘0 a;,im)é,j,'i,’p):
= %{(Aﬂg“dli;";g)
5.3)
where k, = 1(’&,)]\/{../7_’
g(AN. ! Bl '9) -..ZN(”N (ﬂt’m.l mépq/ ,8’) 5.4)

AN s the number of toroidal unstable modes, which, in a marginal situation, satisfies

the inequality AN/M‘ <& | . In order of magnitude one has agl/z so that

o

Az

W
(/v'w)

(1]

plod) > 7

(5.5)

=M

AV (sN+]
A (44
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The number of excited modes AN depends on 9 and on the parameters £.,97 8

While ¢ and 7" are not varying essentially fromone machine toanother, the other parameters
do not depend directly on temperature and density, but, in the case of &  and 4 , only
on their gradients. However, 4N and {(M) depend indirectly on T and . because the
parameters can become dependent on these quantities through the transport equations.

The present theory rests on the assumption that the linear structure of the instability is

such that, when coupled with the transport equation, the profiles adjust themselves in

order that the system remains in a marginal situation and in a quasi-steady state.

This adjustment is reflected in the form of the dependence of g(ﬂ”} on T and m and

is related to the detailed structure of the instability and of the transport. One cannot
exclude, however, that as a consequence of some general property of the equilibrium
equations, the global plasma behaviour becomes insensitive to the incertitude

on the knowledge of g(A}/;m, T) . We shall see in the next section that this is indeed

the case for the ohmic steady state.

Recalling (4.3) the electron thermal conductivity takes the form

e h_h
X& = 8(%)_9_ (ﬁ’;l)(’!’fl) T; -,: g(AM'V\,T)

e Ry & B mRna

(5.6)

Expressing T in ke (TR )):B in Tesla (B-r) and the lengths in meters, (5.6) becomes

3’1. ‘/L ‘Il
1 -
X, = 34 lonbl:{)_(_'?‘_).- T ik A; g(dl&f,-n.,T)

m o B, m R4 (5.7)

where A; is the mass number.




6. The Ohmic Steady State

In steady conditions the equation for the energy balance of the electrons takes the form

(- - A onedd)

dn o 6.1)
or approximately
AP Y (M'/if@;/}&
In R ‘Tt B Rk i

where T;: 7:','\/3-'5,,1‘)(3— is the loop voltage and L _ is the characteristic length of

r

the temperature gradient. We now use the Ohm law

v
K 29K, (6.3)
with
-1y =Y .
=600 10 2T Sy A (T cuery)

and the relation j = B/Q‘]{Ri to obtain

3
T | 1 24 2 ¢
£ o (¢19) 10 2" (4
B VY (1% 10”20k 2 (4 /1 (6.4)

Substitution into equation (6.2) gives

L o3
V= [33 0z R f M)(’M)(!,A)t/ J |

9 k8 (6.5)
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We see that, as a consequence of the cubic root, the dependence of fhe loop vol togeV
on the geometric and physical parameters is rather weak. Moreover, as already observed,
g(djf/ and km; 2;  do not depend directly on T and . , but only on their
derivatives and on the safety factor ¢ , whose value is about the same for the different
machines. We conclude that under ohmic stationary conditions associated with given profiles,
all tokamaks tend to assume the same loop voltage, independently of temperature and density
and to a large extent, alsoindependently of the geometry. Thisagrees with the experimental results
(Pieroni et al., 1979; Coppi et al., 1979, for an analysis of the experimental results see
Duchs et al., 1980).
One can grossly evaluate the order of magnitude of AN and ;(d}f’ from the relation
AN = (Rma‘: - k‘m o.;) 'L,/qaL~ , by taking kH c~ | and, say 4.5 fo'n. R Q-
Then AN = 2, /22 a; 220 and from (5.5) one has /(A'AV 2 loo.
The typical value for V" obtained from (6.5) for characteristic tokamak parameters is

U3
Va 0.5Z Volt. The typical value for the average temperature,evaluated from (6.4), is propor-

1 2
tional to ( 5279‘ )B and is about 0.7 keV (B= 8T q % K/'z« =3),

We can now reexpress the thermal conductivity and the confinement time by inserting

(6.4) into (5.7). We obtain n 43 ahy
iz 7 lalB (1k a') ; ]
E #x& . [(“ﬁ .w G(AWJ /3@3 /3 -,:Zz. (A:Z) 3

vlisio (qr.e) 2 , ( ke, meten)
T (A 2)’3

12/\=l7 and Sa v |




This scaling is in fair agreement with recent experimental observations

(Leonov et al., 1980). A weak dependen;; on the parameters | Em,% 9, e,
could arise through the term (1 k,,‘E‘J . whose form is related to the detailed structure
of the marginal instability. In the case studied by Hesketh (1980) one has Ry, & fl

for &,  small (Hesketh, private communication) so that T becomes g -independent

in this case.

7. Conclusion

In our picture, the drift universal mode, destabilized by toroidal effects, is nonlinearly sta-
bilized by the adiabatic reaction of the background of Maxwellian electrons to the linear in-
stability. This reactive process can be described in terms of a dielectric constant of the me-
dium whose nonlinear positive part describing the nonlinear reaction of the thermal electrons
counterbalances the inherently unstable negative linear part. This process results in the existence
of an electrostatic potential steadily fluctuating with a mean square amplitude inversely
proportional to the density of the reactive medium of electrons. The anomalous electron trans-
port is related to a stocasticization of the magnetic field created by the adiabatically
fluctuating axial electron current j’ ~ 4 ecf/-r; . It should be noted that the stabilization
mechanism involves the nonlinear interaction of a collective Vlasov mode with a thermal back-
ground and then it goes beyond the validity of a pure Vlasov model. From the point of view of a
fundamental theory this interaction implies that the two-particle correlations cannot be neglected
and that in the nonlinear domain the plasma cannot be treated as quasi-neutral . For this reason

we do not expect that a scaling law derived on this basis could agree with the Connor-

Taylor (1977) constraints,

E,!..,_. e
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One of the basic assumptions of our theory is that the system is able to adjust itself
automatically to a marginally stable situation and to a steady state. In the case of an
ohmically heated plasma this leads to the simple property that the loop voltage is

i
essentially the same for all tokamaks. The scaling of the confinement time as m 7;
is also a consequence of this assumption. In the ohmic case the existence of a marginal
steady state is rather independent of the detailed structure of the linear instability and the
above assumption looks reasonable. It is not clear that the same holds in the case of other
heating regimes. In the latter cases the detailed structure of the instability may play a major
role. We conclude that our results on the confinement time cannot be extended immediately

to these regimes and that, before making any extrapolation, it is better to wait for the

experimental results of the machines now under construction.

The author is indebted to Prof. D. Pfirsch for many helpful discussions.
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