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Abstract

The linear tearing mode stability is evaluated for 1D equilibria in cylindrical
geometry with arbitrary current profiles. This treatment combines the energy
method and the Ritz-Galerkin procedure using finite elements. Particularly
for hollow currents with two singular q surfaces extremely accurate results

showing the coupling influence of both singularities are obtained.




Introduction

A major problem in tokamak discharges is the stability of resistive perturbations. In
this class the most dangerous ones seem to be tearing modes, which cause the plasma

to break away from the magnetic field. This unfreezing of the plasma from the field
takes place if the perturbation fotlows the field line at resonant surfaces. A rigorous
formulation of the linear stability of a plasma fluid with respect to resistive modes is
given by applying the energy method as shown in Ref. /1/. The question of stability
can be decided from a Hermitian eigenvalue problem - as in the case of ideal MHD

/ 2/ - for which powerful numerical techniques /3/ exist. This energy method holds
for configurations with arbitrary cross-sections in the usual tokamak ordering. The per-
turbation has a multihelical character linearly coupling single helicities at resonant
surfaces through the two-dimensionality of the equilibrium. A general 2D stability code
is at present being developed. The inclusion of several singular surfaces instead of only

one is a crucial step in this program.

In this paper the numerical minimization of the energy functional is restricted to cylindri-
cal equilibria with circular flux surfaces but with arbitrary current profiles which are
bell-shaped and, in particular, have dips and holes /4/. Our treatment combines the
energy method and the finite-element representation of the perturbation, as already
used in ideal MHD (see, for example, /3/)tokamak codes. It is emphasized that the
principal value of the energy integral at the singularities, as introduced in /1/ and /5/,
is evaluated analytically and thereby kept out of the computation. The basic result of
this’paper, apart from easily and accurately reproducing known results for bell-shaped
currents /6-8/, is that it affords precise numerical investigation of radially coupled
perturbations. This happens when the safety factor has the same rational value at diffe-
rent radial points in the plasma column, e.g. for hollow current profiles. The rigorous

treatment of several singular surfaces in the perturbation is an important new result.

The tearing mode stability in cylindrical geometry has been investigated before, as can
be seen from the literature /6,7,8/, where the shooting technique is applied. This

method /6-8/ consists in matching a regular solution for the radial displacement with



the singular solution around a rational g-surface. This, in our opinion, is not suitable
for several singular q-surfaces. The initial value scheme for stability as applied in /9/
is presumably not suitable for very weak resistivities as in high-temperature plasmas

and the accuracy may be questionable if the number of tearing layers is large as in the

case of shaped cross-section tokamaks.

The plan of the paper is as follows: Section || formulates the problem and describes the

method of solution. The results are presented in Sec.lll and finally discussed in Sec. V.

I1. Method

We consider resistive systems in a static equilibrium. The equilibrium magnetic field B

and current density J are given by

B= VzxVy + B, Vz
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J= lwve = L Ux B

~ ~
where V2 is the unit vector along the plasma column with length L . The poloidal

flux Y satisfies the equilibrium equation
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with an arbitrary pressure profile Ps () Moreover, Bz and the electric field
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where 4 is the resistivity, are constants in the equilibrium. The equilibrium quantities

are represented either as polynomials or as pointwise data. For

1(‘{) == Ct"f'.

we obtain from eq. (2)
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For pointwise given profiles, especially for experimentally given ones, the current
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density is interpolated by cubic splines from which the other equilibrium quantities are

exactly calculated.




The linearized stability equations are derived in /1/ on the assumptions of incompressi-
bility, transport of resistivity by magnetic surfaces, and tokamak ordering. Minimization

of the energy
. » I g
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with the constraint J \ Al tde =l .

leads to the Euler equation
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where A is the z component of the vector potential of the perturbed field and

A is the weighted surface average of A. The chosen norm ensures a finite energy of the
magnetic perturbation. Mathematically, the use of the L norm is allowed due to the fact
that the solutions of the Euler equation behave near singular surfaces like x L lxi

so that for a finite domain the solution will be finite everywhere if it is finite at one point.

The sign of A governs stability.

In the case of a Fourier expansion for A in a flux coordinate system y, 8, Z
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where the surface quantity q denotes the safety factor. For 1D cylindrical geometry -
as assumed in this paper - the different harmonics in the series (7) decouple. A is
taken to be zero at the plasma boundary. In order fo simulate a plasma-vacuum-wall
system within this theory one need only make the resistivity very large and hence

the current very small in the "vacuum' region.



The extremum of & W is evaluated by means of the Galerkin form, where A is expanded

into finite elements
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with constants L leading to a matrix eigenvalue problem
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In the usual cylindrical coordinate system ~, 8,2 the matrix elements of the

potential and kinetic -like energy matrices are given by
«
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where r = 0 denotes the position of the plasma centre, and r = a the plasma boundary.

Note that the energy matrix has singularities at singular surfaces, ~N° = §;
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There the integrals are evaluated as principal parts.

On the assumption of a non-vanishing gradient of the safety factor at the singular

surfaces
(14) _d%if_)_ - ?’(Si) :l: 0 for all i,

all integrals then have a finite value. It should be emphasized that the condition (14)
is practically non-restrictive since the q profile can be shifted a little so that eq. (14)

is satisfied.




The applied finite elements are of the lowest degree compatible with the integrals,
i.e. linear elements. These functions are continuous and differentiable but the

derivatives have jumps and are defined as follows:
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Near singular surfaces the function A exhibits logarithmic-type behaviour. It also has

The boundary conditions on A lead to o(,:'

a steep gradient which is best represented by the elements defined in eq. (15). The
evaluation of the principal part around the singularities is done as follows: For an

integrand of the form ;(w') / (‘u’hn) , where £(+) isregular, we define

M
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where ]:(*')is continuous acrossall singular surfaces. The principal value of the second term is ob-
viously alogarithm. Thisallows to compute f j{“"),(%«.) intermsof [ L(") dv and logarithms
near the singularities. For numerical convenience the mesh points Yy are chosen not to coincide
withthe S: v +5. forall y and ¢ . Large cancellations of the different terms in L (~)

(eq.(16)) for ¥« $; areavoided by further expanding q(r) and (r). For example, one gets
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By these procedures all matrix elements can be easily and accurately computed by using
a four-point Gaussian quadrature. The choice of linear finite elements leads to tridiagonal

. - ’ R
matrices M, ,+  and N'V.v' » where M and N are non-zero only if v = v, vi4
]

The lowest N i eigenvalues together with the eigenfunctions are computed by using the
package SIVI /10/.

It is emphasized that the lowest eigenvalue in the system is always approximated from




above as the number of finite elements is increased. By means of a convergence study

A = L (N,.) with extrapolation for A to an infinitely dense mesh, the question

of stability is decided with extremely high accuracy.

Finally, let us remark that a real physical growth rate /A = A “-) remains undetermined

and would require additional analysis.

I11. Results

a) One singular surface

First we want to demonstrate the capability of our code by reproducing known results for

monotonically decreasing current profiles. The equilibria of the form
i =j,a-&H"

(18) with K= 42
q(a) /q(0) = ® +1

are dealt with in, for example, Ref. /&/.

We confirm that there is always a m = 1 tearing mode instability if the q = 1 surface is

located in the plasma, which can be avoided by choosing q (r=0) greater than one.

We also find that the most dangerous modes are then the m = 2 and 3 perturbations.

For m = 2 the marginal points with respect to stability are q(0) = 2.0 and g(a) = qq (R),

in agreement with Fig. 35 of Ref. /6/. These marginal points are easily computed for

e =1, 2 ... upto 11 using only 40 to 100 radial mesh points, where, for example,

a case with q(o) = 1.999 is unstable and one with g(o) = 2.001 is stable. These instabilities can

be stabilized by flattening the current around singular surfaces pointwise. Figure 1 shows

the current density and safety factor profiles with unstablen=1, m=2andn=2, m=3

modes. By changing these profiles as indicated by the dotted lines (Fig. 1) one can

achieve stability to all (n,m) modes forn=1, 2, 3, 4and m=1, 2,...10, independently

of the position of the perfectly conducting wall. A typical eigenfunction is displayed in

Fig. 2 for an unstable n = 2, m = 3 mode. Its derivative has the maximum value at the

singular surface represented by the dotted line.




b) Two singular surfaces

We now discuss configurations with two singular surfaces. This happens for "hollow"
temperature and current profiles frequently observed in, for instance, PLT  /4/.
Such profiles can easily be mocked up by modifying the function in eq. (18) to the

form

K
(19) I = 14, (4 +f3f7q‘) (4- "z/"‘)

A pronounced dip at the centre occurs for i = 3 and B = 10. These profiles are shown
in Fig. 3. From this equilibrium other equilibria are derived simply by multiplying ¢
and Y by a factor ¢ , leading to shifted q values but leaving the profile shapes
unchanged. The positions of the resonant surfaces, 5, and §, , are thereby modified.
For q (r=0) =2.50 the singular surfaces are located at r/a = s, = 0.30 and

1
r/a = sy = 0.73.

For this equilibrium there exist two unstable n =1, m = 2 modes. The corresponding
eigenfunctions are displayed together with their derivatives in Figs. 4a) and 4b). These
figures show finite values for the eigenfunctions between S, and §, and steep
gradients at §, and S , which means strong radial coupling due to the two singu-
larities. The most unstable mode has a minimum between $;, and S, , whereas the
second unstable mode changes its sign as is to be expected. The contributions to the

energy & W come in both cases especially from the regions near the two singular surfaces.

In order to understand this coupling in more detail, let us change the scaling factor G~

and label different equilibria by their q value on axis, 9y Increasing 9 above 1.5, the

q = 2 surface enters the plasma from the boundary r = a. This configuration is stable
owing to the proximity of the resonant surface to the boundary, which has a stabilizing
effect in & W through the term |V, Al" . It turns out that an unstable mode can develop
only if 9 is greater than 1.73 with S, € 0.93, the corresponding eigenfunction being
concentrated around S, . By increasing q, above 2.0 a singularity §, is created

close to r =0 and an unstable eigenfunction peaked around §, occurs. These two modes,




both of the type of Fig. 2, are decoupled until 9 is increased up to values larger
than 2.4. Note that for q, = 2.8 8, coincides with a zero of the gradient of the
current density, which diminishes the destabilizing influence of the singular surface

Finally, S, and S$,coincide and for 9 7 2.82 the instability completely disappears.

c) PLT profiles

A profile with a pronounced current hole in the centre is taken from PLT data. The
corresponding q value drops from q, = 8.9 at the centre to below 3 in the middle and

then increases again to a value of 4.9 at the surface, as is shown in Fig. 5. This con-
figuration has two unstable n =1, m = 3 modes. One mode has no radial node and is
concentrated around the inner singular surface §, = 0.29, and the other mode has a radial
node and sees both S and S, (32 =0.72). It is interesting that the small change

in the current, indicated by dots in Fig. 5, stabilizes this second mode.

As done before, this equilibrium is changed by a scaling factor 6 shifting the position
of the resonant surfaces. For 9, between 8.5 and 9.9 there are two unstablen=1, m=3
modes. One of them is similar to the mode plotted in Fig. 4a with a somewhat smaller
coupling between §, and §, , and the second has the typical shape of the function
shown in Fig. 4b. For q,, greater than 9.9 the current gradient at the inner singular sur-
face §, becomes smaller and finally vanishes for G = 10.65. The eigenfunction is
everywhere finite and now has no minimum between 5, and §, , as shown in

Figs. 6a-c. At 9, = 10.65 the eigenfunction becomes smooth at S, , having only one

steep gradient at  §, (see Fig. 6b) instead of two (see Figs. 6a-6c).

In general, the contributions to & W come not only from the regions near the singularities
but also from farther regions, as can be seen from Fig. 7. Stability, therefore, cannot be

determined by treating singularities independently.
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V. Conclusion
The main achievement of this paper is the elegant and precise numerical treatment of
stability of linear tearings with many singularities. This is due to the combination of

the energy method and the finite-element representation.

The basic results published on cylindrical tokamaks in the case of bell-shaped current
distributions are easily recovered. Particular attention is devoted to current distributions
with holes having several singular surfaces of the same rationality as found in some PLT
experiments leading to multiply peaked and radially coupled tearings. The stability of

which is computed with very high accuracy.

The essentials of this calculation can be extended to the case of shaped cross-sections,
the difference being mainly the poloidal coupling of modes. This two-dimensional code

should be available soon.
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Figure Captions

Fig. 1 Safety factor q and current density j profiles of an unstable ( ) and

a stable ( --=-) equilibrium.
Fig. 2 Unstable eigenfunction A (n =2, m = 3) with one singu lar surface at r/a= 5|

Fig. 3 Safety factor q and current density profile j = jo(] +10 r2/02) (1 - r2/c2)3

with two singular q = 2 surfaces

Fig. 4 Unstable eigenfunction A (n =1, m = 2) and its derivative dA/dr for the

equilibrium shown in Fig. 3, obtained with 200 radial mesh points
a) the most unstable mode ( A = - 74.3)
b) the second unstable mode ( A = -65.7)

Fig. 5 Safety factor q and current density j  taken from PLT data having two (

and one (----) unstable (n = 1, m = 3) modes

Fig. 6 Unstable eigenfunction A (n =1, m= 3) and its derivative dA/dr for the

dotted equilibrium shown in Fig. 5, obtained with 200 radial mesh points

a) 9 = 10.0 ( A =-46.9)
b) q, = 10.65 ( A=-65.2)
c) 9, = 11.30 (A =-146.9)

Fig. 7 Pointwise contributions to the energy obtained with 200 radial mesh points
for the PLT equilibrium with q, = 11.30. The index i denotes integration

from r to rH_]
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