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Abstract

Magnetic field diffusion processes in fusion experiments are
investigated experimentally and numerically. For this purpose

a computer program was developed to calculate eddy currents in
electrically conducting structures of general geometry in order
to determine their magnetic fields. The program is based on the
finite element network method (FEN), in which the structure con-
sidered is divided into directed, finite elements. Each element
is then treated as a branch of a three-dimensional RL network.
After R and L in all of the network branches have been calcu-
lated, the network differential equations represented in matrix
form is solved. The time behaviour and distribution of the eddy
currents then follow directly from the solution vector of the

transient branch currents.

The FEN is tested in the case of vertical field diffusion through
the toroidal field coils of ZEPHYR. For this purpose an electrical
model of the coil configurations was constructed on a scale of
1:5. The scaling laws applied are described. A detailed descrip-
tion of the measuring method used is given. The results of the
calculations and measurements are compared for various frequencies
of the vertical field.

+)Guest from Istituto di Macchine-Politecnico di Milano
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1. Introduction

Investigation of the physical properties of a mainly & -particle-heated plasma was
to be the principal aim of the ZEPHYR experiment. It was intended to achieve the
ignited plasma state by adiabatic compression of a plasma preheated ohmically and
by neutral injection /1/. First the plasma is built up by ohmic and additional neutral

injection heating in a region of relatively small toroidal magnetic field (TF field).

This not ignited plasma serves as the starting point for the adiabatic compression.

By increasing the vertical equilibrium field (BV field), the plasma is shifted towards
the high field region of the toroidal field magnet (TF magnet), resulting in increased
plasma pressure. To get ignition conditions, e.g. primarily high plasma temperature,
the compression time of the plasma should be shorter than or at least in the same range
as its energy confinement time TE. The BV field therefore has to be raised while
changing the plasma from its uncompressed to its compressed state to a value twice as
large as before /2/ in a rise time t,. < Te =100 x 10_3 ¢. With regard to power
consumption limitations of the poloidal and vertical magnetic field systems and to
problems of diffusion of the BV field info3the TF magnet the lower limit of the rise

time of BV was chosen as to =100 x 10 " s.

The use of adiabatic compression of the plasma in ZEPHYR calls for horizontally
elongated cross-sections of the vacuum vessel and the TF magnet (Fig. 1a, 1 b).
The favourite concept for the TF magnet was the so-called "tape-wound" magnet
/3/: which minimizes the bending moments at the throat of the TF magnet by using

conductor tapes of copper clad on tapes of cold-rolled stainless steel.

To reach a sufficiently long flat-top time of the TF field, liquid nitrogen cooling
of the TF magnet is used (inertial cooling). For the same reasons the OH and VF

coils are cooled down to liquid nitrogen temperature at the beginning of the current




pulse, too. Flat-top times of 7s or even longer can therefore be achieved without any

external cooling during the shot.

During each regular experimental run transient eddy currents in most electrical conductors
will beinduced by time varying toroidal and poloidal magnetic fields. These eddy currents
generate stray fields that may influence the plasma behaviour and interact mutually and
with the external magnetic fields, resulting in electromagnetic forces. In the case of a
hard plasma disruption when the plasma current decays in an anomalously short time

interval these forces may reach critical values.

Among thé most important transient phenomena associated with eddy currents on the

components of an ignition tokamak will be the following:

- Hard plasma disruption if the plasma current decays in a time interval equal to or
even shorter than the toroidal time constant of the vacuum vessel. The resulting
electromagnetic forces on it are the dominant ones and govern the design of the
vacuum vessel /4/.

- During the electrical break down phase of the plasma mostly the toroidal eddy
currents on the vacuum vessel generate stray fields that may prevent breakdown
of the plasma.

- Adiabatic compression of the plasma calls for a fast rising VF field, resulting in

2)

considerable stray fields™ . They may cause delay of the BV field buildup inside
the TF magnet coupled with a serious distortion of the field geometry of BV. The

latter may diminish the stability of the plasma against vertical displacements.

Electrical feedback systems for controlling the vertical and horizontal plasma
position may also suffer a critical delay between the control current through the

2)

feedback coils and the magnetic guide field inside the TF magnet™ .

2)|t is supposed that the VF and feedback coils of DT burning machines are situated

outside the TF magnet for remote repairing and maintenance.




Theinfluences of the different eddy current phenomena mentioned above were estimated
for ZEPHYR first by rather simple analytical calculations. Especially for the penetration
of the BV field through the TF magnet the results of these estimations lead one to expect

serious distortion of the BV field during adiabatic compression of the plasma, as is shown

later.

Analytical estimates of the penetration of BVZ through the tape-wound TF magnet of
ZEPHYR are given in Sec. Il of this report. Experimental investigation of the diffusion
problem in an electrical model of the TF magnet are described in Sec. I, while the
methods and some results of a new FE network code are represented in Sec. IV. The
theoretical and experimental results are compared and discussed together in Sec. V.
The main goalof this work was to check the FE network code for its practicability in
complicated structures in tokamaks systems, as the TF magnet of ZEPHYR would be,
and to prove the accuracy of its results. As a result nearly every problem of magnetic
field diffusion through the components of a tokamak system can be treated with the 3 D

Fe network code presented later.

2, Analytical estimate of B, , diffusion

During plasma compression the time varying BV field excites saddle currents on the TF
coils that are mainly responsible for the delay of BV owing to their stray fields. These
saddle currents form the current mode with the largest time constant denoted as ground

mode and areschematicallyrepresented in Fig. 2.

Since the stray field of the ground mode dominates in most regions inside the vacuum

vessel, the time behaviour of the vertical component BVZ of B,, can be approximately

%

described by a simple transfer function inside the TF magnet

2s)= pol7) s[4 o] [1+ 75T "

with {;(7) = spontaneous part of BVZ

¢ il = time constant of saddle currents.




The response of BV to a linearly rising current in the VF coils follows from eq. 1:
z

B(t)=a(#) tea@[1-£4(F) I e -1].7 ©

The term o+ £ describes BVZ (t) as it would be without TF coils, and a((;") is a

local function. In the limit ¢ 3>7¥the time dependence of BVZ simplifies to
By (t)= a(¥)[t=(1- £ (7)) 7] ®

and the time constant ‘76 of the vertical field diffusion into the TF magnet can be

derived from eq. 3:

o= T[1-<Fl(¥)>] “@

It is possible to estimate Tp and fo/;") for the real toroidal geometry of ZEPHYR
by adapting expressions given in /5/ for cylindrical geometry with an equivalent radius

Tw that represents the poloidal cross-section of the TF magnet /3/:

Vo POL. cross-section of the TF magnet )

2 POL. circumference of the TF magnet

The spontaneous part < ﬁ/;)) of BVZ can be approximated by using eq. 5:
__L__. 072 __
[’{"(”)] fot 2 Ym (71— e/L) ("( 7-¢/L)
with L(?) =2'1T‘R/np

R = major radius

])Z(S) can be derived from an electrical equivalent circuit consisting of two resistances

and one inductance,




Np = number of TF coils
L= € = gap between two TF coils in toroidal direction

0 = thickness of copper of a TF coil.

Cnly the copper windings of the TF magnet have to be considered here. The casings
of the TF coils and the stainless-steel part of the conductor tapes exert a negligible
influence on the BV diffusion because of their high resistivities.

The time constant ,']B of the diffusion of B,, can be written as /3/

Vz

- Mo, Vw43 %
To U8 i o Wiy &

§ = resistivity of copper

%“= volume of copper of the whole TF magnet

%1= volume of TF magnet.

Jp Wwas estimated for the tape-wound magnet of ZEPHYR with eq.7 as
7, =63x 1073

using the resistivity of copper at LN2 temperature:

60 =0.25x70"7 2m.

The spontaneous part & fo(;'.)> of B,, was estimated with eq. 6, yielding, for

Vz
instance,
at R=1.35m fo =0.68,
and at R=2,02 m /0 =0.84.




The time constant J~ of the saddle currents on the TF coils can be derived from eq. 4

together with eq. 6

s 260x 1072 ¢

Such simple estimates as derived for the BVZ component cannot be made for the hori-
zontal component BV of BV for two reasons. Firstly, the BV components are much
smaller than the changes of the BV components caused by the eddy currents during
adiabatic compression. Secondly, the time constant J of the saddle currents is
larger than the rise time of BV. Large changes of BV are therefore expected which
may even surpass the equilibrium values of BVR and may critically alter the vertical

field index. The delay Jp in the build-up of B, can be tolerated owing to the

\
large spontaneous part /o and can be compens%fed by overloading the VF coils.
Whether the field index will critically be changed or not during adiabatic compression
or whether feedback stabilization does really work cannot be decided by analytical
estimates. Either FE calculations or measurements in an electrical model of the TF

coils are thesuitable means of yielding sufficiently accurate results.

3. Measurements in the electrical model of the TF magnet

3.1. Scaling Laws

All electromagnetic phenomena which are described by Maxwell equations can be
transformed linearly in time, space and electromagnetic quantities if the material
properties do not depend on frequency or on the electric ormagnetic field strengths
in the range of interest. The tensors of resistivity and of dielectric and mag-

netic susceptibilitiesare therefore constants which may only depend on space coordi-
nates. The linear transformations fo space coordinates, time and frequercy can be

written as




rraae ? (8a)
t’ = .fz-t (8b)
v =27 8¢)

All the transformed quantities are denoted by stars. By inserting egs. 8 a and 8 b into
Maxwell equations, several fransformation laws and similarity theorems can be derived

from the fact that Maxwell equations must be invariant against the fransformations 8 a
— —
and 8 b / 6 / with regard to linear transformation of the electromagnetic fields E, D,

. »
B and H:

E:(7t) =e- E; (¥5t") 9a)
D;(*t) = -Df (77 t"] (9b)
B:(7t) =b-Biv" ") 9c)
H: (¥ t) =h-H (7 ¢") ©d)

—%
The equation of definiton for D

D (7 2) e[ + Xy (%) ] E;(7,2) 0
is transformed with eqs. 9 aand P b to
DN (T ) &[Sy + K ()] Ef(PNE) G
with the result
e=o () (;"’) X (r) (1b)

From the equation of definition for H

Bi (V,t) = pag [y + X (#) ]+ Hj (7 ,t) 12




together with eqs. 9 ¢ and 9 d one gets

X ix M, 2x X, 5x ,2y h
B (+7 )=/«a[v7,-+X;;/-£-/]'Hif‘”:L‘)‘L‘

with the results

M
h=b (30 [7"‘) = Xp; (¥) (13b)

Faraday’s law

b Vi EnlPt) == 28,7 8) (14

is transformed to

X X X -’k r'] b'a
(N e - - 4
Ein Vi Ec (T ) ?B (v ¢ (14a)
using egs. 8a, 8b, 2a, 9¢, 11 aand 13 a.
The statement of invariance of eq. 14 yields with eq. 14 a
b-2=q & (15)

The transformation of Ampere’s law

Eiju Vj Hy (7t )= 6 (v Ej(¥,1) +;% D7 ¢) (9

yields

_.x ~>x X ey X ol 9 X, X ‘,d.a
qu HL( f ) u{g’)EI/r ,t)n *?Q‘/Y;f)a—g- (16a)



The transformation of eq. 16 into eq. 16 a must be invariant, yielding

d'=a b (17a)
JE)=Gi(F) 1 S (P pqt?) 2 am
The first similarity theorem can be derived from eqs. 15 and 17 a:

a=0 (18a)

The fransformation of electrical resistivity is deduced from eqs. 17 a and 17 b:

§i(7%) = 57 (F)ea |  a=a 19
It immediately follows from eqs. 11a, 13a, 18a and 15 or 17 a that

e=d=b=h (20)
The transformation of the current density follows from eqs. 9 a and 19

» X ox yx ' e -7

(P E) = i (Ft) (a-b)

and from Poisson’s law one obtains the transformation of the electric charge density

Se :
E(rP5t )= go(Ft) (a-b)”" 21

In principle, it is possible to study any problem of electrodynamics in an electrical
model by using the equations derived above. But eqs. 18 a and 19 impose severe
restrictions on the choice of materials and of the scaling factors of the space coordi-

nates and time.




=00 =

Since egs. 18 a and 19 describe the correct transformation of the displacement current
—>
D, their use is indipensable for all problems of wave propagation and in cases with

large capacitive currents,

The capacitive currents are negligible compared with the other eddy currents in most
cases of magnetic field diffusion through electrical conductors. The omission of the
displacement current in Ampére’s law is therefore justified in describing the BV diffu-
sion through the TF magnet, especially owing to the low upper frequency limit of

all transient phenomena, but the transformation laws are somewhat changed.

The transformation factors F for all electromagnetic quantities with or without consi-

deration of the displacement current are represented in Table 1 with the notation

A'(FXE)=F: A(V L),

A" = transformed quantity

A = original quantity.

AF,HY B H E D D i 12 x* x" e T ot
2N DR TR S TR
—1'5740 b b | b i b ba ba ba . a .
F I P B T - 2
b | b ba b-a ba a2 ba  ba? o B -
o I B R 1 R
b | b 52,54 |b HRZ b  bA o o m o]
Table 1




The framed quantities in Table 1 can be chosen independently ]). The number of free
variables will increase from two to three if the displacement current is negligible and

will considerably simplify construction of an electrical model.

But it schould be kept in mind that by using only the equations for D = 0 the capacitive
currents on the original TF magnet are not accurately transferred to the model. The
mismatch between the correctly transferred capacitive current j'" and the capacitive

current j‘- transferred with D = 0 is found from Table 1 to be

’ a,2 ’ x
)C :-—07 . }C (22) :

and has to be checked in any case.

3.2 Electrical model of the TF magnet

The parameters of the electrical model of the tape-wound magnet were fixed with the

transformation factors for D = 0. Three factors F of Table 1 can therefore be chosen

independently of each other.

The geometric scale factor a was chosen as a = 0.2. It is large enough to get accurate
space resolution of the measurements but it is sufficiently small to limit the expense for

the model and for the power supply of the VF coils to a reasonable amount.

The transformation factor of the resistivity ol is given by the ratio of copper resistivities

at room temperature to those at LN2 temperature:
a=¢/e= ¢(293°%U/¢(80°K)= 6.9

1)

For 5’7! 0 the transformation factors 1/b and a can be chosen independently, whereas
in the case D= 0 either 1/b, & and aor 1/b, a and 42 represent a set of free

variables.




The transformation factor of the frequency _Q-1 can be deduced from Table 1 by the
relation 2 = d/oz, yielding 2 gl 172:9;

Since the VF coils of the original are also cooled down to LN2 temperature at the
beginning of the current pulse and are made from copper, like the TF coils, the same

transformation factors F were used for the VF and TF coils]). The numbers of windings

of the VF coils in the model and in the original are the same, while each TF coil of
the model consists of 34 windings compared with 43 windings in the original. But

2)

the complete copper thickness of a TF coil is correctly transformed .

Because there is no suitable material with a resistivity 6.9 times as high as that of
stainless steel at LN2 temperature, each copper winding of the model TF coils is
insulated against its neighbouring windings by 0.8 mm thick hostaphan foil which

replaces the virtual model conductor of stainless steel.

Two sources of error currents may arise from this technique. The resistive currents
in the stainless steel tapes are not considered in the electrical model, and the
capacitive coupling between two windings will be diminished by the increased
thickness of the insulating sheet. This increase of the insulator thickness between
two windings of the model decreases the cppacitive currents between them and
counteracts the increase of the capacitive currents caused by the incorrect

transformation using D= 0, which yields from eq. 22

a?/nR* =12« 10?

It was shown that even at the highest measuring frequency these capacitive currents

) During adiabatic compression the VF and TF coils remain near LN2 temperature and
the transformation factors are assumed to be independent of time.

) The change of thickness of a single copper tape will be small compared with the
complete thickness of the coil, if the number of windings is changed from 43 to 34
because of the thickness of the copper material available.




- 13 =

are negligible compared with the eddy currents in the copper, the eddy currents in
‘the stainless steel tapes like-wise being negligible. Schematic drawings of the vertical
(plane A-A) and meridional cross-section of the electrical model with TF coils are

shown in Figs. 3 aand 3 b.

3.3 Measuring technique

Two principal measuring methods can be applied to study the diffusion of the BV field

through the TF magnet in an electrical model.

Real-time measuring requires that the VF coils of the model be supplied with a
current pulse which is similar to the corresponding pulse in the original experiment
and needs broad-band measuring equipment. High current pulses through the VF coils
are necessary to get a sufficiently large signal-to-noise ratio of the measurements
with magnetic probes. It is difficult to shape the VF current pulses in the model
proportionally to those in the original and this method is therefore inflexible and

cumbersome.

A second possibility is to feed the VF coils with sinusoidal currents, The resulting
sinusoidal magnetic field components can be measured with narrow bandwith equip~-
ment, resulting in large signal-to-noise ratios at small supply currents through the

VF coils. It is necessary to measure at different fixed frequencies across the frequency
band of interest to determine the transfer function & (¥, W) of the TF magnet. Once
6 (¥*,W) is determined, it is possible by Fourier synthesis to simulate the behaviour

of E:/ (9, 1) as a response to a large variety of current pulses Ty (1) through the

VF coils, The investigation of BV diffusion through the TF magnet was conducted

by the method of measuring Fourier components and is described in the following.

The 6 VF coils of the model (Fig. 3 a) are series connected and are supposed to be

supplied by a current

¢c0
Iv(f) =;f-r-[1'v(u7)‘e‘“’t dw ., (23)
-c2




- 5 .
without the TF coils, IV (t) generates a vertical magnetic field BV (> 1) with

the Fourier-transformed components

o L. s +e0 . "
BVR’b(rl t)=fpﬂ'2 (r)'IV(t) ’zifr 'f BSR,? (Y" M))'eJu’ dw (4)
-

with B, (Fw)=fy,(¥) I, (w), 25)

Va2

The vertical component of B\‘/’ is denoted by Bvo , and the horizontal component by
A

BVOR with Fourier components proportional to I, (W).

—>

With the TF coils inserted, IV (t) generates a magnetic field BV (v; 1) with the
components BV (* t) and BVZ (¥ t). Their Fourier components are no longer

proportional to IV (W) and can be written as

B"a,z (v, w)= fn,z(?)'rv(“?)' gm(?, w)- e Y2 (i W) 250)

or

By 5(%10)= By, (70): 30, (¥, ) el oy

Quantities that belong to the horizontal component BV are denoted by the suffix R,
those belonglnag to the vertical component BVZ by the suffix Z. The functions 3&3 )
Y R, Z and BVR, - are real quantities. In the low-frequency limit w = 0 the vertical

magnetic fields with and without the TF coils (or any other conductors nearby) are

identical:

- 4 -

It follows from eq. 25 together with eq. 26  that




L5 -

9}2,2{;?""’)'IBVR,}(?'“))I/IEVR';(E 0) I

(27q)

(27b)
9,4,2({0)’7 "ﬂ,g(?l 0) =0 .

Four functions gR’ 9 77 P R and 'fZ have to be determined by measurements,

while I V(w) can be computed for any current pulse Iv(t) feeding the VF coils.

The Fourier components of the resulting magnetic field E:/ can be calculated with
—

eq. 25 and the real-time magnetic field BV(;'; t) has to be computed by Fourier

synthesis:

+09
1 - jwt
Bmz(?: ﬁ’if'l"'f Bva.z",“’)“’w oiieionte I Rk 05)
¢ -0

The frequency dependence of ? R, 2(1':, w) and )0 R,Z(;" W) was destined at

six fixed frequencies by supplying the VF coils with sinusoidal currents of constant
amplitude at the six frequencies selected. Forty~-three measuring points (Fig. 3 a)
across each of the two vertical cross-sections A-A and B-B (Fig. 3 b) were selected
as lattice points in order to describe the space variables R, Z and the toroidal
variable 0. The lattice points of the plane B-B are generated by tuming the plane
A-A 11.25 degrees around the Z-axis. Measurements were conducted at every
lattice point for the six frequencies. It is necessary for the computation of the
Fourierintegrals of eq. 28 to interpolate the measuring points in the frequency

space by polynomials.

BVRG:, w) and sz(«(",w) were measured with two Hall probes which are adjusted
normal to each other. The output voltages of both probes are temperature stabilized
better than =0.13 %/OK, and the permanency of sensitivity of both probes was
checked in the interesting ranges of frequency and magnetic field strength to be

better than 1 %.

The two output voltages of the probes were measured with heterodyne lock=in




analyzers which were synchronized by a sinusoidal signal proportional to T V(w).

A schematic diagram of the measuring electronics is shown in Fig. 4. At the be-
ginning of each measurement the driving current through each Hall probe is set

to zero. In spite of the shielding and twisting of the probe feeds large noise signals
appear at the inputs of the lock-in analyzers which are induced by the time
varying magnetic field. It is possible to set these error voltages to zero with the
compensation electronics of Fig. 4. After adjusting the input voltage of the
lock=in analyzers to zero the driving current of the Hall probes is switched on

and the real amplitude and the phase shift against Iv(w) of the Hall voltages

is measured. The detection limit of this method is 0.01 5 .

Besides the electrical measuring errors there exists another source of error caused
by the incorrect geometrical adjustment of the probes. Since BV is much larger

than Bv inside the vacuum vessel, even small deviations of the B_ probe from

R
the horizontal direction causes severe measuring errors, especially in the region
near the horizontal midplane. The main adjustment errors of the two probes and

of the movable probe holder are shown in Fig. 5.

The two Hall probes are fixed crosswise at the top of a cylindrical rod of insu-
lating material. This probe holder is movable along its axis and normally to the
horizontal midplane of the model. Even if the probe holder is adjusted along the

R axis as well as possible, there always exist small deviations from the real R axis.

The deviations of the two-dimensional coordinate system R, Z describing the
measuring system from the real coordinate system RY, Z* of the electrical model
can be described by the two parameters A and AX, . These two correction
quantities are very small in our model, as is shown later, and can be neglected
in computing the magnetic field distribution. But they have to be used in order

to determine the correction angle Ay of the BR probe])

)

In principle, a third correction quantity has to be used for the probe holder,
but it isnegligible in all cases.

R




= 17

The adjustment error of the B probe is described by two angles 4 ¥ and Ar,

R
and that of the BZ probe by ad. Denoting all quantities in the electrical model

with stars and those determined with the measuring system without stars, the follo-

x X i
and B,, components are valid:

wing correction formulas for the B
x M i ¢ X x
BVR =BVR‘6074Y'6¢934}"" BVQ‘MLAY”BVR*B%‘AY (29q)
x X . x
BV? =3p§'m44)*8*'m6'0m447==3y2 (29b)

X
The angle & need not be specified since ,BV; )<< ‘BV; I and

all correction angles are small quantities.

Rearrangement of eq. 29 s possible with these assumptions:

[By'| =83 Yy =¥s (300)
IB,”=UBRJQ+(AH/'le1)2—215,?[-[32[4,&-609({?-7@)]% (30b)

x |Bal-2tn Yo -~ ay:|Bz] :0em ¥,
= arclan 2
f# [,BRI' 2 g ~oy- B3] 2 ¥; ]

(30c)

with By =|B,)- 0?4 ; Br =IB,;[-9M”‘ ; B;=IB;)-€"‘% :

It is necessary to determine 4 in order to solve eq. 30 . This can be performed

by using the measured BVR and BV components along the R direction at every 9
Z

lattice points in the planes Z =0 and Z = 2.5 cm.

The transformation relations between the two coordinate systems now have to be

considered which are given by

2 =ax, =R, tanx + R-sin & +2 w14 = 2 + (R-R,) tand+ax, (31
x L d . —

R=R crx -2 -nena = R (31b)

where R == R*
(o] o




= IBx=

We can write the relations between the real magnetic field components in the model
%

BV and the measured quantities B :
R, Z VR, z

Bo(R0)=Bp(R,2,)+B; (R 2])-ay

B.(R, 2,)=Bg(R,2,)+B; (R,2.°) - ay 32
B,(R,0) = B(R 2.")

B,(R,2,) =8 (R 2],

using the notations

"-z“m 0)=(R=R,) tan & + 4 X,
S =2)(R2,)=2%+(R~ ~Ry) tana + a4 X, (33)
. = 2.5 tm

Linearization of eq. 32 together with eq. 33 yields in the low-frequency limit
w = 0 the following fast converging iteration method for 4/, 4 X,,) oA

andB (R, Zz)

B 1Ry, %) = Ba(Re,2,)

85 (R, 0ray” +6 mu 2,)" 21 [Ru, /2.5 1«« 0)=0

A IW)

Bo(Ruc,2)[1 + 2, {R., 0)[2.5 ]+ B, (R, 2,) a¥ -qam“,zo)w

with 1 =0,1 ...
K =1...9.

Each iteration step includes the solution of 9 equations 34b (K =1 ... 9) with
the three independent variables &l , AX, and & by Gaussian error minimi -

zation.

(34q)
(34b)

(34c)




3.4. Results

The measuring technique described in Sec. 3 was first checked in the electrical model
without the TF coils. The measured magnetic field components of this so-called
"vacuum case" were compared with a reference magnetic field. This reference field
was numerically computed with high accuracy by using the exact dimensions of the
VF coils of the model. As an example the measured and calculated magnetic field
components of the "vacuum field" at Z =2.5 cm are compared in Fig. 6 without any

correction of the measured values.

A considerable improvement of the concidence of the BV values can be achieved,
expecially at the outer region of the electrical model, by using the correction method

of Sec. 3.
One gets the following correction terms for the "vacuum case" after 5 iteration steps:
ay=-0.027°, AX, =0.226 cm, A =0.18°,

The maximum deviation lA BV ’of the corrected BV component from the calculated
R R

one is
-2
|a B, | <6x1076,
R

and the maximum relative error of BV is
R

(IABVRI /BVR) #ing S 19
MAX

The vertical component BVZ of the "vacuum field" shows a systematic error (Fig. 6)

probably caused by the calibration of the probe or the other measuring equipment. We

used the computed BV values of all lattice points across the vertical cross-section of

the model (Fig. 3 a) to correct the calibration of the measuring channel for the BVZ

probe by Gaussian error minimization,
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The correction factor for the Bv channel yields
Z
K=1.037

with a maximum deviation of B

Vz

|a BVZI< 0.5 6

and a maximum relative error

/4 BVZ/BVZ | € 5%.

The diffusion of the vertical magnetic field through the TF magnet was mainly investi-
; o 1)
gated on a sector with 6 double coils ), but control measurements on a complete torus

were also mode.

Some uncorrected results measured across the plane A-A of a torus sector with 6 double coils
are shown in Figs. 7 to 12. The amplitudes and phase shifts of the BV component are
represented in Figs. 9 to 12 as functions of the major radius R with the measuring fre-~
quency as a parameter at two different horizontal planes Z=2.5cm and Z =7.5 cm.

The amplitudes of the corresponding BV component are shown in Figs. 7 and 8, while

4
the phase shift 5, of B, was measured to be nearly zero.
2 \5

With 6 double coils inserted into the model of the TF magnet, its support structure

Very small differences ( < 8 %) exist between the results for a complete torus and
a sector with 6 double coils. All principle problems of the B,/ diffusion through the
TF magnet can therefore be investigated on such a sector.
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is deformed somewhat, as can be seen from the correction terms.
) o
Ay=0.27", Ax,=0.23 , « =0.31,
which are somewhat changed compared with those without TF coils. These correction
terms are used for calculating the time behaviour of the BV field during adiabatic

compression of the ZEPHYR plasma. The results of these calculations are shown in

Sec. V.

4, Numerical calculation

The electromagnetic processes occurring on penetration of an electrically conducting
wall by a time varying magnetic field is described by the diffusion equation

4B =p-2x g_tg 35)

whereTB’is the vector of the magnetic flux density, /4 the permeability, and 2¢
the electrical conductivity. For general geometries of the conducting wall this partial
differential equation with given boundary and initial conditions cannot be solved ana-
lytically and can only be solved numerically with considerable effort /9./ . The

approximation method presented in /7, 8/ is therefore used here.

4,1 Finite element network (FEN) method

In this method the electrically conducting wall is divided into finite elements from

which an electrical network consisting of axial and transverse branches can be constructed.

Assigned to each axial and transverse finite element is a network branch having an ohmic
resistance R/_,, , a self-inductance L/u , and a mutual inductance L, to all other

branches of the network and the field-generating coils. The quanitties R/“, , L/u/,(, and
L/u v can be calculated from the geometry and position of the finite elements or coils.

It is then possible to combine the netwerk elements R,, , L/u/L i L/“, of all network




branches in matrix form to yield a system of ordinary differential equations for the

branch currents i/u. : /LL =1,1, n as a function of time.

The distribution of the eddy currents in the wall and their time behaviour can be
obtained direct from the branch currents. The final step is then to calculate the

magnetic field of the eddy currents. By superposing the exciting field on this field

for all times t, one obtaines the development of the diffusion process.

4.1.1 Representation of conducting wall as electrical network

A given, electrically conducting wall of thickness d is regarded here as being
composed of finite elements. Serving as finite elements are two sets of rectangular
plates superposed as in /7/, (Fig. 13 a). The plates aligned in the u-direction

(u plates) carry the u-component of the eddy currents, and the plates aligned
orthogonally to the others in the v-direction (v-plates) carry the v-component.
With the plates arranged as in /7/ the centre lines of all the plates form a mesh
network in which the u-plates are the axial branches, and the v-plates the trans-
verse branches (Fig. 13 a). The approximation method presented in /7/ was derived
for thin walls (d=» 0). It is now attempted here to extend the method to certain
thick-walled structures. For this purpose n, of the networks just described have

to be placed on top of one another and their respective nodes also have to be
connected with network branches in the w-direction (w plates), i.e. the thickness
d of the conducting wall is divided into N, layers, each having the thickness dp.

This yields a three-dimensional network which has n, nodal planes in the u-

direction, n, in the v-direction, and n., in the w-direction (Fig. 13) and has a

total of
12 =1 (R, =1)m, +(7,-1)12,7 + 17,7, (2, -1) (36)

network branches. It should be noted that curved walls are also allowed, the limi-

ting curve of the wall then being approximated by a polygon.



As will be shown later, the approximation of thick-walled structures quickly leads
to very large networks the numerical analysis of which taxes the storage space and
computing speed of present-day computers to their limits, For the problem concerned
here a restriction therefore has to be made. Consideration is confined to networks
without connecting branches in the w-direction, Between the n,, layers of a network
(Fig. 13 b) there are thus no electrically conducting connections, i.e. there is only
inductive coupling between branches of the various layers. By means of the FEN
method such networks primarily allow reasonable approximation of multi-layer walls
(e.g. winding form of a coil). The same applies to thick-walled structures which are

penetrated essentially by a normal component of the field,

4,1.2 Calculation of network parameters

From the finite elements of the electrical network in Sec. 5.1.1we now calculate
the characteristic parameters L/‘u)) , R/M, of the /u, ¥ =1,1, nnetwork branches.
First we calculate the inductances, which for /—L= Y are self-inductances and for
L # Y mutual inductances. Let i/,_,_ be the current in the /,L-rh network branch
(plate) and éum the magnetic flux which is produced by the current |/u, , and
which permeates the surface Fm defined by the branches s) o s, (Fig. 14). It is also
generally valid that

- 5> o -
B =rot A (B magnetic flux density, A vector potential) ) (37)

$=[B-dF 38)
£

With the Stokes theorem it follows that

— —» - -
?lm=f5/,-df=/raz‘/}“-d?= j’i“d; (39)
o j

Frn

The resulting loop integral can now be split into four line integrals:

z i o =i -~ ayes 5
= . + . N . .
%m fZ,u as f/}« s /—-///1“ s +/,}, s (40)




- 24 -

which extend over the branches belonging to the m=th mesh. The flux @ o through the

mesh m can thus be regarded as being composed of four partial fluxes ¢uv , V=1,1,4%

from which the inductances

Luy= ?fw: = f}? w5, @41)

V=11, n,

between the -th and yp ~-th network branches can be calculated for

For rectangular plates of thickness d_in which constant current density G prevails the

vector potential

7 _ Ko G.-dY
A(P)_um" - “2)

14

can be given in closed, analytical form at any space point P, Choosing the coordinate

system and notation according to Fig. 15, one obtains for A(D) the following relation

/10/:
Z@ﬂ[}’m Zei)X i) ][3 X lr (R Y: )+ Xe Uny (Ri#2;)

Acip) ==l
+Y:Z: ln (R +x,)- aw/m/y"? k0] +z‘.z,) 43)
2 X/
5 .2 Z
— B gt (BRI 2T X; Jo R + Yt rn®
2 ( Yo it ) z, “ar Zla”( z; Xi )
with
Xt = Xep) = X¢i)
Yi = Y¢er) = Yi)
(44)

Zi = Zp) = Zi)

Ri =}/:L+y;“+;;"
s9n(4) = { for {20
<0
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Because of the condition G = const. within the plates the choice of the plate thickness
dp over the number of layers n,, must be such that the skin effect can be ignored. The
line integral over A (p) for calculating the inductances is numerically solved by Gaussian

quadrature,

The calculation of the mutual inductances

wu=4,7,7r

Muv For

' Yy =1,17, fe
between the n branches of the FEN and the ng external circuits (Fig. 15) is similar.
Then the ohmic resistances Ry, x«=1,1, n in the n network branches are calculated.

/

From the geometry of the plates (Fig. 15) one can determine

Po - b
91-7.4

4.1.3 Symmetry and boundary conditions

(45)

direct.

In the numerical treatment of field diffusion problems any symmetries present should
be utilized. A distinction is made between two types of symmetry, the so-called s and

e-mirrors (Fig. 16):

a) In the s-mirror the symmetry plane is tangential to the eddy current lines.

b) In the e-mirror the symmetry plane is normal to the eddy current lines.

Figure 1&illustrates that, when a current line is reflected from an s-mirror, its true
image with respect to distribution and direction is preserved. In reflection from an
e-mirror, however, the distribtution of the current line is preserved but its direction
is reversed, These symmetry properties allow the eddy current calculations to be
restricted to a symmetric section of the structure considered, e.g. the first quadrant
in the plate shown in Fig. 16. But the interaction between the circuits of the
individual quadrants ought not to be left out of account. In the FEN case this means
that one has to add to the mutual inductance between branches 1 and 2 of the first

quadrant the mutual inductances between branch 1 and branches 3, 4 and 5, which
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are located symmetrically to branch 2 (Fig. 16). The same procedure is used in calcu-
lating the self-inductances. Simple addition of the inductances is therefore permissible

because the induced voltage in the /u-fhe network branch is described by
r

«/
w = ) /740» ‘s, (46)
»=1
and the derivatives of the currents with respect to time, i;) , at symmetrically located
points are equal. This addition has, of course, to be performed with the correct sign.
The appropriate sum term is positive when the eddy current and branch alignments

(alignment of u and v-plates) are the same, and negative when they are opposite (Fig. 16).

Corresponding to the s and e-mirrors, a distinction is made between s and e-boundaries
of the structure, it being possible to form some of the boundaries from symmetry planes.
InFig. 16 it is shown how to perform the discretization of the wall at the boundary, des-
cribed in Sec. 5.1.1. The u or v-plates parallel to the boundary abut on an s-boundary
(see v-plate 6), while they are halved by an e-boundary (see v-plate 7). Plate normal
to the boundary abut on an e-boundary (see u-plate 1) and approach an s-boundary to

within half a plate length (see u-plate 2).

4.1.4 Transient analysis of network

Before analysis of the derived RL network the calculated inductances and ohmic
resistances are put in matrix form. With n network branches one obtains two n-dimensional,
square matrices (L) and (R), the latter being a diagonal matrix, In the L matrix, on the
other hand, the diagonal elements are the self-inductances of the network branches,

and the off-diagonal elements are the mutual inductances. By means of Kirchhoff”s

equations
() = (H) ([m) , (47)

one can then give the differential equation of the network direct:
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(i) == (L) (R )im) = (L) () ) o

/12 / . The notation is as follows:

(i) n-dimensional vector of branch currents,

(im) m-dimensional vector of mesh currents,

(ir’n) m-d.imensional vectior of derivative of (im) with respect

to time,

(V) n-dimensional vector of branch voltages,

(uo) n-dimensional vector of source voltages,

H) n . m-dimensional incidence matrix,

(H)T m « n-dimensional transposed incidence matrix
(Lm)=(H) T(L) (H  mem-dimensional mesh inductance matrix, (50)
(Rm)=(H) T(I_) (H) m*m-dimensional mesh resistance matrix. (1)

For given initial values (im(O)) this system of ordinary differential equations can be

uniquely solved. From the solution vector (im) of the system of differential equations
one obtains with the first Kirchhoff equation the vector (i) of the branch currents and
hence the distribution of the eddy currents in the structure and their time behaviour,

Furthermore, one obtains from the vector (i) the magnetic energy stored at time t
W= 2 /. T .
(&) (&) (Cf) (52)
and the dissipated power

P=({)7(R)(:) ©)

Attention is brought to the special case of exclusively inductive excitation of the
network that is relevant in the context of field diffusion., This is the case when, for

example, just one current variation ié is given in the external circuits. The source
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voltage is then obtained from
(u)= (L) (i) (54

with (be) of the n + k-dimensional matrix of the inductive couplings to the k external

circuits.

4.1.5 Calculation of the magnetic field

Now that the eddy current distribution in the wall is known at any time, and hence the
current density in each u, v and w-plate as well, it remains to calculate the magnetic
field of these currents. In Sec. 5.1.2 the vector potential zfor a plane slab  with

rectangular cross-section is described, With this and

- -

5 = rot A (55)

-
one can determine the magnetic flux density B of all currents in the u, v and w-plates
/13/ . By superposing these field components one obtains the eddy current field at any

space point.

The first field calculations here should, however, be done approximately. For this
purpose the total current flowing inau, v or w-plafe is regarded as a line current
concentrated on the centre line of the plate. These, in turn, are the branch currents
of the network which were calculated in Sec. 5.1.4. The field calculation of the line
currents is made according to /14 / . For space points which are several plate lengths

away from the wall this calculation method is certainly exact enough.

By superposing for all times t the magnetic field produced by the currents in the ex-
ternal conductors on that of the eddy currents one obtainsthe time development of the

diffusion process.
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4.1,6 Computer program

By the FEN method it is possible according to /7 / to divide the numerical solution

of the field diffusion problem into four subsidiary ones:

a) Calculation of the network matrices (L) and (R)
b) Calculation of the inductive couplings (be) to the external circuits
c) Solution of the differential equation of the network

d) Calculation of the magnetic flux density of the eddy currents.

This division was retained in extending the code described in /7/ to eddy current
calculations in thickwalled structures. This extension called for essential modification
of the program, the new version of which is shown in Fig. 17. As computing time and
storage space requirements for diffusion calculations for thick-walled structures will be
high, blocks a) to d) were made separately callable. By means of control parameters
the user can choose the entry and exit points. Operations a) to d) can, of course, also
be performed in one computing run. The results obtained after each of the four steps
are stored in permanent files (Fig. 18) and are thus available at any time for subsequent
calculations. For example, the field calculation according to d) can be repeated for
different input parameters without rerunning the calculations a) to c) if their input

parameters remain unchanged.

Storage space is allocated by "variable dimensioning", i.e. the individual matrices
are assigned exactly tailored storage lengths from a global vector. By relocation in the
global vector vacated data fields are erased or released for new matrices. This technique

allows optimum utilization of the limited storage space availabel.

4,2 Sample calculation

The toroidal coil configuration (TF coils) of the planned ZEPHYR tokamak is used here
as a sample calculation. The coil system has N = 16 coils, each composed of two

pancakes separated by an insulating layer. Dimensions and design specifications are

B |
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given in Fig. 1. During plasma compression these coils are penetrated by a time varying
vertical field generated in coils coaxial with the z-axis (external circuits; see Fig. 19).

The maximum variation of the vertical field current necessary for compression is

o 7
LY - #g5
T / sec

so that eddy currents are produced in the windings of the TF coils when they are pene-
trated by the vertical field. Owing to the disturbing influences of the eddy current
field, described in Sec. 1, it is necessary to investigate the distribution and time
behaviour of these fields in detail. For this purpose the winding forms of the TF coils
are divided into u and v-plates in the FEN manner, there being per half pancake

n, divisions in the u-direction, n, in the v-direction and n., in the w-direction

(Fig. 19 - 22). The pancakes are all delimited by s-boundaries (Fig. 19). In Fig.

19 - 22 only the u-plates are drawn because they fix the v-plates in any case, and

so the figure is clear. The centre lines of all the plates form a network in which every
branch corresponds to a u or v-plate. Taking the symmetries present into account, one
can restrict analysis of the network to the subsidiary network of a half pancake, e.g.
pancake half No. 16 in Fig. 20 for z > 0. One must, of course, calculate the inductances
of all network branches and then combine them in each case into the resulting branch
inductance of the subsidiary network.

In order to afford a simple possibility of comparision with measuring results, the

diffusion process for sinusoidal excitation
L, = ¢, sincol (56)

of the V coils is investigated. First, however, it is shown by varying the number of
branches n in the network that the numerical results converge towards a limiting value
for increasing n. This is done with parameters nyr Nyr Ny by succesively increasing
one of them while keeping the other two constant. The computing runs a) to d) are
performed for each version with the FEDIFF computer program. As the final result

one obtains the magnetic field BEC(t) of the eddy currents at any point within the




torus. At the end of the transient (t > 37) one can describe BEC(t) with a sinusoidal

oscillation phase-shifted relative to the excitation:

Bre(p) = Bo-sm (et + %) (57)

The amplitude Bz of the dominant component BECz is shown in Fig. 23 as a function
of the divisions. The curves indicate that in all three cases converging solutions are
obtained for an increasing number of branches in the network. A necessary condition
is thus met by the code. The computing accuracies possible with the code are dis-

cussed in the following comparision with measuring results,
5. Discussion

The comparison of the measured and calculated magnetic fields was conducted for
characteristic frequencies at special grid points on a sector of the tape-wound magnet
of ZEPHYR consisting of 6 double coils (12 pancakes). The measured data were
corrected by the method described in chapter3.3. Because of @ CPU time of nearly
one hour for any job on an Amdahl computer only a few computed data could so

far be obtained with the FEN code]).

The comparison was therefore restricted to the plane A-A. Each pancake of the
sector was approximated in toroidal direction by n,= 5 and in poloidal direction
by n,, =13 conductor plates. In the radial direction n =3 layers of conductor

plates were used, each one insulated from the others.

])The CPU time will considerably be reduced, once the number of conducting plates

is fixed for a given geometry,
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Increasing deviations between measured and calculated magnetic field components
can be expected for rising frequency especially for the magnetic field component

in radial direction BV ‘

Eddy current modes of high order will preferably be excited at high frequencies.
And because of the finite number of conductor plates used for the approximation
of a pancake, higher current modes cannot be computed by the FEN-code with
the same accuracy as the ground mode. For the same reasons increasing deviations

between measurements and calculations can be expected in the direct environment

of the TF coils.

A comparison of the measured and computed BVZ components across the horizontal
midplane for =200 Hz and for the highest frequency f = 1000 Hz to be considered
for adiabatic compression of the plasma of ZEPHYR is represented in Fig. 24. Similar
comparisons are shown in Fig. 25 across the horizontal plane at z = 0.25 m and in

Fig. 26 at z=0.5m.

The maximum relative error between computed and measured BV values can be de-
duced from Figs. 24, 25 and 26 to be smaller than 5 % and is of the same order of
magnitude as the measuring errors. No clear trend in the difference between measured
and calculated BV values with frequency and with distance between grid points and

conducting materials can therefore be derived from these results.

A phase shift of nearly zero between BV and the current through the VF coils was
measured and calculated at any grid point and indicates a predominance of the

ground mode (saddle currents)in changing the B\/ component.
z

The behaviour of the BV component across the horizontal planes at z=0.25m and
2 =0.5m is represented in Figs. 27 and 28. It should be kept in mind that the BVR
component only amounts to one-tenth of the vertical field component BV . It is sur-

prising that not only do the measured and calculated amplitudes of BVR agree well




but also the measured and calculated phase shifts between BV and the current through
the VF coils coincide better than 5 %. Small deviations from the current phase shifts
critically influence the real-time response of the BV component to a current pulse
through the VF coils, while the influence of amplitude errors on the result is much

smaller. A

This especially good agreement between the measured and calculated phase shifts of
BV allows sufficiently accurate computation of the real-time behaviour of BVR during
adiabatic compression or during feedback stabilization with the FEN code. The ver-
tical and radial plasma pesitions can be calculated at any moment together with the
current shape of the plasma flux surfaces if one uses an appropriate equilibrium code

coupled with the FEN code.

In any case the FEN code allows computation of poloidal field distortions and of the

electromagnetic forces acting on the TF coils or other conducting structures.
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Fig. 2: Schematic representation of the saddle currents on the TF coils.
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Fig. 5: Principal adjustment errors of magnetic probes.
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Field diffusion code

a) Construction of network matrices

b) Inductive coupling to external circuits

c) Solution of differential equations of network

d) Field computation of eddy currents

a) Construction of network matrices

Input (data card): geometry data of structure

Compute geometry data of u, v and w-plates

Printer output, plot (geometry)

compute
matrix (L) from

u, v, w U, v, w

plates (thick) plates (thin)

Compute matrix (R) from u, v, w-plates

Compute incidence matrix (H)

Compute mesh matrices Ly, L) -], (Rm)

Printer output of computed matrices

Creation of complete, external data set

Fig. 17: Structogram of field diffusion code, Part 1,
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by V-Coils

/ : \

K i P

Fig. 19: Cross-section A-A (see Fig. 20) of the TF and V coils with distribution
of the u-plates for n, = 3.

Fig. 20: Top view of the toroidal coil arrangement with distribution of the u-plates
for n, = Dig e, = 13.
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Fig. 21: Distribution of the u-plates for N T 1 in one half on the toroidal coil

arrangement.
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Fig. 23: Magnetic flux density produced by eddy currents at space point R = 1.15m,
$=22.5°,Z=0.
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Fig. 24: Amplitude of B, for sinusoidal excitation of VF coils at the

plane A-A, z ;/(Z)
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Fig. 25: Amplitude of BVZ for sinusoidal excitation of VF coils at the plane
A-A, z=0.25m
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Fig. 26: Amplitude of B,, for sinusoidal excitation of VF coils at the plane

A-A, z=0.5 n\'I/Z
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Fig. 27: a) Amplitude

b) Phase shift

of BVR for sinusoidal excitation of VF coils at the plane A-A, z=0.25
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Fig. 28: a) Amplitude
b) Phase shift
of BV for sinusoidal excitation of VF coils at the plane A=A, z = 0.5
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