Dr. Richs

INFINITESIMAL ROTATION:

ON THE CONVERSE PROBLEM
P. Javel

IPP 2/253

Februar 1981

MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK

8046 GARCHING BEI MÜNCHEN

MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK GARCHING BEI MÜNCHEN

INFINITESIMAL ROTATION:

ON THE CONVERSE PROBLEM

P. Javel

IPP 2/253

Februar 1981

Die nachstehende Arbeit wurde im Rahmen des Vertrages zwischen dem Max-Planck-Institut für Plasmaphysik und der Europäischen Atomgemeinschaft über die Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgeführt.

IPP 2/253

P. Javel

Infinitesimal Rotation:
On the Converse Problem

December 1980 (in English)

ABSTRACT

The problem of finding a vector of constant length verifying

$$\frac{d\vec{v}}{ds} = \omega(s)x\vec{v}$$

has been reduced by introducing the referential built on the eigenvectors of the singular operator.

$$\Omega \equiv \overset{\rightarrow}{\omega} X$$
;

This procedure represents a natural introduction of complex vectorial spaces in three dimensional geometry.

INTRODUCTION

The infinitesimal rotation of a three dimensional real vector with constant length is described through the equation

$$\frac{d\vec{V}}{ds} = \omega x \vec{V} \qquad V(s), \ \omega(s)$$

in the case of one parameter dependent vector field; (the Serret-Frenet equations for example is an example of the resolvant matrix system associated with \overrightarrow{V}). The converse problem of finding a set of independent vectors \overrightarrow{V} , when $\overrightarrow{\omega}$ is given, plays an important role in mechanics and electrodynamics. The usual way to solve this problem by serie expansions in operator space (e^{Ω} operatorial definition) brings difficulties in the discussion of concepts related to the solutions of our equation. In order to avoid these obstacles, a direct method to reduce the problem, based on the use of the eigenvectors of the $\Omega \equiv \overrightarrow{\omega} x$ operator, has been worked out, that inlights the role of complex vectorial spaces and their geometrical significance.

Reduction:

$$\frac{d\overrightarrow{V}}{ds} = \omega(s) \times \overrightarrow{V}$$
 (1)

We shall suppose that V is an unit vector |V|=1 which does not restrict the problem. We have to solve a linear system of equations with non constant parameters that we may also write in matricial form, with the usual representation of vectors as column matrices and their transposed \overline{v} as row matrices.

$$\overrightarrow{V} \rightarrow V \equiv \begin{pmatrix} v^1 \\ v^2 \\ v^3 \end{pmatrix} \qquad \overline{v} \equiv \underbrace{v^1 v^2 v^3}$$

$(\mathring{\mathbf{v}})$ denoting the d/ds derivation

$$\dot{\mathbf{v}} = \mathbf{\omega} \, \mathbf{v}$$
 (1')

$$\begin{pmatrix} v^{1} \\ v^{2} \\ v^{3} \end{pmatrix} = \begin{pmatrix} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & \omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{pmatrix} \begin{pmatrix} v^{1} \\ v^{2} \\ v^{3} \end{pmatrix}$$

The asymmetric operator Ω is singular ($|\Omega|$ = 0) but it indeed possesses three eigenvectors.

 $e_{0} = \vec{n}$ $e_{+} = \frac{1}{\sqrt{2}} |\vec{n} \times \vec{a} + j \vec{n} \times (\vec{n} \times \vec{a})|$ f = -j $e_{-} = \frac{1}{\sqrt{2}} |\vec{n} \times \vec{a} - j \vec{n} \times (\vec{n} \times \vec{a})|$ f = +j(2)

with
$$\vec{\omega} = \omega \vec{n}$$
 $\omega^2 = \omega_X^2 + \omega_y^2 + \omega_z^2$ and $\vec{n}^2 = 1$

 \vec{a} being any vector, real or complex. In order to have a set of unitary vectors \vec{e}_0 , \vec{e}_+ , \vec{e}_- , we shall take $\hat{a} = \vec{a} \vec{a} = 1$ The vectors $\vec{l} = \vec{n} \times \vec{a}$

$$\vec{m} = \vec{n} \times (\vec{n} \times \vec{a}) = \vec{n} \times \vec{1}$$

are then defined to a rotation around \vec{n} : introducing the unit vectors.

$$\vec{I} = \frac{\vec{n}}{\sqrt{\vec{n}^2}}$$

$$\vec{J} = \vec{n} \times \vec{I} = \frac{\vec{n} \times \vec{n}}{\sqrt{\vec{n}}}$$

situated in the same plane as $\vec{1}$ and \vec{m}

we may write then

$$e_{+} = \frac{1}{\sqrt{2}} (\vec{1} + j\vec{m}) = \frac{1}{\sqrt{2}} (\vec{I} + j\vec{J}) e^{-j\Theta}$$

$$e_{-} = \frac{1}{\sqrt{2}} (\vec{1} - j\vec{m}) = \frac{1}{\sqrt{2}} (\vec{I} - j\vec{J}) e^{+j\Theta}$$
(3)

Remark: These relations are true even if the vector \overrightarrow{n} has a non constant direction.

The indeterminacy about e_+ and e_- is then represented by the arbitraryness of $\underline{\Theta}$. One can resume what has been said as follows.

$$\begin{aligned} \mathbf{e}_{0} &= \stackrel{\rightarrow}{\mathbf{n}} & \stackrel{\rightarrow}{\omega} \times \stackrel{\rightarrow}{\mathbf{n}} &= 0 \\ \mathbf{e}_{+} &= \frac{1}{\sqrt{2}} (\stackrel{\rightarrow}{\mathbf{I}} + \mathbf{j} \stackrel{\rightarrow}{\mathbf{J}}) e^{\mathbf{j}\Theta} & \stackrel{\rightarrow}{\omega} \times \mathbf{e}_{+} &= -\mathbf{j}\mathbf{e}_{+} \\ \mathbf{e}_{-} &= \frac{1}{\sqrt{2}} (\stackrel{\rightarrow}{\mathbf{I}} - \mathbf{j} \stackrel{\rightarrow}{\mathbf{J}}) e^{-\mathbf{j}\Theta} & \stackrel{\rightarrow}{\omega} \times \mathbf{e}_{-} &= \mathbf{j}\mathbf{e}_{-} \end{aligned}$$

$$e_0 \cdot e_0 = 1$$
 · designing the euclidian scalar product
$$e_+ \cdot e_+ = 0$$

$$e_+ \cdot e_- = 0$$
 · $e_+ \cdot e_- = 0$

$$\vec{I} = \frac{\vec{n}}{\vec{n}} \qquad \vec{J} = \vec{n} \times \vec{I} = \frac{\vec{n} \times \vec{n}}{\sqrt{\vec{n} \cdot 2}}$$

Coming back to our equation in vectorial from, one can write \overrightarrow{V} in Term of $\mathbf{e_0}$, $\mathbf{e_+}$, $\mathbf{e_-}$, as

$$\vec{V} = \alpha^{0} e_{0} + \alpha^{+} e_{+} + \alpha^{-} e_{-}$$

$$|\vec{V}| = 1 + \alpha_{0} + 2\alpha^{+} \alpha^{-} = 1$$
(4)

The equation (1) becomes:

$$\dot{a}^{0} e_{0} + \dot{\alpha}^{+} e_{+} + \dot{\alpha}^{-} \dot{e}_{-} + \dot{\alpha}^{+} \dot{e}_{+} + \dot{\alpha}^{-} \dot{e}_{-} + j \omega (\alpha^{+} e^{+} - \alpha^{-} e^{-}) = 0$$

Taking the euclidian scalar product of this equation successively with e_0 , e_+ , e_- one obtain three equations for α^0 , α^+ , α^-

$$\dot{\alpha}^{0} + (\dot{e}_{+} \cdot e_{0}) \alpha^{+} + (\dot{e}_{-} \cdot e_{0}) \alpha = 0$$

$$\dot{\alpha} + (\dot{e}_{0} \cdot e_{-}) \alpha^{0} + (\dot{e}_{+} \cdot e_{-}) \alpha^{0} + j \omega \alpha^{+} = 0$$

$$\dot{\alpha} + (\dot{e}_{0} e_{+}) \alpha^{0} + (\dot{e}_{-} e_{+}) \alpha^{-} - j \omega \alpha^{-} = 0$$
(5)

having noticed that $\dot{e}_{-} \cdot e_{-} = \dot{e}_{+} \cdot e_{+} = \dot{e}_{0} \cdot e_{0} = 0$

evaluating $\dot{e}_0 \cdot e_-$, $\dot{e}_0 \cdot e_+$, $\dot{e}_+ \cdot e_- = -e_- \cdot e_+$

$$\dot{\mathbf{e}}_{0} \cdot \mathbf{e}_{+} = \frac{\dot{\mathbf{n}} \cdot \mathbf{e}^{2-\mathbf{j}\Theta}}{\sqrt{2\dot{\mathbf{n}}^{2}}} = \frac{\sqrt{\dot{\mathbf{n}}^{2}}}{2} e^{-\mathbf{j}\Theta} = v_{+} = \hat{\mathbf{v}}e^{-\mathbf{j}\Theta}$$

$$\dot{e}_{0}^{0} e_{-} = \frac{n^{2}}{2} e^{+j\Theta} = v_{-} = \hat{v} e^{+j\Theta}$$

$$\dot{\mathbf{e}}_{+} \cdot \mathbf{e}_{-} = \frac{1}{2} (\vec{\mathbf{I}} + \mathbf{j} \vec{\mathbf{J}}) (\vec{\mathbf{I}} - \mathbf{j} \vec{\mathbf{J}}) - 2 \mathbf{j} \dot{\mathbf{e}} = -\mathbf{j} (\dot{\mathbf{e}} + \vec{\mathbf{I}} \cdot \vec{\mathbf{J}})$$

$$\dot{I} \cdot \dot{J} = \sqrt{\frac{\dot{n}}{\dot{n}^2}} \cdot \frac{\dot{n} \times \dot{n}}{\sqrt{\frac{\dot{n}}{\dot{n}^2}}} = \frac{\dot{n} \cdot (\dot{n} \times \dot{n})}{\dot{n}^2} = \frac{\partial}{\dot{n}^2}$$

such that

$$\dot{\mathbf{e}}_{+} \cdot \mathbf{e}_{-} = -\mathbf{j} \left(\dot{\mathbf{o}} + \frac{\partial}{\partial \mathbf{r}_{2}} \right) = -\dot{\mathbf{e}}_{-} \cdot \mathbf{e}_{+}$$

(5) gives

$$\alpha^{0} - \nu_{+} \alpha^{+} - \nu_{-} \alpha^{-} = 0$$

$$\alpha^{+} + j \mu \alpha^{+} + \nu_{-} \alpha^{0} = 0$$

$$\alpha^{-} - j \mu \alpha^{-} + \nu_{+} \alpha^{0} = 0$$

$$\mu = \omega - \frac{(\vec{n}, \vec{n}, \vec{n})}{\vec{n}^{2}} - \Theta$$

$$= \omega' - \Theta$$
(6)

or in matrical form

$$\begin{pmatrix} \alpha^{0} \\ \alpha^{+} \\ \alpha^{-} \end{pmatrix} = \begin{pmatrix} 0 & \nu_{+} & \nu_{-} \\ -\nu_{-} & -j \mu & 0 \\ -\nu_{+} & 0 & j\mu \end{pmatrix} \begin{pmatrix} \alpha^{0} \\ \alpha^{+} \\ \alpha^{-} \end{pmatrix}$$

$$(6')$$

One remarks that this linear matrix is still antihermitian due to the fact that what has been operated is equivalently written in matrix form as (with $v = s \alpha$);

$$\dot{\alpha} = (\dot{s}^{+}s + \dot{j}\dot{\omega})\alpha$$
 where $s \equiv \begin{pmatrix} e_{1}^{0} & e_{1}^{+} & e_{1}^{-} \\ e_{2}^{0} & e_{2}^{+} & e_{2}^{-} \\ e_{3}^{0} & e_{3}^{+} & e_{3}^{-} \end{pmatrix}$

$$\tilde{\omega} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & j\omega & 0 \\ 0 & 0 & -j\omega \end{pmatrix}$$

The free choice of \odot should be used in order to simplify (6)

1) Taking first $\Theta = 0$

$$v \equiv \hat{v}$$

$$\mu = \omega - \frac{\partial}{\partial r^2}$$

(6) is then reduced to

$$\begin{pmatrix}
\alpha^{0} \\
\alpha^{+} \\
\alpha^{-}
\end{pmatrix} = \nu \begin{pmatrix}
0 & 1 & 1 \\
-1 & 0 & 0 \\
-1 & 0 & 0
\end{pmatrix} \begin{pmatrix}
\alpha^{0} \\
\alpha^{+} \\
\alpha^{-}
\end{pmatrix} -j \mu \begin{pmatrix}
0 & 0 & 0 \\
0 & +1 & 0 \\
0 & 0 & -1
\end{pmatrix} \begin{pmatrix}
\alpha^{0} \\
\alpha^{+} \\
\alpha^{-}
\end{pmatrix}$$

$$A \qquad K$$

Introducing the resolvant matrix Q defined as (Ref. 1)

$$\begin{pmatrix} \alpha^{0} \\ \alpha^{+} \\ \alpha^{-} \end{pmatrix} \equiv \rho \begin{pmatrix} \alpha^{0}_{0} \\ \alpha^{+}_{0} \\ \alpha^{-}_{0} \end{pmatrix} \rightarrow \text{initial values}$$

one get

$$\dot{Q} = v (A)Q - j \mu \dot{K} Q$$

$$\dot{Q} Q^{-1} = \nu A - j \mu \dot{K}$$
 (8)

Introducing the matrix s_0 of the eigenvectors of A one may write A as:

$$vA = jv \sqrt{2} \begin{pmatrix} 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/2 & 1/2 \\ -1/\sqrt{2} & -1/2 & 1/2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ -1/\sqrt{2} & -1/2 & -1/2 \\ -1/\sqrt{2} & 1/2 & 1/2 \end{pmatrix}$$

$$s_0$$

$$s_0^{-1}$$

 \mathbf{s}_{0} being a constant matrix one may transform our equations as $\mathbf{A} = -\ \dot{\mathbf{s}}_{1}\ \mathbf{s}_{1}^{-1} \ .$

This procedure cuts short the general method described on Ref. 2.

$$s_1 = s_0 \begin{pmatrix} 1 & & & \\ & e^{+\int v'} & & \\ & & e^{-j\int v'} \end{pmatrix} \quad \text{with} \quad v' = \sqrt{2} \cdot v$$

one has then:

$$\stackrel{\bullet}{Q} Q^{-1} + \stackrel{\bullet}{s}_1 s_1^{-1} = -j_{\mu} K$$
(9)

operating two new changes of matrix

$$s_{2} = \begin{pmatrix} 1 & & & \\ & e^{j \int \mu/2} & & \\ & e^{-j \int \mu/2} \end{pmatrix} \quad s_{1} \equiv \begin{pmatrix} 1 & & \\ & e^{j \int \mu/2} & \\ & & e^{-j \int \mu/2} \end{pmatrix} s_{0} \begin{pmatrix} 1 & & \\ & e^{j \int \nu'} & \\ & & e^{-j \int \nu'} \end{pmatrix}$$
and
$$Q \equiv \begin{pmatrix} 1 & & \\ & e^{-j \int \mu/2} & \\ & & e^{-j \int \mu/2} & \\ \end{pmatrix} \quad Q_{2}$$

(9) is reduced to:

$$\dot{Q}_2 Q_2^{-1} = -\dot{s}_2 s_2^{-1}$$
 (10)

We have to find a new referential whose Cartan matrix is opposite to the known $\dot{s}_2 s_2^{-1}$

This problem is then the key for the solution and is discussed in (Ref. 2).

Remark: The original matrix being antihermitian

$$s_2^{-1} \equiv s_2^+$$
 and $Q_2^{-1} \equiv Q_2^+$

such that (10) is equivalent to

$$\dot{Q}_2 Q_2^+ \equiv -\dot{s}_2 s_2^+$$
 (10')

 \tilde{Q}_2^+ being also antihermitian suggestiveness

2) A second choice for Θ , namely

$$\dot{\Theta} = \omega - \frac{\partial}{\dot{n}^2}$$
 which gives $\mu \equiv 0$

reduces (6) to

We have for α_0 the following integro differential equation:

$$\frac{\dot{\alpha}^0 + \nu_+ \int \nu_- \alpha^0 + \nu_- \int \nu_+ \alpha^0 = 0$$

 ν_{+} and ν_{-} being complex conjugate

(11) may be transformed as

Whether (10) or (12) is easier to solve at last approximatively, depends surely on ν_{+} .

We may remark, as conclusion, that the solution of the second order parametric equation $y'' \equiv k^2(x)y$ leads to a similar integro differential equation so that our problem has a very strong affinity with the latest Ref. 2.

Indeed the form of (11) suggests the introduction of two auxiliary functions λ , γ such that

$$\int_{\nu_{+}}^{\alpha^{0}} \alpha^{0} = (\lambda \alpha^{0} + \gamma)$$
 (13)

by derivation one get

$$v_{+}\alpha^{0} = \lambda^{\bullet \bullet 0} \lambda^{\bullet 0} \lambda^{\bullet 0} + \dot{\gamma}$$
 (13')

and from (11)

$$\alpha^{\circ 0} + (\nu_{\lambda} + \nu_{+} \hat{x}) \hat{\alpha}^{\circ 0} + \nu_{-} \gamma + \nu_{+} \gamma^{*} = 0$$

which may be solved by taking

$$\nu_{-} \gamma + \nu_{+} \gamma^{*} = 0$$

$$\nu_{-} \lambda + \nu_{+} \lambda^{*} = -1$$
(15)

writing
$$\gamma = \hat{\gamma} e^{\hat{j} \chi}$$

$$\lambda = \hat{\lambda} e^{\hat{j} \psi}$$

and having
$$v_{+} = \hat{v} e^{-j\Theta}$$

(15) gives

$$\cos (\Theta + X) = 0 \qquad \Rightarrow \qquad \qquad \chi = \frac{\pi}{2} - \Theta$$

$$\hat{v} \hat{\lambda} \cos (\Theta + X) = -1 \qquad \Rightarrow \qquad \qquad \psi = \pi - \Theta$$

$$\lambda = \frac{1}{\hat{v}}$$

 $\hat{\gamma}$ being arbitrary we shall take $\hat{\gamma} = \underline{1}$ so that (13') gives

$$(\lambda \overset{\bullet}{\alpha}{}^{0}) - \nu_{+} \alpha^{0} = 0$$

$$\frac{d}{ds} (\lambda \frac{d}{ds} \alpha^{0}) - \nu_{+} \alpha^{0} = 0$$

Our problem is then reduced to the solution of a Sturm-Liouville equation; that is a third way to approach it.

Ref. 1 Pease. Methods of Matrix Algebra

Ref. 2 P. Javel. On Linear Parametric Differential Systems.

IPP Bericht. In preparation

(15) gaves

+ I - = (y + z) + no

being arbitrary we shall take $|\hat{y}| = 1$

racing the rest of the same of

Confirmation of the state of th

Our problem is then reduced to the solution of a Sturmal louvable

ndageralls a cutto May so approant to

v gorivitios presidi

and \hat{t}_0 or (11).

woller may be suffer too taking