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ABSTRACT

The problem of finding a vector of constant length verifying

>

L m(S)x—\7

ds

has been reduced by introducing the referential built on the
eigenvectors of the singular operator.

This procedure represents a natural introduction of complex
vectorial spaces in three dimensional geometry.




INTRODUCTION

The infinitesimal rotation of a three dimensional real vector with
constant length is described through the equation
5
>
L, wxV V(s), w(s)
ds

in the case of one parameter dependent vector field; (the Serret-
Frenet equations for example is an example of the resolvant matrix
system associated with ﬁ). The converse problem of finding a set of
independent vectors V, when o is given, plays an important role in
mechanics and electrodynamics. The usual way to solve this problem
by serie expansions in operator space (eQ operatorial definition)
brings difficulties in the discussion of concepts related to the
solutions of our equation. In order to avoid these obstacles, a
direct method to reduce the problem, based on the use of the eigen-
vectors of the o = wx operatory has been worked out, that inlights
the role of complex vectorial spaces and their geometrical significance.




-
Reduction:
=1 >
Weci a5y %V (1)
ds

We shall suppose that V is an unit vector |V| = 1 which does not
restrict the problem. We have to solve a Tinear system of equations
with non constant parameters that we may also write in matricial
form, with the usual representation of vectors as column matrices
and their transposed v as row matrices.

-
Va>vs= v2 Vv = v1 v2 v3

(V) denoting the d/ds derivation

V=V (1')
v1 0 -w, wy / v1
v2 = 0 5 2
= LUZ UJX Vv
3 3
v -wy Wy 0 \ v

The asymmetric operator @ is singular (|e| = 0) but it indeed possesses
three eigenvectors.

eigenvalues

-

e =1 f=0
1 . > > >

e, =— |nxa + jn x(nxa)l £ = =

L o

e =1  FxdF - iR x(x f = 4]
V2



: -+ > -
with w = wn w2=wi+w§,+w and n?2= 1

2
Z

3 being any vector, real or complex. In order to have a set of
unitary vectors e , e, , e_, we shall take a =3aa =1

) +

T

The vectors 1 = n x a
5> > o uy > 7
m=nx(nxa) =nx]1

are then defined to a rotation around n: introducing the unit vectors.

> R
1=7‘_-b---n2

L]
Saheio By

4

.
situated in the same plane as 1 and m

=1

=24

—




=l

we may write then

1 T L L 2 E. =jp
e, = — (1+jm) = — (I +jJd)e
t v Y2
1 - . > 1 7 .2 +j0
e.= — (1-jm) = —(I-jJd)e
= i V2 (3)

Remark: These relations are true even if the vector n has a
non constant direction.

The indeterminacy about e, and e_ is then represented by the
arbitraryness of @. One can resume what has been said as follows.

-> -+ -)-=
By = i wXxn=20
- -> :
e = = (I +34J) el? » X e, = =ie;
V2
- 4 -
e_ = & (I-3Jd)e J9 w X e_ = je
V2
e, * € = 1 + designing the euclidian scalar product
e+|e+=0 e+-e_:e--e+:1
e_-+e_=0
> 5 > > > >
- _n _ _ nxn
I = Jd=nx1I =

>
Coming back to our equation in vectorial from, one can write V

in Term of €ys ©€,.5 €_, as
+
0 + -
= + +
V=oa &, a e, o e_
4+ -
l?i =lsa + 20 o =1

(4)




The equation (1) becomes:

- : + + - -
aeo+ae++ae_+ae++ae_+3w(ae -ae) =20

Taking the euclidian scalar product of this equation successively
with e , e, , e_ one obtain three equations for 0, o, o

(5)

e+ e, = = e = WaiE JNe
0 + P +
2% 2 2
ol - 2 » . .
eo e_ n e+JG =15, e+J €]
2
1 7 -+ > -+ 2 T e
é+.e‘=E(I+J)(I-‘] )—ZJé --J(6+I-J)
DLy R Bixdho_ Re(ixh)
[} nz [ @
SoL: skt W 1
such that
- : 0 »
e *e =¥ (0+ <) = -e_- e




(5) gives
&0 - v+a+- v_cx_ = 0
. .+
a + Jua +v_a =0
&--J'].tu--i-\)a =0

B R
H=w - _(—’._i_l - @
+ 2
n
=w'- 6 (6)
or in matrical form
[ ]
o 0 v, v_ o’
+ ; +
o = o e B T 0 o
o =V}, 0 Ju a
(6')

One remarks that this Tinear matrix is still antihermitian due to
the fact that what has been operated is equivalently written in
matrix form as (with v = sa);

e? el €

. o :
a=(s s +ja)a where s = 0 -
e, e, e
(o} + -
0 0 0
0 = Jo 0

0 0 -jw




The free choice of © should be used

1) Taking first o= 0

in order to simplify (6)

Vv =
uEw - 2
h2
(6) is then reduced to
6") [ o° 0 1 1 o 0 0 0\ (a
ot = v|-1 0 0 o -ju o+ 0]
a -1 0 0 a 0 0 -1 a
A K
Introducing the resolvant matrix Q defined as (Ref. 1)
0 0
o 0.0
ot = p a; + initial values
Ot- 0'.;
(7)
one get .
Q=v (A)Q-Jwn KQ
bd = vA - juK
(8)

Introducing the matrix s

0
0 1//2  1//2\ fo 0 0
vA = jvv2| 1//2 -1/2 112 0 1 0
-1/V2 -1/2 1/2 0 0 -1
S

0

of the eigenvectors of A one may write A as:

0 1//2 -1/v2

-1//2 -1/2  -1/2
=1}/2 1/2 1/2
sal




So being a constant matrix one may transform our equations as

— = e &=l
A=-5ss

This procedure cuts short the general method described on Ref. 2.

1
Sy = 3 ety with V' =+/2 + v
e-.] Iv
one has then:
Q Q-1+ §;s7 = -juk
(9)
operating two new changes of matrix
1 1 1
X ! J v
Sp = eJ /12 _ S; = edfu/2 _ ¥ ) =5
o~du/2 o Su/2 e
1
and Q= ed u/2 Q
e d fu/2
(9) is reduced to:
« 1 ,
QQ; = -5,5%
(10)




We have to find a new referential whose Cartan matrix is opposite
to the known $,s3!

This problem is then the key for the solution and is discussed in
(Ref. 2).

Remark: The original matrix being antihermitian

la S
s3! = s, and  Q; = Q,

such that (10) is equivalent to
(10%)
QZQZ being also antihermitian

2) A second choice for o, namely

0=y - — which gives u =0

«0 =
o = v, a + v+a
e+ o] + 0
¢ = =v_a a = =Jv_a
>
c.:_ = =y ao a = -fv 9
+ - +0t

We have for a, the following integro differential equation:

-0 (o]
a + v+f\)_a0 + v_f\)+a =0

(11)

v, and v_ being complex conjugate




-10-

(11) may be transformed as

o® o +{10\J+f\)_ ao+\;_aofv10tor =0

1,0 0 0

E-(u 2) + (fa v, X Ja'v_) =0
u02+2fa0\)+ X for.o\)_ = K

(12)

Whether (10) or (12) is easier to solve at last approximatively,
depends surely on v,

We may remark, as conclusion, that the solution of the second order
parametric equation y" = kZ(x)y leads to a similar integro differential
equation so that our problem has a very strong affinity with the Tatest
Ref. 2.

Indeed the form of (11) suggests the introduction of two auxiliary
functions A, y such that

fv, o = (ral+ v) (13)

pad = BEC a0l (13')

and from (11)

&0+(v_)\+\)+f)&o +vdy+v+y*=0 {

which may be solved by taking

1l
o

v oy t v+Y*

i
1
—

v x v X (15)



11

writing y=yedX
A=ied?
and having v, = veJ@
(15) gives
cos (0+X) =0 > x=%-e
vicos (0+%x) = -1 = p=m-0
A L
v
vy being arbitrary we shall take 7y =1
so that (13') gives
(Aa2) rooa) = 0

+

d 4.0 0
el dge et e vig -0

Our problem is then reduced to the solution of a Sturm-Liouville
equation; that is a third way to approach it.
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