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Steady-state ion guiding-centre distributions

are computed for the ionization zone of the
tokamak boundary by numerically solving the drift-
kinetic equation with Coulomb ion-ion and
electron-ion collision terms and with sources and
sinks due to ionization of and charge exchange
with neutrals from the walls. For typical tem-
peratures Te==Ti§3 50 to 100 eV and

%?;3 2 . 10™% to 1072 one obtains marked devia-
tions from Maxwellian distributions that grow
with increasing %? and %% . Both ionization and
charge exchange can produce large distortions
which possibly cause microinstabilities in the
boundary. For Tes‘..v Ti the contributions of
electron-ion collisions to the ion collision term
are in the range of a few per cent. The relaxation
time to steady-state exceeds the classical ion-ion

collision time by about a factor of 4.




1. INTRODUCTION

It is well known that the plasma boundary belonas to the
catalogue of problems which have to be solved for successful
development of a fusion reactor. Undoubtedly, the boundary
region is of outstanding importance, e.g. for particle and
enerdgy balances, production and transport of impurities,
fuel injection (recycling, gas puffing, neutral injection),
ash removal and plasma heating (neutral injection heating,
HF heating).

Up to now there has been no self-consistent treatment of the
essential boundary problems of tokamaks by one computational
model. In the present situation models for the investigation
of special questions of the plasma edge which promise more
insight into the physical processes involved are appropriate
and useful. One such problem is the turbulence of the plasma
boundary (typlcal edge parameters T = Ti:z 20 = 100 ev,

n 13 ) observed in many tokamaks. The measured
anomalously high diffusion rate§~[1—3] and large density and
potential fluctuations levels (%'z‘ X7 = 0.1 —0.4) [4]

are ascribed to as yet unidentified 1nstab111t1es, presumably
microinstabilities [5]. In the boundary region steadv-state

differences between the ion distribution functions " f and the

Maxwellian fM that could drive velocity space instabilities are
maintained by drifts and temperature gradients, by sources

and sinks for particles and energy due to ionization of and charge
exchange with neutrals from limiters and walls or by velocity-
dependent ion losses. The magnitude of the distortion of the
Maxwellian ion velocity distribution is determined by the
intensity and.{;—dependence of sources and sinks as well as

by velocity-space diffusion.

Obviously, a kinetic computer model is needed in order to
describe quantitatively these processes. A lower limit for

the relaxation of the distributions is set by classical diffusion
in velocity space and can be described by the Fokker-Planck

operator for binary (ion-ion) collisions.
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The main purpose of the present paper is to use a Fokker-Planck
computer model for the ions to investigate which processes in
the tokamak boundary are able to produce significant distortions
of the Maxwellian ion distribution and serve as possible causes
of microinstabilities. One objective is to determine the para-
meters and conditions in the ionization zone forwhich marked
deviations from Maxwellians occur in the presence of sources

and sinks for particles and energy on the one hand and classical
velocity-space diffusion on the other. Moreover, we are interested
in the limitations of the usual fluid description of the ions

in the tokamak boundary and in prediction (by extrapolating

2D results) of the execution time and storage capacity needed,
e.g. for a 4D Fokker-Planck boundary code with two space and

two velocity variables.,

These aims are pursued for the ionization zone of the tokamak
boundary by modelling the ions (i) by the drift-kinetic equation,
i.e. the Fokker-Planck-equation, ordered in the gyroradius and
averaged over the gyrophase [6]. We include the complete
nonlinear Fokker-Planck operator for ion-ion and ion-electron
collisions. The electrons (e) are described as a fluid in

thermal equilibrium, whereas for the neutrals (o) various
distribution functions can be prescribed. Sources and sinks

due to electron impact ionization and charge exchange are taken

into account. The inclusion of cross-field diffusion would
require in addition a two-dimensional space grid. Diffusion
is simulated instead by a numerical correction of f which
provides for conservation of particle number and energy and
allows for stationary solutions. The actual mathematical
model is presented in section 2. In section 3 calculated
steady-state ion distributions for various parameters in the
ionization zone are presented and discussed. Although the
computations are done with typical parameters of the tokamak
boundary, the results hold more generally for plasmas with

similar data interacting with neutrals from the walls.

/3




2. MODEL

In this section we begin with the assumptions of the Fokker-
Planck model for the ionization zone of the boundary. We then
describe the drift-kinetic equation solved and the boundary
conditions used and, finally, make a few remarks on the

numerical methods.

2.1 BASIC ASSUMPTIONS

For typical plasma densities and temperatures in the limiter
shadow of tokamaks [1,7] the mean free paths for ionization

and charge exchange of D atoms from the wall are large compared
with the thickness of the limiter shadow region. Thus, the real
ionization and charge exchange zone lies in the denser and
hotter plasma at radii smaller than the limiter radius.

We therefore assume edge parameters for which the neutral
particle distribution function fo(?ﬁ at the walls and limiters
is not changed much by ionization, charge exchange and elastic
collisions between neutrals and ions before the neutrals reach
the ionization zone.

In the ionization zone there are no ion losses fg, so that
under steady-state conditions the ion sources are compensated
by cross-field diffusion alone.

By contrast, the scrape-off layer exhibits only weak ion
sources but considerable losses Ug: For these and other reasons
it is reasonable to separate the ionization zone from the

scrape-off layer.

2.2 DRIFT-KINETIC EQUATION WITH SOURCES AND SINKS

If excessively large execution times even on fast computers
are to be avoided, several simplifications are necessary in
the general transport equation for the ions, the Fokker-Planck-

equation

3{ X+ %’g+f %é @ﬁ)

where LL-Ez-and a.-zzz— . In velocitv space we use the
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spherical coordinates U, 9/ L for the velocity, the pitch
angle and the gyrophase anale, respectively. By ordering with
respect to the gyroradius and averaging over L the Fokker-Planck
equation can be reduced to the drift-kinetic equation governing
the distribution of guiding-centres [6]. After adding source

and sink functions S one obtains

+ (T +0 )-E{:(ﬂ)-&ﬁ (1)
n d E;f = .

Here the time derivatives of the electrostatic potential
and the vector potential have been set equal to zero.
Even in the axially symmetric case the solutions of Eq. (1)
still depend on two space and two velocity variables, so that
a numerical solution would only be possible on a very coarse
grid. Consequently, in a first approach we further
simplify the equation by assuming spatial homogeneity and
simulate the losses due to diffusion by a sink term Sg4.

Thus, we finally obtain
19 )
= (e +S5 +5 (2)
(3{c € &

The nonlinear ion Fokker-Planck collision operator for ion-ion

and ion-electron collisions is given by [8,9]

4 129 9 , 4 /99 _1
(:—i:) 2 ?t}zixf;J-tﬂ’(?hJQQ 4 96? ? %

11 (129 ,. 992

RS v’a—‘993+90 ?%;

2
+ L (240- 3;31-&240 cotd -—9- —3-)-9—15

+-§;(”':ic_ofle %— 9239—9+ cofé’—ﬁ)-a}é
C

90

run (S f) [
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L g

where [ =41 (—5:—) /&-A with the deuteron mass m, and
[ &

the Coulomb logarithm iza /1 ’

9 "’[d%’(f (Cf")-f{ 1'}')) /&'-—1}"/ ("Rosenbluth potential),
é- fc( e [z-¢["

In spherical coordinates g and C can be expressed by

o LA
g(ulg)sfc{u-’v’zfcféfsm o'(1. (v}67)+[(v0’)) M(u,’ef-qe)’ (4)
0 0

oo 7
C(UI 9):(4—%)[0’011/6{915,.‘49/74(0;,9!) A/é,//@/’(,’.g)! (5)
0 0

with
_ ' _ 4
M=o E(g) , N'Q k('g),
p:l(uv’.riné’&‘fu@’)z,
c/ = (Ul-l— u’z—luu—'cos (946)'))%,

where E and K are the complete elliptic integrals.

The source function S reads

s f.B) g m + L) (5 [3-3 6, £(3)
—f(u).fdf% ‘-"U, cxﬂ(‘); . (6)
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The first term is the electron impact ionization rate and the
second and third terms describe charge exchange. For typical
edge parameters the recombination rate is negligibly small

compared with the charge exchange loss rate.
Since the cross-field diffusion simulated by numerical cor-

rection of f must compensate the source term due to ionization

it is given by

5q4 = “E@)<EY>m, | ¥
We assume a neutral density n, small compared with n, so that

elastic collisions between ions and neutrals may be neglected.

Since Eq. (2) is solved after normalizing it with respect to n,
the results obtained represent a whole family of solutions

. . n
for various n with the parameters Te’ T. 3 TO and -2

1 n

The electron contribution to the ion collision operator can be
considerably simplified by treating the electrons as a fluid

in thermal equilibrium. With a Maxwellian distribution function

for the electrons

fol@)=m i) exp (5557 )

an analyxtical integration of the additional terms
2

=

f

[

2
£

and can be carried out. 9 e
5 (g

As discussed above, the limiter shadow is permeable to neutrals
from the walls. We assume that gas puffing (Franck-Condon
neutrals with TE = 3 eV) and recycling are the dominant mecha-
nisms of neutral production. The neutral particle source

resulting from backscattering of ions is not taken into account.
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2.3 BOUNDARY AND INITIAL CONDITIONS

The previous equations have to be completed by a set of
boundary conditions for v and 6. In our calculations we
use the conditions given in Egs. (11) to (14) which can
be justified by the transformation relations between Cartesian

(v , Vy, Vz) and spherical (v, 6,¥) coordinates:

X

o _-—_-2-}{S:'MQCOSK-*QI{SI'WQS"”t*@i}g cos & (8)
720 99, 9‘5 %

EJE. =?—’£o;059casf+/§-£ucosé‘_ﬁnf—2£ USsne (9
6 Do, 7, 99,

From Eqg. (8) one obtains

%—1{—/0:0,9)-'-'%&(01'—'0)(3059. (10)

0

Here v_ = V. =V 0 at v = 0 and (v. = o) =
Y 2 U X

(v. = o)= 0 for guiding-centtedistributions

(becatse’ of azimuthal symmetry and continuity of the derivatives)

d

have been used. In the iﬁsization zone 3 (vz = 0) =0
is assumed yielding = (v = 0o, 8 = 0, wﬁﬁch means that
distributions with a vz-drift superposed are excluded. For

® = 0 and W again Ve = vy = 0 holds and %(VJ'G:O):g-g—(U;e:-ﬂ)zo
is obtained. With these assumptions the set of boundary

conditions used reads

f (ve+e,8 ) =0 (11)

7

~?41-(v =0, 8 =0 (12)

U

9 (v, ® = 0) =0 (13)

/a (v, 8 =) =0 (14)
For 8 = L  Eg. (10) yields -2 (v = 0,6 = ZL )= o,

2 - (3 2

which is a generally valid condition, because no assumptions
about T3 (vz = 0) have been made. Another general condition

is that £ (v = o, 8) has to be independent of &, because

v = o, © marks the same point in velocity space for all 8.
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By the same procedure one can derive
(v = 0o, 8) =0,
O,

(v, 8 =7 ) = 0.

Shapefs
Qbo <

<

o

1]

9__

Il

In addition to £ (v = o, ), also g (v = o, 8) has to be
independent of 6. Both conditions can be used to check the

program.

In order to solve the time dependent drift-kinetic equation
(Eg. (2)), it is necessary to prescribe an initial distribution
function for the ions. Maxwellian distributions have proved
to be adequate even in computations that yield steady-state

solutions with strong distortions of Maxwellians.

2.4 NUMERICAL SOLUTION

The numerical integration of the drift-kinetic equation

(Eq. (2)) is carried out by difference methods. An equidistant
Eulerian grid for v and @ is used with v ranging from

O to 4 (gfi)l and @ from O to . With this upper limit for

the speed sufficiently precise higher velocity moments of f

are obtained. Typically, 60 grid points for the speed and 20

grid points for the pitch angle are needed for convergence to
stationary solutions.

A simple method of finding stationary solutions for f is to
solve Eq. (2) with 7 = 0 by means of test functions. It is
convenient to use families of trial functions, e.qg. two-
temperature distributions, where one temperature acts as a

parameter of the family of functions.

/9



A more systematic tool for solving the drift-kinetic equation
is the application of an explicit scheme. Since such schemes
are numerically stable only for rather small time steps, a large
number of steps is needed in order to approach the stationary
solution for f. Numerical instability near v = O is avoided by
correcting f in such a manner that the particle number and
energy of the ions are conserved. This is done at each time
step by multiplying f by a function u, + u, v2, whose coeffi-
cients are determined from the relations for conservation of
particles and energy [10]. As mentioned above this correction
simulates cross-field diffusion and particle and energy
sources or sinks (Sd (¥ ) ). The conservation laws for the

Fokker-Planck collision operator are checked.

Most computations have been done with a fast 1D code for
isotropic distributions and 60 grid points in the v range.
Typically, up to 103 to 104 time steps are needed until the
stationarv solution is reached, this corresponding to an
execution time on an AMDAHL 470 computer of about 30 s.
Convergence is only achieved with a sufficiently fine v grid
if a stability criterion for the velocity step Av and the
time step At

at
(av)*
is fulfilled (analogous to the criterion by Richtmyer and
Morton [11] ).

£ const (Ti}

It turns out that the 2D code with variables v and © needs
considerably more computation time, mainly for the Rosenbluth
potential g (v,8). The reason is that an integration over v'
and 8' has to be carried out for each v,6 pair (see Eqg.(4)).
The complete elliptic integral E(B) in Eq. (4) is calculated

by a hypergeometric function up to (D)18 in order to save

Q

computation time.
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3. DISCUSSION OF RESULTS

In this section we present results obtained from applying

the Fokker-Planck model to the ionization zone of the tokamak
boundary. As mentioned above, in this region drifts as well
as sources and sinks due to ionization and charge exchange

of D atoms serve as possible causes of distortions of the

Maxwellian ion distribution.

An expansion of the drift-kinetic equation (Eq. (1)) in powers
of §)pi/l [6], where e o is the ion gyroradius in the poloidal
field and 1 is the scale length for macroscopic parameteif,

GE).

and S, while the term Fa-f;f enters only in the first-order

equation of f. Since f%£/15j0_2 holds for typical parameters

in the ionization zone (Ti = 50 eV, B 2 20 kG, 1 = 50 cm), the

shows that the zeroth-order contributions result from

drifts produce only very small deviations from the zeroth-order
distribution, which is a Maxwellian in the case S = 0. The
situation is different however, with not to small sources and
sinks S , which are able to maintain marked deviations from
Maxwellians.

Most of the computations were done with Franck-Condon neutrals
from walls and limiters which have an isotropic velocity
distribution (Maxwellian with TO = 3 evf? We therefore apply
the fast 1D version of the code using the explicit scheme
described in chapter 2.4. Stationary solutions of Eq.(2) were
found for various g?. and Te =ET1, where:fl is the average
kinetic ion eneragy. They are reached at a physical time about
four times as large as the classical ion-ion collision time.
In Fig. 1 steady-state ion distributions F = % f(%)are plotted
versus%'for ﬂ%ve) =0, T, = 'E; = 20 eV and various %ﬂratios.
The Mafaéllian distribution fM corresponds to %9= o. For all
curves of a figure the particle number and energy have been
kept fixed. It can be seen that non-Maxwellian distributions
are produced by sources and sinks due to charge exchange alone.

In this case without ionization stationary solutions are obtained

+)Backscattering of outflowing deuterons produces different

neutral particle distributions.
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even with Sd = o (see Eg.(2). Figures 2 and 3 show that
larger differences from fM result if both ionization and
charge exchange are taken into account. Obviously, for not

too small ﬁgratios considerable deviations from Maxwellians

are produced by the influx of cold neutrals. For T = T, =20 eV

a normalized deviation defined as ﬂz B f(o)f—(£¥?o) of about
0.1, which is still large compared with the contribution of

the drifts, results for 29: 0.013. At temperatures Te = E; = 50 eV,
which are more realistic for the ionization zone (e.g. in

TFR 600),significantly smaller ggratios are sufficient (see
Fig. 4). This tendency is continued for Te =fPi = 100 eV

(see Fig.5). In Fig. 6 the very sensitive dependence of the

Eﬁ ratio corresponding to H = 0.1 on the temperature is shown.
It results from the decrease of the spreading in velocity space
with growing temperature. One can conclude that for realistic
temperatures in the ionization zone, such as Te = Ti 2 50 to
100 eV, ratios of %2 2 2 -10-4 to 10-3 are sufficient to produce
marked deviations from Maxwellians (4 Z0.1) in the presence

of classical velocity space diffusion. Since the experimental
parameters in the ionization zone can be in this range, sources
and sinks due to ionization and charge exchange are able to
produce large distortions from Maxwellians and can possibly
cause microinstabilities in the boundary [12]. These results
have been applied to measured profiles of PULSATOR and ASDEX and
to profiles computed by the tokamak transport code BALDUR.

In the high-density discharges of PULSATOR the %?-—values
considerably exceed the ratios corresponding to 41 = 0.1

in the range Te = 20 to 100 eV. In the ionization zone of
ohmically heated ASDEX-discharges, however, the O - ratios

can produce maximum distortions of'q = 0.1.

From the figures presented the limitations of a fluid des-
cription of the ions become evident. The effect of anoma-
lously frequent collisions was simulated by a coefficient
10 times as large as [ for a test case with Te = T; = 20 eV,
TO = 3 eV and %8 = 0.2, yielding a reduction of the guanti-

i

ty £(0) - fM(O) by a factor of 15.
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By comparing Figs. 3, 4 and 5 a peaking of distributions at
larger temperatures becomes evident. This simply results from
the concentration of the 3 eV neutrals and thus of the source

v o
to a narrower ;EH range, when the temperature is increased.

Essentially identical stationary solutions were obtained
by applying test functions. These computations show that
two-temperature distributions with one temperature somewhat
above TO and the other one near Ti represent rather good

analytic approximations.

As mentioned above the ion distribution also depends on the
different mechanisms of neutral particle production. The largest
differences from fM near v = o result for gas—puffing,i.e.

for Franck-Condon neutrals with TO= 3eV Ti and for recycling.
On the other hand, the ion distribution must remain unchanged

if neutrals with a distribution identical to f enter the plasma.

This can be proved by inserting i°(°) = ﬁ(u) into Egs. (2),
(-]
(6) and (7) (S+S. = o) and has also been numerically confirmed.

d
Thus, rather small distortions of fM are expected for neutral

distributions close to the ion distributions.

In the tokamak boundary roughly equal electron and ion temperatures
were measured. Computations with Te ='E; show that the electron-
ion collisions contribute only a few per cent to the ion

collision operator. The situation is quite different for the

test case Te = 5eV,'I‘i = 20eV and Z2e= 0.1, where the electron
centribution reaches up to 50 % of the total collision term.

4. CONCLUSIONS

Steady-state guiding-centre ion distribution functions were
computed for the ionization zone of tokamaks. For tvpical
temperatures Te = [y Z 50 to 100eV and ratios of %3 2 2- 10_4
to 10_3 sources and sinks due to ionization and charge exchange
of neutrals from walls and limiters produce marked deviations

from Maxwellians (412,0.1) in the presence of classical velocity
Te

space diffusion. The distortions grow with increasing Eﬂand
- n T
&

and possibly cause microinstabilities in the boundary. Both
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ionization and charge exchange are able to produce large dis-
tortions. The relaxation time to steady-state exceeds the
classical ion-ion collision time by a factor of about 4.
Drifts yield comparably very small (first-order) deviations

from Maxwellian ion distributions.

For Te = Ti the contributions of electron-ion collisions to the

ion collision operator are in the range of a few percent.

Good analytic approximations for the stationary solutions are
obtained by two-temperature distributions with one temperature
somewhat above TO and. the other one near Ti'

For T_ = T, 2 50 eV and Do 2 10_3eafluid description of the
n

ions with classical coefficients is not justified.
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