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Summary

The radiation emitted by the electrons of a plasma with more
suprathermal electrons than a Maxwellian one has been evaluated.
The emitted lines attain in the plasma N, times the black-body
radiation at the temperature of the "hot" electrons for some
harmonic number up to a limit number m .

The energy is absorbed mostly by the bulk of the electrons,

owing to the magnetic field gradient in a toroidal configuration.
This "equipartition" effect can be larger than the effect due to
the collisions. Finally, since the coupling at the upper-hybrid is
not possible at higher harmonic numbers in "fusion" plasmas, a model
has been proposed for the coupling of the emitted waves which are

almost electrostatic, with the waves which go adiabatically into vacuum.



Introduction

Suprathermal emission at the harmonics of the electron cyclo-
tron frequency was already observed at the beginning of fusion research;
the first report is dated 1961 /1/.Some proposed explanations are
reported in Chapter 7 of Ref. 2. Probably the most obvious was to assume
the presence of a group of suprathermal electrons and evaluate the ra-
diation emitted by them in the plasma, which was described as a medium
with dielectric properties determined by the distribution function of
the thermal electrons. (A similar approach had previously been success-
fully used /3/ to account for anomalous emission at the harmonics of
the ion cyclotron emission in OGRA.) An open problem in the proposed
model is the coupling of the preferentially emitted electrostatic
waves with waves which can propagate into vacuum. Also unsatisfactory
is the fact that the intensity of the emitted lines comes out to be pro-
portional to the number of suprathermal electrons, without an evident
upper limit; moreover, only the perpendicular velocity distribution seems

to play a role.

More recently suprathermal emission has also been observed in
Cleo and the FT tokamak. In both cases the anomalous radiation is attri-
buted to electrons described by a distribution function with a temperature
much larger than that of the plasma bulk. In the first paper the author
follows a paper by Engelmann /4/ (see also /5/), where the absorption
is evaluated from the dispersion relation, on the assumption that
E p2 m1/2

k <<

(this conditio.a following from the expansion of the functions

= i 2 2 ; v 5
e H Im (p) in powers of p = k, p /2). This restriction is however a

weak point in the theory, since one would expect the emission to be at



its greatest for X ~ p/m i.e. for ki pz~ m2. The emission then follows
from the Rayleigh-Jeans law. The FT results /6/ are tentatively ex-
plained with the Schwinger formula for the radiation of a particle

in vacuum (reference is made to a paper by Rosembluth /7/).

The two models do not yield an upper limit to the intensity of the

emitted lines.

In the following the plasma radiation is evaluated as the average
over all the electrons of the radiation of a test electron. The distri-
bution function of the electrons is taken to be the sum of two Max-
wellians, the one with lower temperature describing the plasma bulk,
as usual. The description is non-relativistic; it is valid as long as
N, > ﬁi_vt/c , where m is the harmonic number and AL the thermal velo-
city (see, for example, /5/). Our problem is to determine under what
conditions the radiation lines in the neighbourhood of the harmonics of
the electron gyro-frequency have intensity exceeding that of a black-
body at the temperature of the bulk of the plasma. Several recent papers
deal with the problem of the radiation from a non-Maxwellian plasma
(see for example /8 - 10/) but with different aims; for example /10/
is limited to the first two harmonics, in the small Larmor radius appro-
ximation, but within the framework of the weakly relativistic treatment.
In Sect. 2 it is shown for a Maxwellian plasma how the Rayleigh-Jeans
law follows from the assumption of "small" absorption. The proof has
some interest for its own sake, because of its simplicity; its aim,
however, is to facilitate the proof in Sec. 3, that the intensity of
the radiation in the plasma ranges between the intensities of the black-

body radiation at the temperatures T0 and T1. The level T1 is attained



when the plasma is optically thick and the radiation is preferentially

absorbed by the suprathermal electrons.

In Sec. 4 we determine the frequency intervals where the level T1 is

effectively attained. In this section we use approximations to solve

the dispersion relation, namely k,p << 1 and wz s Qz . The functions

e-uIm(u) are described, when necessary, by formulae valid also for

p~m~ , 1i.e. for A ~ p/m.



Only a small fraction of the emitted radiation will leave the

plasma; the rest is absorbed by the same electron population

which emitted it, when the plasma is homogeneous. When the plasma

is not homogeneous, and particularly in a toroidal magnetic field,

the radiation from the suprathermal electrons (T=T1) will be ab-
sorbed by the thermal electrons (T=TO), giving rise to an "equipar-
tition effect". This process is described in sect. 5, where, moreover,
a rough comparison with the equipartition effect due to the collisions
is presented.

Section 6 presents a model for the coupling of electrostatic waves
with waves which can propagate into vacuum when mi s 92 . The trans-
mission coefficient is found to be proportional to the density gra-

dient and to the gradient of the magnetic field, as expected.

The conclusions are summarized in Sec. 7.

Section 2

Let Maxwell equations be written as

with

It then follows that

&, = %e_,e_»_ ‘1/6 4Ty (D Hdad/e”),




where D is the co-factor of d .
af afB
With these notations the power radiated by an electron per unit

angular frequency interval in the interval (k,, k, + dk,) in a uni-

form plasma with magnetic field B is [/2/
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The argument of the Bessel functions is k,v,/Q ; v, and v, are the
components of the test electron velocity; Q is the electron cyclotron

frequency. The plasma electron velocity distribution is assumed to be

Maxwellian with thermal speed v _:
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By averaging the energy emitted by a test electron over the distri-

bution function f one gets
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A comparison with eq. (1) shows that
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The power radiated by the test electrons can then be written
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Since the dielectric tensor is defined by g = 1 - —égi—
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it follows from eq. (1) that
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Let us now introduce the integration variable p = kfp /2

Dy _dx
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where u = KTw /mc™ is the energy density per unit angular

frequency in a black body.

In the Appendix we show that to first order in the quantities

- d*
(daB d ) one has
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Integration over y can easily be performed in the limit
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where W is a zero of the dispersion relation Re(D)=0,

and the sum is over all the zeros. In the limit of small absorption
the emitted energy is therefore the sum of the contributions of the
single modes.

Let us assume that the plasma is a slab with constant density and
width L; the energy which arrives at the boundary is then

act ‘ib'.rn‘-
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where N, 1is the refractive index and
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When lkILl >> 1, Epn is the expression one would obtain for

a black body.

Section 3

Let us now consider an electron distribution function with more supra-

thermal electrons than a Maxwellian which can be described as the sum



of two Maxwellians:

@) pu) v -1
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with v, >> Vs n,v, <<nv.

The conductivity tensor 9, is the sum of the tensors corresponding

B
to f(o) and fu) . The determinant D of the Maxwell equations is of
course not the sum of the determinants D(o) and D(1) corresponding
to f(o) and f(1) . When, however, in the evaluation of the imaginary

part of D in the thermodynamic limit of small absorption we only retain

the terms linear in the anti-Hermitian parts of the daB '"s , the function
%
Im(D) is the sum of two terms, proportiomal to (dég) - dég) and
* . . o 1 1
(daB dBa ) respectively; we write Im(D) ~ DI + DI (DI also depends
on dig) ) . For the explicit expression see Appendix.

The energy emitted by the gyrating electrons can be evaluated in the same

way as in Sect. 2. It is easily seen that the functions T 9, which appear

B
. (o) (1
in eq. (2) have now to be replaced by 8 %R + T10uB .
; ; *
It can then be shown that the expression corresponding to gB 88 (daB dBa)
2 S o = - —%
(in the Appendix it is denoted by'gé DuB (duB dBa) )

is now equal to

¢ (T, DS+ T, D).
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In conclusion, the energy emitted per unit time, unit angular fre-

quency and unit volume is

In the limit of small absorption integration over p yields

2 )_'_—_ED;+—':-D£/T;
p 47‘662'00'1 h. | D
f“' /,g:fbn

where p_ is defined by D_(u ) = 0, and D = —0D
n R 'n

The energy which arrives at the boundary of a homogeneous slab can be

derived in the same way as in the previous section. The counterpart of

eq. (4) is

foad 3k D hD:/T (1) (5
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The dispersion properties of the waves corresponding to the M S

are those of the "cold" electrons because we have assumed that n, << n,

1
and therefore Re(D ) =~ Re(D(O)

). The form of the radiation spectrum,
however, is mainly determined by the population which preferentially
absorbs a given mode Mo because the corresponding imaginary part of the
dispersion relation is the largest one. From eq. (5) it follows that the
"cold" electrons determine the absorption when Tng >> T1Dl(7); in the
limit kI L > 1 Ep is then proportional to the black body radiation with
temperature TO. Eq. (7) is satisfied when the energy of the 'resonant' par-

(o)

ticles of £ is much larger than that of f(1) (the number of "resonant"

particles is weighted with the relative phase of their perpendicular motion

with respect to the phase of the electric field).

The other extreme is attained when the number of "resonant'" hot electrons

"

is much larger than the number of '"resonant" cold electrons; this situation

can occur, although we have assumed that n, T0 >> n1T1.

Then, always in the limit kIL >> 1, Ep attains the radiation of a black-

body with temperature T and appears to be anomalously large for a plasma

1
with temperature Ty -

In the following section we determine when this occurs.

Section 4

The interaction of the electrons with the electromagnetic field is
particularly large when the perpendicular wave-length or a multiple thereof
(for angular frequencies w ~ m ) is comparable with the Larmor radius.

One then has N, ~ c/vt and if c2 >> vt2 a solution of the dispersion rela-
tion is (almost) electrostatic. The approximate dispersion relation for

the electrostatic waves 1is
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where Z 1is the "plasma dispersion function", v = w/Q
(msvz=m+1 ) and wi, p , o refer to the distribution function
),

If one wants the effect of the harmonics n # m upon the m - th to be negli-

gible, one must have k, p << 1 because then

) f26s) |~ o 12

”b‘“"g)/»i.

In this case one gets
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Some known properties of the solutions of eq. (9) will be useful

in the following discussion.

The first is that when wi = vzﬂz the real solution p(v) is contained
in the region o <v-ms Av <1, where Av is defined by the equa-

tions

"7
o
11
D 0
When A v << 1 one can use the approximation (9) for D; one then gets

P =T @)

The known approximations to the function Fm (see /16/) vyield

-T:~ ~ W = 1 (f* >’ OTL) .
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Hence eq. (12) has the solution p ~ 3ty -éa which is
independent of k,p .

With this value for up and the asymptotic formula for T :
-
- /“!'f“" =i
Tem e 7"Migmp (43)

eq. (9) yields

Zoombup &7 _ajrar  (4a)
N}ﬂt‘rﬁ }.A + w;-/_Q_z.

and for A v >> ke p :
2 i 2.
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The other property we shall need, is that whereas for k, p = 0 the real
éurves p(v) exist for every n, are open and go to zero and to infinity for
vV > m 5 for k,p20 they are closed. When k, p increases, the maximum and
the minimum are squeezed together, and when k,p is larger than some suffi-
ciently large value k,p there is no real solution, for a given m. Since
at the extrema one has
=2 D, - (45)
D,= 2. D, =0 14

the value k,p can be obtained as the solution of eq. (15),
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together with the equations D = 0 and Du = 0. When Av << 1 the
Av L

a — —_—
™ (vZ) = 0 or Koo 1.5 . (16)

With this value we get from eq. (14)

equation Dv = 0 is equivalent to

—

9 2
ko = 0.39 Wp/ 2™
mAy 6_605}/t£xF

This equation can be written as

2 3 we
m —= /n10 = C?.Zf C g ‘491
T 2
N, Vi
m, is then the largest harmonic number with real electrostatic solutions
for a given N,,.

We are now in a position to discuss the conditions necessary for an ano-

malously high emission; as we have seen in Sect. 3 they are
4 (<}

D! »D:

kLY 1

“48)

where kI is given by eq. (6).

Let us begin with the interval of (normalized) angular frequencies such
that pu(v) >> m (remember that at v =m + A v one has u ~ m2/3). On the
outer branch of the curve u(v) , away from the extrema, the dispersion re-
lation does not depend on k,p ; an important consequence is that for a
given A v and the corresponding value of yu the functions DY and D;

I

strongly depend on the parameter Xk,p . In fact eqs. (18) can be written
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In the same way as we have deduced m < m from eq. (16) we now get

49)

-4/3

Mo Lmgm, F;Us (20)

where

o ar n(2(E)

e 2,25 (-T2 /T) (21)

3
ﬁ’ [;,L(L me my [T, J*
2~ 3
224‘1‘ e m* m, \T;
A necessary condition for the existence of radiation at the level T1

follows from eq. (20), namely 81 < 82. From the definition of 81 2

it then follows that it must be approximately

L oms me (ILJ% 4 (22)

e m* m,
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This equation shows that there is a minimum value for the density

of the "hot" electrons, which is inversely proportional to N, ; hence
the angle within which the radiation is anomalously high becomes smaller
when the density of the hot electrons decreases. For T1/T0 = 10 and

m=m eq. (22) yields

Ma 5 4050 /L, .
Me

If we now consider frequencies such that wu(v) < m, the condition

DY << D1 is easier to satisfy; on the other hand, the value of kIL is

I I
increasingly determined by the value of the function Fm(uT1/To), which

rapidly becomes small when }A T, /To ,{; me,

Numerical calculations are necessary in this frequency range.

However, if we do not look for the form of the emitted line, the

domain u(v) >> m we have previously investigated is enough for a compari-
son with the experiﬁents. In fact, if anomalous emission is not possible

at A v = O(KHU), it will not be possible at A v << A v either. On the
other hand, if it is possible there, it will extend on the side of lower
frequencies, giving rise to a line whose amplitude goes to zero shortly be-

fore A v = 0. The results of our discussion can be summarized as follows:

1) when m > m_ no electrostatic waves propagate;

2) the width of the lines decreases as m 3
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3) the radiation is "black-body" with temperature T1 when

~1/3 ,
- /3
m, F" {m & m /BA

~1/3

4) when m < m 82 the radiation is proportional to
2 2 :
m kI , l.e. 1t does not depend on m,
Section 5

If one compares eqs. (18) with the results of the model proposed some
time ago for the "anomalous'" emission, an interesting and important difference
appears. In the previous model the parallel velocity distribution had no bearing;
the emitted "anomalous" radiation was simply proportional to the density of the
suprathermal electrons, without upper limit (except that the real part of the
dispersion relation was essentially determined by the "thermal" electrons);
self-absorption was neglected. On the contrary, eqs. (18) show that the parallel

2
velocity distribution is essential (through the factor e (8v/kye)

) s
whereas the perpendicular velocity distribution only appears in an integrated

2
vl/Tdvi

[+ 4]
form (through the functions Fm o J‘Ji (v k,/Qe which take into account
0

the phase of the perpendicular motion with respect to the phase of the electric

ed

field). A two-temperature electron distribution function would show a
much larger sensitivity of the emission to a change of the '"parallel" tempera-
ture than of the "perpendicular' temperature.

Only a small fraction of the emitted energy leaves the plasma, as we shall see
in Sect. (6); in a slab model where only the density depends (weakly) on x,
the rest is first reflected from the surface where the group velocity is zero

and is then absorbed by the same population which emitted it. When also an

x—dependence of the magnetic field is allowed for, the radiation at temperature
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T1 emitted in the direction of decreasing Bz is absorbed mainly by the

"hot'" electrons, whereas the radiation emitted in the opposite direction

is absorbed by the "cold" electrons (this effect is discussed for the

first two harmonics in /10/, but with opposite directions, since the authors
consider extraordinary transverse waves). In fact, owing to the magnetic

field gradient, a displacement § x of the wave front leads to a change

8 ] . ;

-:?— = j%i in the normalized angular frequency, if we assume BZ = Bo (1-x/R).
0

As we have seen in Sec. (4), the condition D_ << D1 (which ensures that

I I

the electrons which preferentially emit and absorb energy are the 'hot"

ones) 1s only satisfied for Av > 61 k, p; hence, after a displacement 6x

in the direction of increasing |B| , with S = (m+4v) - (1 n+8;k"p)
R m + Av

is in a region where D; >> Dl , and the energy is absorbed by the 'cold"

the wave

electrons. With definition (15) for Av , one gets approximately

on _ 04 @ (23)

—— S

R md Q*

The density gradient does not lead to such an effect because for

2
4 ~m one has

D, > T, * Mo exp |- (A2 (4= /T ,
ST e ¢ )]

1
and a small change of n, n1 cannot make D; >> DI 5

It is interesting to compare the energy transfer from the "hot'" to the
"cold" electrons, due to the radiation, with the transfer due to the

collisions. From eqs. (5) and (20) one can estimate the total energy per

particle, per unit time emitted at the level T1
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(we assume a line-width Av ). The largest possible value of N, is
the one which makes m 651/3 equal to one ; one gets

-1 2
N, = 82 0.4 wp C . It thus follows that
Wl v_

-5/6 wd I8

B A2 40 0T, T, [keV, 40 cm3]

In the same units the equipartition time is

The estimated effect of the radiation is therefore of the same order

of magnitude as the effect of the collisions.

Section 6

In the preceding sections we have evaluated the energy lost by gyra-
ting electrons in a homogeneous plasma. The coupling of the electrostatic
waves with waves which can propagate into vacuum has often been discussed.
An accepted view is that the coupling is possible in the neighbourhood of

the upper-hybrid resonance; i.e. in a density region




2 2 ) .
where o° ~ mp + 92 , Or vz ~ 1+ wi/ﬂz. In experiments where

the magnetic field is varied, this condition can also be satisfied
for relatively large values of v (~20).

3 " 2,
In the usual "fusion'" experiments, however, ms/ﬂ is smaller than,

= cm -3, Tesla j) and

or of the order of one (wslﬂz = 1-neB_2 [10
coupling at the upper-hybrid is no longer possible.

With this exclusion, the only region where the coupling can take

place is where |dh/dx|>> 1, i.e. in the neighbourhood of a region

where the group velocity is equal to zero ("turning point"). The

"turning points" correspond to the frequencies v = m + Av and to

wave numbers kx such that pu ~ m2/3 , as has been shown in Sec. 4.

They only exist where w§/92 < v2 , i1.e. where coupling at the "upper
hybrid" is not possible.

Here we do not give a theory of this coupling; we only deduce from phy-
sical arguments an approximation of the coupling coefficient (several re-
cent papers []2 = 151 have been published on related arguments; unfor-
tunately, they do not apply to the case we have just described, for
l<msm .). The slab where |d\/dx| >> 1

can be thought of as a surface separating two media with different
dispersion properties, since its extent is smaller than or only comparable
with the incident and transmitted A's,

In the first medium three reflected waves besides a quasi-longitudinal in-
cident wave can propagate, namely two quasi-longitudinal waves correspon-
ding to the two real solutions of the dispersion relation (8) for a given
value of v ; and a quasi-transversal wave, with a refractive index of the

order of one. The transmitted mode is the same as the reflected quasi-trans-

versal one; but, of course, with a k of opposite sign. The components of
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E and B parallel to the boundary plane must be continuous through

the boundary, i.e.

‘[Eéjzz 0 [T1KEEYI = 0 CJ?é)
[E,]=0 [NE,-NxE;]=0

must be fulfilled.

These four conditions uniquely determine the reflected and transmitted
waves.

The different modes will be designated by an upper index: zero for the
incident wave; one for the reflected wave of the same kind as the inci-
dent one; two for the second quasi-longitudinal reflected wave; three
for the quasi-transversal reflected wave; four for the transmitted wave.

Let us introduce moreover the polarizations:

PaE/E ; @=E/E (i-04159

From Maxwell equations one gets

\

:E?;;s éELL (’rilx r#l,'" éil&
. (%)
Q'~ N: (Nx N“ = 6;5)_1

Equations (26) can now be written

[2. 6 ]=2 (D:CP‘E;]=
[:ZL éat;-E;; ]:= = E,
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Note that mode 2 has a negative group velocity; the wave vector of the
reflected wave is therefore directed toward the boundary plane.

As already stated, we consider the slab where |dl/dz] >> 1 as a plane
separating two media with different dielectric properties. If this slab

is reduced to the plane where the group velocity is zero, the mode 0 is
totally reflected. With our assumption, which takes into account that wave
coupling is possible in the whole slab where |dA/dx| >> 1, the modes 0
and 2 are characterized by different wave numbers, the difference being
proportional to the thickness of the boundary layer. More precisely,

Au = u(z) = u(o) is defined by the condition that [dA/dx| >> 1 be ful-
filled. It is not difficult to link this condition with the dispersion re-
lation; it holds in fact that

20 dme 2D
_Qt_iz%L__ ('3%611 = a:—;:—) (29)

dv _ v 1 - " e
where B " = n , since we assume B = B0(1 R ).

In the neighbourhood of Du = 0 one can write Du ~ Ay Duu )

dD
one has |dA/dx| > 1 when Ap < ;é%z 51_ =

HH
By taking the dispersion relation into account one finally gets

‘%E'(;-% C%‘ ?Av) (20)

. _— ; =2 ; ;
Since Av ~ Av 1is proportional to m ~, at the higher harmonics the second

term dominates; it has the following upper limit:

0 _ R £ 41 &1
Ray |k Rov B, R, R By
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The transmission coefficient is proportional to Ap . In fact, the

transmitted energy can be written as

AIE;F_A}E;}{_ (A+BA)IE:J z.—- BIESJ)). (34)

A and B being functions of the dielectric tensor directly, and in-

directly through the polarization constants P' and Ql;

SA= A(KY) — A(p).

It is easily seen from eqs. (24) that E1/3 are proportional to
Ay ; it follows that the transmission coefficient is approximately

(to first order in Ap)

1240 (31)

Since

one gets (see egs. (10) and (12) ):

QA L _ 4 A
A ol

The value of 1 - ]Ez(z)/EZO|2 follows from eqs. (24):



«) )
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¥ 05 (4+ &3 /€D )+ mt/Lpt

which is much smaller than Ap/u. Hence

T . 4 bk (33)

A
2 T
and finally, from eq. (25)

T_ 4 0 (_@gi___@___) (34)
16 m “m, RAV

The energy flow from a plasma slab, in the case when the radiation
in the plasma is black-body at the temperature T1 and is due to electro-

static waves, follows from eq. (5) and (26). One gets

(39)
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Conclusions

We have evaluated the radiation emitted by the electrons of a
plasma with more suprathermal electrons than a Maxwellian one. The electron
distribution function has been described as the sum of two Maxwellians;
one describing the bulk of the plasma, the other the suprathermal electrons.
Although we have assumed that the total energy of the suprathermal electrons
is much smaller than the total energy of the bulk of the plasma, the emitted

lines attain in the plasma N1 times the black-body radiation at the te%?er
1

ture T1, for some harmonic numbers up to a value m - 1,3(0 4 a5 —%} )
I!

/3

The energy, which in this case is emitted by the suprathermal electrons, is
partly absorbed by the bulk of the electrons, owing to the magnetic field
gradient in a toroidal configuration.

This "equipartition" effect has been compared with the effect due to the
collisions. The two are of the same order of magnitude, and for large (T1/T0)
the radiation dominates. This result can be of interest for the electron
cyclotron heating of a plasma.

Finally, we have evaluated the coupling of the emitted waves which are
almost longitudinal, with the waves which go adiabatically into vacuum.

The coupling at the upper-hybrid is not possible at higher harmonic num-
bers in "fusion' plasmas. The mechanism we have proposed takes into

account the non-adiabaticity of the wave propagation in the neighbourhood

of the region where the group velocity is zero.



Appendix

Let us write (d ) as
ap

where Li 5 1i (i=1,2,3) are three-component vectors; Li are the Hermitian
parts, 1. the anti-Hermitian, with |1i| << lLi' for every component. Up to

first order in llil one has

L4+ 6, L4 Z{
ldygll=[burle | = [ L, [+ | L [+

L.5+-£5 L_5 L’5

L

+ a2 + ‘ L’L (/()

The first determinant is real, the others are imaginary.

ZoL Da./g (da B Ti'mt)

is the determinant of the matrix which is obtained by replacing the

B-th row of (daB ) with its anti-Hermitian part; the sum over a and B




is therefore

24 L,+44 L o+ 4,
N P R + 2L+l (‘L)
Ly+ s Ly+ta A

From this equation it is easily seen that to the first order in |li| one

has

;2:. ~ «5 ﬁ ij/v»v ;I)
“P

When the distribution function is the sum of two Maxwellians one has
-5 (o)+ o (1)
aB afB oB

eq. (1), with L, = L§0)+ LF‘), 1. = 1§°)+ 1§1);
1 1 1 i i i

o . The function Im D is also given in this case by

Each of the three first order matrices of eq. (1)

can be decomposed; e.g.

{, £ L
| s + L (3)

p o
L L

L, by La

Clearly one can write Im D~ Di + D; where D; (D;)

is the sum of the determinants containing lio) (1;1)).
The sum
i3 N
Z Dy, (d,,~ dy )
“fs 075 M73 fSGL




(o)

can be written as in eq. (2), where now Li = L.
and 1, = T 1?0) + T 1?1) ; e.g.
.3 o1

o (D
1

_]: 8:0)—1' Ty g;*) |
Ll
L&

Comparison with eq. (3) shows that

2 = B (T-;DIO-P—GDIA) '
%
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