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Abstract

The existence of quasi-periodic eigensolutions of a linear
second order ordinary differential equation with quasi-periodic
coefficient f(w1t,w2t) is investigated numerically and gra-

phically. For sufficiently incommensurate frequencies w,, w

1 2
a doubly indexed infinite sequence of eigenvalues and eigen-

modes is obtained.

The equation considered is a model for the magneto-hydrodynamic
"continuum" in general toroidal geometry. The result suggests
that continuum modes exist at least on sufficiently irrational

magnetic surfaces.




1. Introduction

For the linear second order ordinary differential equation with

periodic coefficient f£(t) = f(t+wm), (Hill's equation)
y) + A+ £(e) Jy=0 (1.1)

it is well known /1/ that with mild assumptions for f(t), there
exists an infinite sequence of characteristic values or eigenvalues
A= An’ n = 0,1, ..., such that the solutions y = yn(t) have the

same periodicity as the coefficient f(t).

As a generalization of Hill's equation we consider the differential

equation with quasi-periodic coefficient f:

;(t) - [E + f(m?t,wztil y=0 (1:2)

where f is periodic with respect to both arguments

£(6,¢) = £(6 + 2m,¢) = £(6, ¢ + 2m) (1.3)

but is not periodic in t in general if the ratio w1/w2 is irrational.

(It is convenient here to use 27m for the period instead of w.) The
purpose of the following investigation is to find out numerically -
insofar as this is possible - whether eigenvalues An again exist

for this generalized equation. Eigenvalues are defined here by the analo-
gous requirement that for A = An the solutions y = yn(t) be quasi-

periodic with the same quasi-periodicity as the coefficient f (t):
. = U(m1t, mzt) (1.4)
with

u(6,¢) = u(6 + 21T,¢) = U(9,¢ + 27). (1.5)



As we shall briefly explain below this eigenvalue problem
arises naturally in the theory of the so-called MHD continuum

in general toroidal geometry.

Equation (1.2) is equivalent to the partial differential

equation of the parabolic type

3 g 32
(W 35 * Uy 342 v (B0) + [ A+ £ (6,8) Jy=0 (1.6)

with the real characteristics
8=mt+c,¢=wt+c2 (1.7)

with ¢y» ¢, = const. A quasi-periodic eigenmode corresponds

to a solution with periodic boundary conditions on the square
0 £6 =2m, 0 =£¢ = 27. While for elliptic operators the existence
of such solutions is guaranteed by the theory of Sturm - Liouville,
no equivalent theorems are known for parabolic equations. The

existence of eigenmodes is therefore uncertain a priori.

Difficulties in analytic investigations of eq. (1.2) or (1.6) usually
come from the problem of "small denominators'. If y (6,¢) is Fourier
analyzed in 6 and ¢ the operator d2/dt2 corresponds to - (n,w, + n, w,)
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whose inverse becomes arbitrarily small if the integers n, and n, are

appropriately chosen in the limit |n ,|n2| + o, This problem makes

i
the generalization of the Floquet theory /2/ of systems of periodic
differential equations to systems of quasi-periodic differential

equations so difficult and incomplete /3 - 6/ . We shall discuss in

Section 3 below some results relevant to us.

The paper is organized as follows: Section 2 presents a short dis-
cussion of the physical problem which prompted the investigation. For

a quasi-periodic &-function-type f (w1t, wzt) equation (1.2) is trans-
formed into a recurrence relation in Section 3, and the general features
of the numerical solution /7/ together with pertinent analytic results

/5/,/6/ are recalled. In Section 4 numerically obtained eigenvalues



and eigensolutions are presented and discussed. Section 5 contains

a critical discussion.

2. The MHD continuum in general toroidal geometry

For a plasma confined in a toroidal equilibrium configuration and
described by magneto-hydrodynamic equations the linearized equations

of motion may be put in the form /8/:

d -
—a—‘p)_(— é X + E Y (4.1&)

L-Y=K:*X (4.1b)

where X and Y are vectors with two and four components, respectively
and together describe the perturbed fluid motion and the perturbed
magnetic field. A, B, K and L are matrix operators containing deri-
vatives in the magnetic surfaces y = const. Derivatives out of the
surfaces are explicitly indicated in eq . (4.1a). The operator L

is particular in that it only contains derivatives along the mag-
netic field lines on § = const. The existence of equilibria with a
continuous set of nested toroidal magnetic surfaces is non-trivial

in the general case but is assumed here.

1f eq. (4.1b) can be solved for Y an equation for the radial
variation of X is obtained. With suitable boundary conditions a
set of discrete eigenvalues m2 may be determined, where an ansatz
n exp(iwt) is made for the time dependence of the perturbations.

1f however
2
L(t,0",¥) Y(t) =0 (4.2)

has a non-trivial solution - here t is a coordinate along the field

: . . 2 ;
line considered - another set of eigenvalues w” results directly
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from eq. (4.2). If L is a continuous function of the radial
coordinate ¥ the same is true of the eigenvalues mz. Hence

the name "continuum'" for the eigenmodes and eigenvalues of

eq. (4.2).

Equation (4.2) consists of a system of four ordinary first
order differential equations along a field line. It may be

written in the form
. 2
Y(t) = g(t,m 0) X

The matrix Q contains quasi-periodic functions of t since

the equilibrium depends periodically on poloidal and toroidal
angles 6 and ¢, respectively, which may be chosen such that
the linear relations

¢

8
6 =B t + const , $ = B" t + const

hold along the magnetic field B. Here Be = BeV6, B¢ = B+Vé.
As boundary conditions for eq. (4.3) it is required that Y(t)
also be periodic in the angles 6 and ¢. The existence of
such eigenmodes is, however, uncertain and the present in-

vestigation is intended to contribute to this problem.

In equilibria with cylindrical or axial symmetry or with
closed field lines the matrix @ becomes either constant or a
periodic function of t. In these cases continuum eigenmodes
exist (see e.g. /9-14/) and have been proposed for efficient
local plasma heating ("Alfvén wave heating"). Their radial
dependence, which in cylindrical geometry includes a loga-
rithmic divergence, has been preliminarily discussed in

/15/,/16/ for general toroidal geometry.

In the limit of low plasma pressure eq. (4.3) to lowest order

reduces to

(4.3)

(4.4)
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£|:ad—i(by):[ + cmzy =0 (4.5)

where the quasi-periodic coefficients a,b,c are defined in
/17/. Clearly, equation (1.2) which we shall investigate

for particular f(w t,mzt) is a simplified model equation of

1

eq. (4.5), where A, Be and B¢ correspond to mz, W, and Wy s
respectively. The case w2>0 and q = Bé/Ba irrational will be

considered here exclusively.

3. Numerical solution for &§-function-type coefficient

We consider eq. (1.2) in the form
y(&) + [ + £ t, wyt) Ty =0 (3.1)
with particular 27m-quasi-periodic functions

£(t)

£(6(t),4(t))

{ee]

n=-—o

-0"[F, s(e-nT +c) + F, 6(t-nT,) | (3.2)

fm Cc &(t-t )
o n n
with

8 = m1-(t + c), ¢ = w,.t, w, = W/Ti, i=1,2 (3.3)

2

f(t) is an imitation of F cos(m1t +¢c) + F, cos w,.t with

1 2 2

§-functions. F1 and F2 are arbitrary amplitudes. Together

with the factor + 1 they are collectively called Cn.
Between the d-functions the solution of eq. (3.1) is

y(t) = a cos wt + b sin wt (3.4)



Integration across the &-functions at t = E yields a jump
condition for the derivative y, while y is continuous. From the

jump conditions the recursgion

; 5. 2
a 1 + ¢ sin 2ut 2c  sin  wt a
n n n n n-1

= 5 n. (3:5)
b - 2¢  cos ot 1 - ¢ sin 2wt
n n n n n

for the amplitudes a s bn for tn <t <€t may be derived,

with c = Cn/(2m). The recursion allows 2;;t and accurate nu-
merical determination of y(t) and §(t) at multiples of Tt and T2.
It was performed partly on an AMDAHL 470 V/6 and partly on a
CRAY-1. Different word lengths on the two computers allow evalua-

tion of round-off errors.

For each "run" not only the amplitudes F1, F2 and the frequen-

cies w, Wys O have to be specified but also the phase (-dif-

2
ference) ¢ and the initial direction of the vector (y(o),
§(0)/m). The latter is done by specifying the coefficient r, with

o<r £ 1, in the ansatz
y(o) = cos rm, &(o)/w = sin rm (3.6)

The result of many such runs have been reported in /7/. Both,
cases with stochastic and cases with ordered behaviour in phase
space were presented and the integrability of eq. (3.1), written

as a Hamiltonian system, was discussed.

Cases with unbounded solution for t + =, i.e. n >> 1, were found.
Detailed investigation reveals that the solutions y(t) become
unbounded if the eigenvalue parameter w is located in a doubly
indexed infinite sequence of gaps situated in the vicinity of

w =W which are defined by the resonance condition

now + n1 w, + n, w, = 0 (3.7)

with n_ = 2 and n,, 0, arbitrary integers. As functions of Wy
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the gaps become bands, see Figs. la, 1b. In Fig. l1a the band
structure in the region o < w < 2, o < w, < 2 is shown for
F1 = F2 = 0.2. Owing to the course grid many bands are only
intermittently visible. In Fig. 1b a magnified view at in-—
creased amplitudes F1 = F2 = 0.5 shows more details, Some

(no,n nz) triples are indicated together with the corres-—

pondi;g lines (3.7), for arbitrarily fixed w, = 1. The bands
are slightly shifted from the position (3.7) owing to the
finite amplitudes F1, F2 and they are deflected somewhat where-
ever they cross each other. A high growth rate corresponds to

a small number in Figs. 1a, 1b. The values of w and w, are in-
dicated at the top of the figures and in their right margin.
Bands with n, and n, large are not easily detected numerically
because they are very narrow and the growth rates become ex-

ceedingly small.

Equation (3.1) was investigated analytically by Dinaburg and
Sinai /5/ and Ruessmann /6/ for the complementary case of smooth
functions f(mit, mzt). They find that if w1/m2 is "sufficiently"
irrational and w” is sufficiently large the solution is of the
generalized Floquet type:

yOEY = eiv

: u(w1t,m2t) + c.c. (3.:8)
where v is real and u is 27 - quasiperiodic, provided w is out-

side a doubly infinite sequence of gaps which are again situated

close to w = w, as given by eq. (3.7). Since v is real the so-

lutions therefore are bounded outside the same set of gaps as in

our case with 6-function pulses. Inside the gaps, however, the
properties of the solutions were not specified in /5/,/6/ and

their width cannot easily be compared with ours.

It will become clear in the next section that regarding the
search for eigenmodes it would be helpful to know whether the
solutions y(t) may possibly be represented in the generalized

Floquet form (3.8) for all w and w,, ®,, but of course with v

1: 2’




being complex in general (and the factor exp (ivt) being replaced
by the more general expression exp (iKt) with constant matrix K.)
In general, however, this representation is not possible, see /3/,
not even for the first order equation § = f(m1t,m2t) y as dis-
cussed in /4/,/18/. There always tend to be restrictions on the

frequencies involved caused by the previously mentioned problem of

"small denominators'.



4, Eigenmodes

As stated in the Introduction a solution y(t) of eq. (1.2) is
called here an eigenmode if it has the same quasi-periodic be-

haviour as the coefficient f(t), i.e. if it satisfies equations
(L.4), [1.5).

It is straight forward to test any numerically obtained solution
with graphical methods whether it is an eigenmode or not, - within
the natural limits of numerical and graphical methods in general,
of course: At multiples of the basic quasi-period t, = 2T, for an

1 1

eigenfunction the argument w,t of u (m1t,m2t) by definition of W,

1
is a multiple of 2w so that according to eq. (1.5) the function
u is constant with respect to its first argument. Only the periodic

dependence on the complementary argument w,t remains, and ana-

2

logously at multiples of T, = 2T2. Hence ¥, = y(t = HT1) plotted

versus w,t, modulo 2w, and Yy = y(t = ntz) plotted versus w,t, mo-

dulo 27 for an eigenfunction each yield a well defined curv; in the
limit n + =, displaying the functional dependence of y(t) on the

two sub-arguments Wt and w,t. "Trivial'" eigenfunctions of this type
(see below) are shown in Figs. 2a, 3a.

Another useful representation is the pair of phase space diagrams

ﬁ/m versus y, plotted at t = nt, and t = nT,,n = 1,2,... . For eigen-
modes a closed curve results for n + =, or rather a curve with dis-
continuities in § since in our case only y is continuous but § in
general is not (except if y = o). Figures 2b, 2c, 3b, 3c, for example,

correspond to the cases 2a and 3a.

For all solutions which are not eigenmodes the graphs show a two-
dimensional distribution of scattered points /7/ instead of curves
except for subharmonics of eigensolutions, i.e. solutions with quasi-
periods m+2m, m 2 2. Such subharmonics, however, may be identified

by the fact that for them y has more than one branch.

In order to search for eigenmodes the following procedure has been

applied. A mi-mz—quasi—periodic eigensolution was constructed for a




_‘l‘l.—

w,-periodic £(t). In small steps a w,-periodic contribution was

1 2
then added to f(t) and the eigenvalue parameter m2 was adjusted

each time so that the solutions looked as like as eigenmodes as
possible. In the Appendix the construction of the initial

"trivial" eigenmodes is explained. Such an eigenmode with eigen-
value w = Q@ = 0.28675534 is shown in Figs. 2a-2c¢c and 3a-3c for

two values of the initial value parameter, r = 0.111 and r = 0.500,
respectively, for later reference. The amplitude is F, = 0.1 and

1

the frequencies are w, = 1, w, = 1/¥2 . The same frequencies are

1 2
used throughout in the following for all cases considered ; see

Section 5 for discussion.

Unfortunately, it turns out that the intended procedure does not
work. Orce the originally vanishing amplitude F, reaches a few

percent of F, even the best fit of w does not yield well defined

1
curves but some structure of finite width. Figure 4 shows how poor-

9 is
for N = 16 000 iterations. Addi-

ly one such "optimum" fit, w = 0.27504376, works when F
pushed up to equality with F1,
tional parameters are r = ¢ = 0. If the number N of iterations is
increased it turns out that the "optima'" obtained are in fact un-

stable, i.e. |y| grows slowly but without bounds.

There is a further "correlation" of eigenmodes with unbounded-
ness of solutions. As mentioned in Section 3, under certain con-
ditions the solutions y(t) are of the form (3.8). Clearly, the

solutions are eigenmodes if
w (4.1)

with m,, MWy being arbitrary integers, because exp (imimit) is
2m-periodic in W, t, i = 1,2, Inspection, however, shows /6/ that
for v given by eq. (4.1) the eigenvalue parameter w is exactly

in one of the '"forbidden" gaps, eq.(3.7), which for our &-function-
type f(t) were shown in the last section to be connected with un-—

boundedness of the solutions.
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Although the foregoing results seem to give evidence against
the existence of eigenmodes, such modes may nevertheless be
found. Consider again eq. (3.1) with w -periodic coefficient,

1
equivalent to Hill's equation. It is well known /1/ that w, -

1
periodic eigenmodes occur exactly if the eigenvalue parameter
is at the boundary between bounded and unbounded behaviour of
the solutions, i.e. at the boundary of gaps which for small

amplitude are situated approximately at w = @
W= n,w (4.2)

with integer n,. (At the boundary of the gaps close to

w = (2n1+1)m1/2 the solutions have the period 211. Such sub-
harmonic solutions do not interest us here.) At this position
of w, however, there is another linearly independent solution
of the form y(t) = t u (m1t), i.e. a solution with unbounded
secular behaviour; see /19/, for example for Mathieu's equation.
If the initial values y(o), &(0) are chosen at random, the so-
lution will always pick up a secular contribution and mask the
existence of the eigenmode. For periodic §-function coefficient

this situation can be studied analytically (see Appendix).

These considerations suggest that in looking for quasi-periodic
eigenmodes it is not enough to adjust the eigenvalue parameter

w properly; the initial condition specified by the coefficient

r in eqs. (3.6) has to be as well. Otherwise at best a secular
solution of the type y(t) = t u (w1t, mzt) might be seen. Indeed,
the above mentioned "optimum" solution shown in Fig. 4 grows

essentially linearly in t, viz. in the number N of iterations.

In consequence, the search for eigenmodes was modified in the
following way: The amplitudes and phase were fixed at

F1 = F2 = 0.1 and ¢ = 0. Then, with arbitrarily fixed initial
condition (direction) r = 0 a crude search with the eigenvalue
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parameter w was made for the position of the gap close to

w=w , with
o

Even values n, = ~2, n, = 2 were selected in order to avoid
the possible construction of subharmonic solutions. With the
approximate position of the gap known a detailed investigation
of the behaviour of y(t) in the region of the left and right
boundaries of the gap was made. In particular, max |y(t)| was
determined on a two-dimensional w - r (= initial value) grid.
In the most promising regions of this grid the solutions were
visually checked to see how far they corresponded to an eigen-
mode. And indeed an eigenmode was found on each boundary of
the gap. The two eigenvalues are v = Q' = 0.27495798i3-10_9

(see Fig. 5a - 5c) and Q" = 0.27504376i7-10_9 (see Fig. 6a - 6c).
The corresponding initial value parameters, see eq. (3.6),

are r' = 0.500t5-10q4 and r" = 0.11111-1073 respectively. The
parameters w and r, in particular w, have to be determined

more and more precisely if one wants to go to higher and higher
numbers N of iterations. N = 1.28 x 105 was used to determine

the eigenvalues above. In Figs. 5a = 6¢c N = 16000 and only

every 2nd iteration is plotted.

The modes in Figs. 5 and 6 are the generalization of the modes
from the periodic case F = 0, Figs. 2 and 3, to the quasi-
periodic case F2 = F1. Bgth eigenvalues Q', Q" are roughly

47 smaller than Q. If F, (or F1) is decreased both Q' and Q"
increase and the width of the gap Q" - Q' shrinks until at

F2 = 0 both eigenvalues coalesce into w = @, the gap disappears
and the eigenmode is degenerate with respect to the initial
value r. In general the modes have a discontinuity in §

at t = n T, and t = n T,. The modes should be indexed with

1 2
(-2,2) corresponding to the gap index (n1, nz).

(4.3)
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In order to check the effect of the phase difference c

(see eq. (3.2)) on the eigenvalues, the search for eigenmodes
was repeated with ¢ changed from zero to 0.57 i.e.

At = 0.5T1, on the right hand boundary of the same gap as be-
fore. Figures 7a - 7c show the resulting eigenmode. Its eigen-
value w = 92 = 0.2750437811.6'10_8 agrees with the previous
value Q" for ¢ = 0 within the limits of accuracy aspired.
Hence, as expected for incommensurate w, and Wy the effect

of the initial phase difference disappears for sufficiently

large N. The "proper" initial value is rg = 0.608511-10_4.

From the discussion above it is obvious that the existence of
eigenmodes is not restricted to the particular values of the
amplitudes, gap indices and phase Fi’ n., ¢, i = 1,2 used.
Eigenmodes with other parameters have indeed been constructed.
It might happen, however, that for large amplitudes some of

the eigenvalues disappear when different gaps overlap.
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Discussion and conclusions

It has been shown within the limits of numerical and graphical
methods, that the quasi-periodic differential equation (3.1),
(3.2) possesses a doubly indexed infinite sequence of eigen-

values w = Q'm,n and w = Q" ,, and eigensolutions y'm’n,
y"m,n with the same quasi-periodicity as the equation itself.
The eigenvalues are situated at the edge of "gaps" in the
vicinity of w = s where w, = mw, * nw,, m, n integer. Inside
the gaps the solutions are unbounded. This situation is the
complete analogue of the properties of Hill's equation with
periodic coefficient. It seems plausible that the result is
true of more general, linear, quasi-periodic differential
equations. The existence of subharmonic solutions with quasi-

periods 2T, and/or 2T2 was investigated more in passing. They

1
exist at the edges of gaps with half-integer m and/or n.

A particular point which deserves discussion is the choice

of q = wI/w . In the paper q = v2 is used throughout, i.e.

an irrationil number, as intended. On the other hand, in the
computer all numbers are truncated so that q becomes rational.
During the computations, however, it was monitored whether
two §-function pulses ever coincided again if two pulses did
so initially; in other words, whether w1/w2 - NI/NZ for

N1, N2 £ N, the number of iterations. (Coincidence here is
defined as |N1T1 - N2T2| < 10_12, a small number but larger
than the round-off error in double-precision operation.)

This did not occur up to N = 1.28 x 105, the highest number
used. The ratio q = v2 was therefore still "effectively

irrational".

There is a second necessary criterion for "effective irrationali-
ty" of q: The number of iterations has to be large enough, so
that the effect of the initial phase difference c, eq. (3.2),

=1, w, = Ja+e , |e|<< 1.

gets lost. Consider, for example, W,
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This implies that T1 % 2T2. The order in which the pulses \

n T1 and m T2, n, m= 1,2,..., follow each other gets

mixed up only for N > N_» where 2T2 No = T1(N0+1), i.e.
for N > 8/|e| >> 1. Thus, the criterion of "phase

scrambling"

leads to the requirement of an exceedingly
large number of iterations if q is very close to a ratio-
nal number m/n with small m,n. This was indeed observed
numerically. For the case F, = F, = 0.5, w, = 1,
-8,1/2 & !
w, = (4 + 1x10 ) and ¢ = 0 an eigenvalue was found ‘

at w = 1.126872 while for ¢ = 0.57 it changed to w = 1.137703,

even at N = 2-105 iterations. In contrast, the eigenvalues
for wy= 14V2 were independent of c up to at least 7 decimal
places. Such problems with rational versus irrational num-—
bers have their counterpart in the requirement of '"strong
incommensurability"|n1w1 + 0,0, z Q(n) where Q is a suffi-
ciently fast decreasing function of n = max (|n1|,|n2|)

in the analytic treatment of eq. (3.1) (see /5/,/6/).

In applying the foregoing considerations to the problem of
the MHD continuum in general toroidal geometry (see Sections

1 and 2) it seems plausible that eigenmodes exist on '"'suffi-

ciently irrational" surfaces while their existence for other

values of q is less certain.
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Appendix

In the periodic case, say F, = 0, the solution y, §
can readily be obtained from eqs. (3.4), (3.5) after one
full period T, = 2T, as a function of the initial values

1 1
y (0), y(0). The result is

¥(r,) = & - ¥(0) (A1)
with
A11 = cos 2z — f sin z cos z
] . 2
A.. = sin 2z - f sin =z (A2)
12
. . 2 2 .
A21 = -sin 2z - f sin z — £ sin z cos z
. 2 . 2
A22 = cos 2z + f sin z cos z - £ sin =z
* T w
where Y = (y,y/w), f = Fllw, z=m= (A3)

1

According to the Floquet theory /2/ the solution of eq. (3.1)

in the present case is of the form
y(t) = e VE u(mlt) + c.c (A4)

with u(p+2m) = u(8), provided v # n1w1/2 where in addition

to (A4) there is a solution of a different type (see below).

The exponent v is related to the eigenvalue )X of the ma-

trix A by
A=0.5 (1 % /52—4) ; S(w) = Ay + A, (A5)
exp(iv11) = ) (A6)

It is therefore possible to construct quasi-periodic solu-
tions of the periodic differential equation by setting

v = m1w1+m2w2 with integer W, ,m, and numerical solution of
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eqs. (A5, A6) for the eigenvalues w =w , n = 1,2, ...
n
For F1 = 0.1, w, = 1, w, = 1/v2 m, = 1 and m, = -1
the eigenmode with the lowest eigenvalue w = Q is shown
o]
in Figs. 2a - 3¢ for two different initial conditions

(see Section 4).

The solutions (A4) are unbounded for complex v. The
transition between real and complex v occurs at A = + 1.

The case A = 1 corresponds to w = nw, with integer n.

1
A in this case goes over into the identity matrix, which

implies that the solution is w, - periodiec for all F

It is an eigenmode correspondi;g to m, = 0 above. Th;re is
a degeneracy here: the usually existing finite w region

of unbounded solutions has collapsed and disappeared. This
degeneracy, which does not occur in Mathieu's equation, is
due to the infinite number of harmonics of equal amplitude

which build up the &-functions.

The case A = - 1 implies

o]
]
kg

2w ctg z (A7)

which is satisfied by two infinite sets of w = an,Bn whiéh
are situated pairwise to the left and right of

(2n + 1)m1/2, n=20,1, ... . Between each conjugate pair
the solutions are unbounded. It is easily checked with
eqs. (A1), (A2) that for w satisfying eq. (A7) the solu-
tions are subharmonic with period 2T1, X(T1) = -Y(0),

provided the initial values satisfy

wy(0) _ wy(0) _ _
_iTﬁy- = 0 |, S0y - " te 2 (A8)

at w = o and w = B respectively. For all other initial
conditions but with the same w the solutions at t = mr

1
have the secular formy = a +mb, y =c +md with two

alternating sets of constants a,b,c,d for m even and odd.

(In addition, b = 0 for w = an.)
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Figure captions:

Fig. 1a: Unstable bands in the (w , wz) grid for w, = 1 and

4 ’ .
N = 10" iterations. Higher numbers correspond to weaker
instability. Amplitudes F, = F2 = 0.2,

Fig. 1b: Enlarged section of Fig. 1a, F, = F, = 0.5. Lines

1 2
nw + nw, + e, = 0 are indexed as (no, n, n2).
Fig. 2: "Trivial" eigenmode y for periodic case F,=0.1, Fy =0,

w=1, wy = 1/¥2 . EFigenvalue Q = 0.28675534, initial
direction r = 0.500, initial phase ¢ = 0. y as function
of uzt and w1t (Fig. a) and phase space diagrams

(v, §/m) at multiples of periods t, (Fig. b) and

T, (Fig. ¢). N = 8000.

1

Fig. 3: Same as Fig. 2 with r = 0.111.

Fig. &4: "Optimum" solution for F, = Ey = 0.1, w, = 1/V2 ,

1 2
r=0, c =0 for w= 0.27504376. N = 16 000

Fig. 5: Eigenmode for F1 = F2 = 0.1, w, =1/¥2 ,r = 0.500,

¢ = 0 with eigenvalue Q' = 0.27495798.

Fig. 6: Eigenmode for F1 =y 0:71; w, =T/V§xr = 0.111,

c = 0 with eigenvalue Q" = 0.27504376.

Fig. 7: Eigenmode for F, =F, = 0.1, w, =1/V2 r = 0.6085,

¢ = 0.57 with eigenvalue Q"C = 0.27504378.
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