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Abstract

A technique for determining the location of the separatrix

in the magnetic flux distribution produced by a tokamak
plasma with a poloidal divertor is described and its accuracy
assessed. The method assumes the plasma to be in equilibrium
and calculates a current density distribution from a least
squares fit to magnetic flux and field measurements outside
the plasma. Subject to some reasonable restrictions on the
form of the current density profile, a reliable indication

of the current distribution within the plasma may be obtained

if, in addition, the poloidal beta of the plasma is known.




Introduction

The operation of a poloidal divertor tokamak such as ASDEX

/1/ requires precise information about the location of the
separatrix, both to ensure that a suitable magnetic configura-
tion for operation of the divertor is achieved as well as to
aid in interpretation of experimental investigations of plasma
behaviour in the scrape-off layer. Because the separatrix is

a purely geometric property of the magnetic field distribution,
its location cannot be determined directly and must therefore
be deduced from calculations of the magnetic fields produced

by currents in the plasma and external conductors.

In order to determine the magnetic field structure over the
entire cross-section of the discharge chamber, one would
require detailed measurements of the current density distribu-
tion within the plasma. As experimental techniques for ob-
taining such information with a sufficient degree of accuracy
do not currently exist, some assumptions about the nature of
the current distribution must be made in order to constrain
the range of magnetic field configurations thereby obtained

to a sufficient degree that the available measurements can

be used to obtain an accurate indication of the separatrix

location.

The basic assumption used in the technique to be described
below is that the plasma is in a state of equilibrium which
thereby implies that the current density may be expressed as

a function of the poloidal flux only. By assuming a certain
functional form for this dependence, it has been found that
the parameters of this function may be adjusted to fit the
resulting magnetic field distribution to experimental magnetic

measurements and thus obtain the separatrix location. This




report presents a description of the computational technique
used to fit the current density function to the measurement
data, together with an assessment of the expected accuracy

of the separatrix determination. A discussion of the practical
applications of this method is also given as well as some

remarks on the theoretical aspects of the calculation pro-
cedure.



Description of Computational Algorithm

The magnetic field configuration of a toroidal plasma current
which is assumed to be in equilibrium may be described in
terms of a poloidal flux function ¥, defined by expressing
the total magnetic field in the form

B =f Vi+ Vo x V¥

where f==RB¢ is the flux function of poloidal currents /2/
and R,z,¢ are cylindrical co-ordinates. It is assumed that
all quantities are independent of the toroidal angle ¢, so
that the problem may be considered in two-dimensions. From
the equation for plasma equilibrium, JxB= VP and the above
representation of the magnetic field, one may obtain the
Grad-Shafranov equation /2/ in the form

1
AFY = RIY, (= 0 ¥) =i gREe— 1= £7=
~ g% ~ Ho™ Ty 3¥

where the total pressure P, and f are functions of Y. Using

the fact that the toroidil current density J¢ may be expressed
N 1 3°Y . .

as Mg 6~ TR (R aR) + R BzZ ! the equation may also be written

as

At = o TR J¢ (¥)
By assuming some functional form for J¢(W) which is compatible
with the description involving P(¥) and f(¥) given in equation
(1), an equilibrium magnetic configuration may thus be deter-
mined by solving equation (2) subject to appropriate boundary

conditions.

In order to obtain an equilibrium solution consistent with

the magnetic field produced by current carrying conductors

(1)

(2)




outside the plasma region, the total poloidal flux Wt must
be calculated from

e & B gt B

ext

where wext is the flux function of currents in external con-
ductors and Tpl is determined from the plasma current as a
solution of the equation

x = -

This equation has been solved iteratively using a direct
Poisson solver technique in the infinite domain together

with a Green's function calculation to determine the V¥

values on the boundary of a finite domain /2,3/ using
ficticious mirror currents in an unbounded domain. It has
been assumed in the present calculations that the plasma

is symmetric about the R axis so that the solution is computed

only in the upper half plane.

In evaluating the current density function J¢(w), the loca-
tion of the plasma boundary must be taken into account since
J¢ must vanish outside the plasma region. For a plasma without
a poloidal divertor, this boundary is generally defined by a
flux surface which intersects a material limiter. With a
divertor configuration, however, the boundary is determined

by the separatrix whose location is calculated from the

value at the X-point (saddle point) of the flux distribution.

Having thus outlined the method used to calculate the magnetic
field from the current density distribution function, the
gquestion of how to determine this function J¢(w) from magnetic

measurements outside the plasma must now be considered. It is



important to choose the functional form for J¢(W) and the
number of measurements to be used in such a way as to allow
sufficient generality in the range of current distributions
which can be described but, at the same time, ensure that a
reasonable degree of uniqueness in the solution can be ex-
pected. As a guide to developing a technique which meets
these requirements, we consider the expression for the mag-
netic flux of a toroidal plasma in equilibrium derived by
Shafranov /4/ as a first order approximation to an expansion

in the inverse aspect ratio

8R
Yy = —uoRpIP(En —;E - 2) +
+ E-QEE(R LA ( A+ l)(1 - Ei )) r cos @
2 3 2 2

where r is the poloidal radius, 0 the poloidal angle and a
the minor radius of the plasma. From this formula it can be
seen that at a given poloidal radius, the magnetic field out-
side the plasma is most strongly dependent on the plasma
current Ip, its major radius Rp, and the coeffizient of
asymmetry of the current distribution A = BP + 5 - 1

(Bp is the poloidal B of the plasma and Ri its internal
inductance per unit length /4/). On the basis of this ob-
servation, which has also been found to be true of numerically
determined equlibria, we have elected to describe the plasma
in terms of 3 measurements. They are the total plasma current
Ip' the difference Y, between flux measurement loop located
on opposite sides of the plasma and the magnetic field 4dif-
ference 8B, between magnetic probes located as shown in Fig.1.
The measurements were chosen in this manner because the §V
signal is characteristic of the radial position Rp, while §B

provides information about the current distribution factor,A




Following from the assumption that the current distribution

is described in terms of the parameter set Ip, Rp and A , it
would be indicated that the function J¢(W) should be defined
in terms of 3 free parameters whose values are determined to
fit the measurement data. A difficulty with this approach
arises, however, because it is possible to have different
internal current distributions with different Bp and Ei

values but the same value for A. The external measurements
cannot detect these differences, however, and this non-unique-
ness in the solution produces severe difficulties in trying

to find the parameters of the J¢(W). It was therefore found
necessary to use a form of current distribution function which
did not allow this degree of freedom. Based on these considera-
tions, the following form of this function has been used

Hot () = (8 R+ L22 R2) (o) vy 4 o, ¥ (3)

where wd==wt - Wb' Wb is the value of the total flux on the
plasma boundary and Ro is the major radius of the magnetic
axis. The B value determines approximately (within 3 %) the
Bp of the resulting equilibrium and Gqr 0, are the free para-
meters to be matched to the measurement data.

The basic element of the algorithm for determining the separa-
trix location may thus be formulated in terms of a procedure
to fit the parameters of the function defined by equation (3)
to the experimental measurements. This calculation may be
outlined as follows:

Given Ip, §¥, 6B, Wext and an estimate for B8, the computation
begins with some starting guess wgl for wpl' This may be
derived from initial values of the parameters 04 and o, Or,
in the more general case, using a filament current approxima-

tion. Values of the parameters o, and o, which provide a best




fit in the least-squares sense tc the measurement information
are then found using an iteration scheme consisting of the

following 3 steps

1. Determine the Y-value at the plasma boundary from the
saddle point in the distribution of

Y. =% + Y

pl ext

and from that the plasma boundary and the radius of the
n

magnetic axis, Ro‘

2. Solve the 2 linear systems

n, 2
« N+l _ (1-8) (RD) n, i
B¥o1; = “HR(BR + ==l ) (v

for i=1,2

using the method described in /3/ which requires essentially
only two fast Poisson solver steps for each system. The solu-
tion of the full linear system

n+1 (1 B)(R )

pli Ho d 2°°d

is then just Tpl = 04 wplT + 0oy Wplz

3. Determine a?+1, ag+1 to minimize
(1-8) (Ry) >
_ _ - n n,2 2
F(a1,a2) w1(Ip J}BR + R )(a1Wd * az(wd) )ds)

+w, (8Y - Awn+1) +  wy( 8B - ABn+1)




where Wi W, and W3 are error weights. The allowable

ranges of values for o, and @, are constrained by the
condition

n

@p > - 2 a, Max |y, |

which guarantees that the current density distribution
has a maximum value at the magnetic axis. The special
form of current distribution function given by equation
(3) makes the minimization of F(a1, a2) particularly

simple and the convergence of the algorithm easy to
control.



Algorithm Tests - Accuracy and Convergence

In order to be able to use the procedure described above for
interpretation of experimental results, it is necessary to

obtain some assessment of the range of current distrubtions
that can be treated and the expected accuracy in the separa-

trix location. This has been done by performing an equilibrium
calculation using different forms of the current density dis-
tribution J¢(W), to generate the required Ip, §y and §B in-
formation and then comparing the results of the inverse cal-
culation with the initial equilibrium. These tests were made
using the functional form for J¢(W) given by equation (3) with
various values of a1, o, and B as well as with a function

of the form

a2 Y
Hodg (¥e) = (0qR + ) (¥y - wy) (4)
1
for which BP ® P and can be adjusted to produce profiles
1+ Z
R2
%1%

with a large range of %4 values.

A significant result of these tests, which provided a good
coverage of the range of current distributions that could be
reasonably expected to occur in the experiment (excluding
hollow profiles) was that convergence of the algorithm was
obtained in all cases investigated. In addition, it was always
observed that when the minimum of the function F(a1,a2) was
sufficiently close to zero, the separatrix location determined
from the inverse calculation was in good agreement with that
of the input equilibrium so that the solutions determined by
this method were found to be unique.




As a particular example of the performance of this technique,
which provides a good illustration of a number of aspects of
the behaviour of the algorithm, we consider the equilibrium
produced by using the current density function given by equa-
tion (4) with a1 = a2 =1 and ¥ = 1.5. For the external con-
ductor configurations and dimensions corresponding to the
ASDEX experiment, the flux contours and separatrix location
are shown in Fig.2. This current distribution was found to
have a poloidal beta of 8_ = 0.72 and internal inductance

24 =1.26 so that A + 1 Bp + %% = 1.35. Using the measure-

Il g

ment information obtained from this equilibrium, the inverse
calculation was made initially assuming a value for B8 of 0.3.
The flux contours and measurement information obtained from

this calculation are given in Fig.3.

These results indicate that good agreement with the input data
was obtained despite the large error in estimating the B

value. (The relative errors in the Ip and d¥ values were less
than 10_3 while the 6B value, which is always the most diffi-
cult to satisfy, was found correct to within 3 % of the input
value). The value of A+ 1 for this current distribution was
1.36, in good agreement with that of the initial equilibrium
while the location of the separatrix was found to coincide
very well with that of the input data, there being no noticeable
differences in the separatrix contours given in the flux plots.
This result was found to be true of all cases calculated using
B values in the range 0.3 to 0.9, providing good justification
for the assumption that the magnetic field distribution ex-
ternal to the plasma is essentially determined by the A para-

meter.

A limit to the range of B values that can be used as input is
found if the inverse calculation is made with B = 1.0. As in-
dicated in the results of Fig.4, the agreement with the input

data is relatively poor and there is a correspondingly large



error in the location of the separatrix. The reason for this
behaviour is that the current distributions which can be ob-
tained with the current density function given by equation (3)
have 2; values which lie within the range 0.8 to 2.2. With a

B value of 1.0, the inverse calculation would require a current
distribution with 2; = 0.7 in order to have A + 1 = 1.35 which
is not possible with the given form of J¢(W). Because the
range of %4 values that can be produced with this particular
form of J¢(W) are well representive of current density profiles
of general experimental interest, there would appear at present
to be no justification for using a more general form for J¢(w)
in the inverse calculation such as that given by equation (4),
as long as the limitation on the range of 2 values is taken

into account when an estimate for B is made.

In the situation where the estimate for B is reasonably close
to the actual Bp of the experimental data, not only the separa-
trix location is well determined but also the internal current
distribution can be accurately reproduced. This aspect of the
inverse calculation is illustrated by the results given in
Fig.5 where a value of B = 0.75 was used. An g; value of 1.24
was obtained in good agreement with the 24 value of 1.26
corresponding to the input data, while both the current density
profiles and flux contours were also quite well reproduced.
(The root-mean-square relative errors in the current density
and flux distributions compared to the initial equilibriumbeing
2.3:{10_2 and 3.5:{10_3 respectively). This result is a
particularly good indicator of the ability of the algorithm

to determine a current distribution corresponding to experi-
mental data because the form of J¢(w) used in the initial
equilibrium computation cannot be analytically represented

by the function used in the inverse calculation.

The extent of similarity between these two equilibria provides

reason to conclude that, to a good degree of approximation, the




current density distribution within a plasma in equilibrium
may be well characterized essentially by the parameters Bp
and Ri. Because the present work was primarily concerned
with development of a technique for location of the separa-
trix, however, the extent to which this observation is true
in general has not been investigated in detail for a large
range of current density functions or values of the ratio of
divertor to plasma current. Subject to the restriction on
the class of current distributions which can be described

by the functional form used in this technique, it is never-
theless possible to anticipate that a good indication of the
current distribution within the plasma can be obtained if

an accurate experimental measurement of Bp is available in

addition to the external magnetic measurements.




Application of the Procedure to Experimental Results

With the information about currents in external conductors

as well as the Ip’ d¥ and 6B data determined from the experi-
ment, the computational program requires only an estimate for

Bp to be supplied in order to perform the separatrix location
determination. When no experimental measurement of this quantity
is available, it is generally possible to assume a value in the
range 0.1 to 0.6 for an ohmically heated tokamak or, in the

case where auxiliarly heating is used, estimate Bp from the
heating power based on theoretical predictions or experimental
experience. As discussed previously, the Bp value is not im-
portant to the determination of the separatrix location provided

that the allowable range of Ei values is kept in mind.

In the calculation of the flux Wext' produced by currents in
conductors external to the plasma, it has been assumed that
only the driven currents in the vertical field and divertor
field coils have a significant effect on the magnetic field
distribution. The influence of the ohmic heating windings has
not been considered because the magnetic fields produced by
these coils are small over most of the discharge region. Addi-
tional conductors for passive stabilization of plasma motions
are also included in the ASDEX design and these are located

near the entrance to the divertor chambers (Fig.6). In order

to assess the influence of induced currents in these conductors
on the location of the separatrix, a calculation of the magnetic
field configuration produced with the maximum expected current
flowing in these conductors has been made. The results are

given in Fig.6 for a plasma current of 200 kA, indicate that
even with the relatively large current of 1o kA in the passive
conductors, the separatrix location is relatively little effected,
most importantly in the region of the divertor throat, because
of the strongly localized nature of the field produced by the
divertor coil triplet.




The influence of fields produced by induced currents on the
operation of the inverse calculation has not been examined

in detail because initial interest in divertor discharges

will concentrate on relatively steady conditions. Should
experiments indicate larger induced currents than currently
predicted or interest develop in unsteady conditions where
induced currents are significant, their influence could also

be included in the present calculations by using the facilities

for measuring these currents which presently exist in ASDEX.



Conclusion

The technique described in this report has proved to be
capable of locating the separatrix in a magnetic field
distribution produced by the plasma current in a tokamak
with poloidal divertor using equilibrium calculations of
the current density distribution within the plasma. Measure-
ment of three quantities; the plasma current, the poloidal
flux change and poloidal field change across the plasma,
together with currents in external conductors, have been
found to provide sufficient information to accurately de-
termine the separatrix location. If, in addition, the pol-
oidal beta of the plasma is determined from an independent
measurement, this may be used to obtain a good indication

of the current density distribution within the plasma.
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Figure Captions

Figure 1:

Schematic sectional view of ASDEX tokamak indicating location
of flux measurement loops (Y1 and ¥5) and poloidal magnetic
field measurement coils (BT and Bj). Using these measurements,
the quantities ¥=¥q - Y5 and 6B= Bq -B, are calculated as
input for the separatrix location program.

Figure 2:

Poloidal flux contours for a plasma equilibrium calculated
using Jy(¥) given by equation (4) and a1=0ap=1, Y=1.5. The
measurement data corresponding to th%s current distribution
are §¥=0.13289 and 6B=-5.1658 - 10”7,

Figure 3:

Results of the inverse calculation with 8=0.3.8Y= .13276 and
8B=-5.0149 - 10~3.

Figure 4:

Poloidal flux distribution calculated from measurement data with
8=1.0. Best fit to measurement data was §¥=0.07387 and
6B=-1.1825 - 10-2,

Figure 5:

Results of inverse calculation using 8=0.75.6¥Y=.13298
and 8B=-5.267 - 10”3

Figure 6:

Comparison of separatrix location with 1o kA induced current
in passive conductors A and B (dotted line) with separatrix
without induced currents (full line).




Figure 1
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