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Abstract

Equilibrium calculations which conserve adiabatic quantities
(magnetic fluxes, particle number and entropy) during major-
radius compression in a tokamak have been made using a flux
surface averaged description of the plasma behaviour in order
to solve the two-dimensional plasma equilibrium equation.
Boundary conditions are chosen to avoid skin current formation
during compression and the changes of the ohmic heating flux
required to maintain this condition are determined. Compari-
sons are made between the plasma parameter variations deter-
mined from these computations and the scaling behaviour pre-
dicted by a large aspect ratio approximation to the adiabatic

constraints.




Introduction

The concept of adiabatic compression of a tokamak discharge
can, in principle, provide a highly efficient method for aux-
iliary heating of a plasma.Present scaling laws for the con-
finement time Ty, however, indicate that major radius com-
pression of an ohmically heated plasma gives no large improve-
ment in the achievable temperatures over ohmic heating alone
at the compressed plasma position /1/. The main advantage of
this form of compression is realized when it is used to mul-
tiply the heating effect of neutral beam or RF heating of the
pre-compression plasma as demonstrated in experiments in ATC
/2/. Such a method may be used to attain an ignited state by
compressing a plasma,whose opacity (density-minor radius pro-
duct) is determined by neutral beam penetration into the plas-
ma, until the na factor reaches the value required for ig-
nition /3/. If an ignited plasma is achieved in this manner,
the compression techniques may also be used for thermal
stability control of the burning plasma by regulating the
temperature with alternating compression and decompression
steps /4/.

Approximate scaling laws for the behaviour of averaged para-
meters of a plasma subjected to adiabatic compression may be
determined by applying the conditions of flux and entropy
conservation to a simple cylindrical model of the plasma /5/.
In the design of an experiment which uses adiabatic com-
pression to achieve ignition, however, a more detailed des-
cription of the behaviour is required to take into account
finite B and higher order toroidal effects as well as var-
iations of parameters over the plasma cross-section. This in-
formation may be obtained from calculations of toroidal plasma
equilibria which conserve adiabatic quantities. By performing
such calculations with a free plasma boundary, it is also
possible to describe the manner in which the plasma shape ad-
justs to changes in the external fields which produce the

compression. A description of the toroidal field behaviour




which provides a good approximation to the experimental con-
ditions may also be employed in these calculations by using
boundary conditions which correspond to a constant current
in the toroidal field coils. Because the total flux linked
by the plasma may be adjusted by varying the flux of the
ohmic heating coils, the programming of the poloidal field
which is necessary to suppress skin current formation during

compression may also be determined using this technique.

This paper presents a description of the basic concepts of a
flux-conserving adiabatic equilibrium calculation (Sec.2) to-
gether with some details of the computational methods employed
including assessments of its accuracy (Sec.3). Results of these
computations for the case of major radius compression in a ge-
neral case (Sec.4) are presented as well as calculations of

the compression phase in the ZEPHYR compact ignition experi-
ment design (Sec.5).



Equilibrium Calculations under Adiabatic Conditions

The assumption of adiabatic behaviour during compression im-
plies that losses must be negligible on the time scale of the
changes in the external field producing the compression. Cal-
culations simulating compression experiments on ATC /6,7/ for
example, have indicated that radiation losses due to small
amounts of heavy metal impurities can, under some conditions,
have a significant effect on the scaling of plasma parameters.
In order for the adiabaticity approximation to be valid, we
require that the compression time scale be short compared with
the resistive skin time as well as the particle and energy
confinement times. The first condition for the classical skin
time is easily satisfied in a plasma which is to be compressed
to ignition. For the second and third constraints, which could
be more difficult to fulfil, losses may be compensated by ad-
ditional heating and refuelling during the early compression
phase. During the later stage of compression, when neutral
beam penetration would be considerably reduced, the fusion
energy output will have increased so that, in the neighbour-
hood of the ignition point, the deviation from adiabaticity

will be small. This situation will also occur in the case of

burn stabilization by compression/decompression techniques.

The equilibrium of a toroidal plasma may be described in

terms of a poloidal flux function VY , defined by the relation
B = fVé+ Vo xVy

where ¢ is the toroidal angle and f=RB¢ is the flux function
of poloidal currents /11/. Using this relation in the equa-
tion for plasmaequilibriumJ x B =§ZP, we obtain the Grad-

Shafranov equation
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where the total pressure P(¥), and f(y) are functions of Y.
- (R is the major radial distance from the axis of toroidal sym-
metry; see Fig.1). In the absence of losses, the poloidal flux

Y, and the toroidal flux X =|q Ay (where g is the safety factor),

within the plasma will be conserved. From these conservation
conditions, it follows that g is also conserved and can thus
be treated as a function of \ .

Defining the quantity v(y ), as the volume within as surface
of constant ¥ so that
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it may be deduced from the condition of entropy conservation
that the quantity

_ av, ¥
pOY) = p(Y) (59 (3)

is also conserved (p=P°P and 5‘= 5/3 1is the adiabatic con-
stant):.

In order to solve the equilibrium equation (2) while con-
serving the adiabatic functions g (V¥) and p(\y), we have used
the technique introduced by Grad /8/ of solving a flux-surface
averaged form of the equilibrium condition. For this purpose,
we define the average of a quantity over a surface of con-
stant V¥ as

Jzi_ ds
Gy = S

and it may then be shown that ——7> (R’

where K = ‘§%§| >V and “denotes differentiation with respect
to V. Because p(Vy) and £(y¥) are constant over a flux surface,
we may then derive the constraint

(KY¥’)* = -p - Aff (4)

with A =‘<§%>. This is a first-order differential equation in




YV (V) which can be solved subject to given functions q (V)
and p(Vy) by using eq.(3) for p(y) and the relation

a2y’

f(yv) = T av) (5)

Flux conserving calculations of this form have been made pre-
viously in order to study 8 limits in the flux-conserving
tokamak concept /9/ as well as neutral beam heating of an
adiabatic plasma /10/. In these calculations, which did not
allow complete freedom of the plasma boundary, it was ob-
served that the poloidal current function £, at the plasma
boundary increased above the vacuum value. To make this be-
haviour consistent with the toroidal field in the vacuum
would require either an increase in the current in the to-
roidal field coils or a poloidal skin current at the boun-
dary. For an experimentally realistic situation, the value

of £ , which is determined exclusively by the toroidal field
coil current, will remain essentially constant and the con-
tinuity of f across the plasma boundary will be maintained by
a change in the plasma boundary /10/.

In the general case, when a plasma is heated or compressed

on a time scale fast enough to justify the flux conservation
assumption, surface currents will be produced. If the plasma
pressure vanishes at the plasma boundary, such surface cur-
rents must appear simultaneously both in poloidal and toroidal
directions in order to satisfy the force balance. A rapid
change in the OH flux for example will induce toroidal sur-
face currents which would give rise to asmall compression or
decompression of the toroidal field and thus a discontinuity
in f corresponding to a poloidal surface current. Although

the exact consequences of such surface currents are not com-
pletely clear, one would expect an increase in MHD instability
due to the presence of a double tearing layer produced by a
toroidal skin current and possibly a corresponding deterio-
ration of the plasma confinement.




Because the current density distribution within the plasma
is determined essehtially by the gq(y ) conservation, the re-
quirement for conservation of flux within the plasma is
usually met by the appearance of a poloidal skin current
which does not affect the g-profile within the plasma but
adjusts the total flux linked by the plasma surface. If the

flux of the OH system is programmed to make this adjustment
then these skin currents can be avoided. For fixed initial
plasma parameters, such programming could be effected by

appropriately designing the spatial distribution of the ver-

tical field system, but this method would allow no flexibility
to adjust for different parameters. As it is, in fact, very
difficult to design a free boundary equilibrium code which
could adequately handle both volume and surface currents in
the plasma simultaneously, we determine at each iteration of
the equilibrium calculation, consistent with the changes of
the plasma parameters, the change of the OH flux necessary to

maintain flux conservation so that

Ytot = V¥p1 + VYext*t Vou

where u’pl is the plasma flux,‘%’ad:the flux due to the verti-
cal field coils and Yoy is the change in the flux of the
ohmic heating coil system necessary to avoid skin current for-
mation during the compression. A more detailed discussion of
surface currents and other inductive effects in flux-conserv-

ing tokamaks is given in reference /13/.



Description of Computational Algorithm

Calculatioﬁ of the evolution of plasma equilibria during
adiabatic compression begins with the determination of an
equilibrium corresponding to the uncompressed state for
which, in the cases presented here, a current density dis-
tribution of the following form is used

5 (yyd + 0 Yad)
J(Y) =P, (xq¥g +%z Y %) R+ 5 (6)

where Yd = V- V¥o; Ve is the flux at the plasma boundary.
With this function, the X parameters can be adjusted to pro-

duce a desired total plasma current and Bp, since if o2 _ x4

e
then Bp x "_;%§§_— , where Rp is the radius of the magnetic
e
01 Ro?
axis. Since the above functional form for the current density
op fof

specifies > and Sy ¢ We may independently choose f, corres-
ponding to a specific value of the vacuum toroidal magnetic
field.

For the solution of the 2-dimensional equilibrium eq.(2) in
an infinite domain, we have employed the direct Poisson sol-
ver technique of von Hagenow and Lackner /11,12/. In the ini-
tial equilibrium determination, V’pl is calculated by iterat-
ing with the solution of the equation

AY I =- rRj3 (v

g N+1 _ §, N+1 : .
from which ¥ tot =V pl * VYV x 1S computed by choosing V ot
corresponding to the desired plasma position.

For the flux-conserving calculation, the geometrical quantities
K and A are determined using flux contours obtained from the

equilibrium solution by quadratic interpolation between the




points of the two dimensional grid and then evaluating the

integrals
VA 2Trﬂg a1
K—"-zﬂfV#——“—dl and A = — e (7)
R 7 RVY
with v =9
Y

This information may then be used in the solution of the
averaged equilibrium eq. (4) which can best be done by elimi-

nating \V'in the following manner.

Defining y = —12— and X = fAa,
ATr'g
we have from eq. (5) that \|f’= >V
and thus p = P(w)x . Making these gubstitutions into eq. (4)
it may be shown that/14/

5, ¥
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=) d Y. r +1d
[(1+AK)I AT g PRV ) - pyvd v AKV)](EI)
and p =

1 + A (Ky? +'XP'Vra ¥.=2y
where ' denotes differentiation with respect to V¥ .

From eq.(8), we can derive an integral equation for f which
may be solved by Picard iteration

£f

_ i
=7 ~§ - -W(fnf) =F (y)
so f = f5 exp (- jF (\U) avy )

-2 d
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and thus £ = f5 exp ( f
v o1 +A ®v2 +ypvia?-2)
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Using this result, it is possible to determine the volume

; ; 's A1 SEOE [
within a flux surface V(Vy ), from Ty " yEA
%
so V(Vy) = B I & (11)
viA

o

This calculation must be used in the evaluation of the inte-
gral in eq.(10) because K and A, being geometrical quantities,
are functions of the volume associated with a particular ¥

value.

With these relations as the basic components of the solution,
the algorithm for obtaining an equilibrium which conserves
adiabatic quantities in the compressed state consists of the
following steps (step numbers refer to the flow chart in
Fig.2).

Step 1: From the p and f functions of the equilibrium in the
uncompressed state, compute gq(W) and p(V¥) using the rela-
tions given by eq.(3) and (5). Determine Y., due to the in-
creased vertical field producing the compression. FindV g

and ¥, the values of the total flux at the magnetic axis and

the plasma boundary respectively.

Step 2: Flux Conserving step: Calculate Yiot=VYpl *Vext and
also the value of Y iorat the magnetic axis Y pag. Recompute

Viot as Y¥p1 + Yop Where Vou =Vo - xymagthereby ensuring
that the flux at the magnetic axis is always VY-

Step 3: Determine contours of Yot as well as values of the
contour integrals Vj, ‘er K(Vj) and A(Vj) for flux values
V5 at equally spaced intervals between V¥, and V¥ ..

Step 4: Solve the flux-surface averaged equilibrium equation
in the form given by eq. (10) which maintains £(VY) = £, at
the plasma boundary. The evaluation of this integral is done
iteratively in the following steps:




—

a) Find K and A values at volumes corresponding to ij values.
This is done by cubic spline interpolation of the K(V) and
A (V) values obtained from the contour integrals performed

in step 3.

b) Calculate VY derivatives in the integrand of eq.(10) by dif-

ferentiating a cubic spline fit to the points.

c) Determine ﬁ“4(¥/) by evaluating the integral in eq. (10)
using o = fN(U/)A from the previous iteration. Also compute
ff( YV j) from eq.(8) and compare with the results of the
previous iteration. If converged, determine ﬁ(\yj) from eq.
(9) thus completing the inner loop.

d) Compute the volumes V(W) using the integral in eq.(11) and
return to step a).

Step 5: Test convergence of the outer iteration by calculating
the g values from g = fﬁ?" with the A and V¥ 'values from

the contour integrals and the f values determined in step 4 and
compare with the desired q(ﬂlj) values.

Step 6: For each point of the 2-dimensional grid, a new value
for ¥ is found by interpolating the VW (V) function obtained
in step 4 at the volume value determined by the contour inte-
gral. In this way, the information derived from the solution of
the flux-surface averaged equation is transferred to the 2-D
problem with the geometry of the flux surfaces held fixed.

Step 7: New values for the right hand side of eq.(2) are then
obtained by interpolating the p and £f functions found in step
4 at the V¥ values determined in step 6. Eq.(2) is then solved
to find V¥ p for the next iteration which begins again at step
2

This technique of using the solution of the flux-surface aver-
aged equilibrium constraint to determine the right-hand side of

the 2-dimensional equation thus results in an equilibrium state
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which conforms to the specified g(¥ ) and p(Y¥) functions with
the free boundary adjusted to maintain the continuity of f(V).
Because it begins with an independently determined equilibrium,
this algorithm may be tested and its accuracy assessed by per-
forming the calculation without changing VY  ,4from the uncom-
pressed value. For this case, an accuracy of 3 x 1073 in the
calculated q values was typically obtained while the flux
values were found to be conserved to within 1073 of the maxi-

mum flux, V,.

In applying this algorithm to the determination of plasma
equilibria during adiabatic compression, it was generally ob-
served that values of g determined in step 5 of the algorithm
would converge to less than 4 x 1073 of the desired values with-
in 25 iterations of the outer loop (see Fig.3) for a 15 % in-
crease in the magnitude of VY oy. The inner iteration loop

which solves the averaged equilibrium equation was found to

be quite fast, attaining an accuracy of 1072 of the ff values
within 3 - 8 iterations depending on the size of the step in

the outer iteration loop.




Results of Compression Calculations

By applying the computational procedure described above to the
general case of a toroidal plasma equilibrium maintained by a
constant vertical field, we may determine some characteristics
of the behaviour of plasma parameters during major radius
compression of an adiabatic plasma. The results presented in
Fig. 5 - 8 describe the variations of a number of bulk para-
meters of the plasma for the case of an initial equilibrium
with Bp = 0.67 which is compressed to 1/3 of the initial major
radius at which point the maximum relative error in the g cal-
culation exceeds 10"2. In these results we have calculated

the poloidal beta Bp, using the formula

Bp = 2p = 2 IE aa , A is the area of the
B 2> Al ué’)zK(VQ) the plasma cross-section
p

| Ye

and the toroidal beta Bp, is computed from
2p \' fEdA
J_BoZav A ij_sz

v R

Flux surfaces corresponding to the initial and final states of

this calculation are given in Fig.4.

In comparing these results with the scaling laws determined
from the large aspect ratio approximation /5/, we observe that
the variations of the volume, average pressure and average
minor radius determined from the adiabatic equilibrium calcu-

lations are in good agreement with these simple predictions.

The behaviour of related parameters such as the average den-

%), temperature (ToC PV) and empirically determined

scaling for the energy confinement time (IﬁtXEEZ) will also

sity (noc

conform well with the predicted scalings of noC2, Tocc4/3
and T X C. For the magnetic parameters of the plasma, such as
the plasma current, the poloidal beta and, to a lesser ex-

g
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tent, the toroidal beta, howevever, the calculated variations
differ considerably from the simple scaling laws. These re-
sults demonstrate the effect of including toroidicity, non-
circularity of the flux surfaces and finite B effects in the
flux conserving calculation and thus accurately describe the
manner in which the plasma energy redistributes itself as a

result of the change in external fields.

Calculations of the change in the OH coil flux necessary to
prevent skin current formation during compression presented
in Fig.8, indicate that, for a total compression ratio of 3,
the inductive part of the required OH flux has to be reduced
by 18 % under these conditions. If the compression is begun
with a higher initial value of Bp, it may be seen from the
results given in Fig.8, that the OH flux change required is
less, while the total plasma current increases more strongly.
We may also observe from the results presented in Fig.7 that,
for the higher initial By case, the B8p falls off more rapid-
ly during compression. This behaviour indicates that the
tendency for the plasma to become more paramagnetic as a re-
sult of adiabatic compression is larger if the plasma is ini-

tially more diamagnetic.

As an indication of the consequences of incorrect programming
of the OH system or indeed no control at all, we may estimate
the skin current, I gkinthat would be produced using the rela-

tion

Voh = Lg Igkin

where Lg is the self-inductance of a toroidal skin current.
For a plasma with circular cross-section, this inductance is

well approximated by the formula

8R
LS=POR(en_a-_2)
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where R is the major radius and a the minor radius of the
plasma. In the fully compressed state of the calculations des-
cribed above with R = 0.667 m and .a = 0.289 m, we have Lg =
0.768 pH so that a u/OH value of 0.65 Wb would be produced

by a skin current of 847 kA, which corresponds to ~23 % of

the total plasma current in the compressed state.




Adiabatic Compression in a Compact Ignition

Experiment

For the purpose of investigating further details of the plas-
ma behaviour during adiabatic compression as well as the
practical feasibility of such a technique, the computational
method described above has been used to study the compression
phase of the ZEPHYR Compact Ignition Experiment Design /4/.
The parameters of the pre-compression plasma are given in
Table I together with details of the conductor configurations
used for the calculation of the external flux, . ©f the
vertical field system. Plasma parameter variations during the
compression have been investigated for 4 different precompres-
sion equilibria with varying Bp. In these calculations, the

OH coil system was assumed to have no stray field in the plasma
region so that its flux, Yoy was taken as constant through-
out the plasma. Flux surface contours for the initial and
final states of the compression phase are given in Fig. 9 for
the case with Bp = 1.26 prior to compression. In all cases
studied, the plasma had a mild horizontal elongation before
compression (b/a = 0.96 in the case given in Fig.9) and be-
came vertically elongated at the compressed position (b/a =
1.04 for the case with Bp = 1.26 initially).

The behaviour of the geometric and also averaged kinetic para-
meters of the plasma (e.g. V, A, p, n, T, T etc.) were again
found to be in good agreement with the large aspect ratio
scaling predictions while the 87 scaling was typically ~3 %
below the predicted c4/3 scaling. For each of the initial
equilibria considered, the variations of Bp during compression
are illustrated in Fig.10. It is possible to explain this be-
haviour in terms of the rate of increase of the total plasma
current (see Fig.11a) which is more rapid than the linear rate
predicted by the large aspect ratio theory, resulting in an
increased poloidal magnetic field and thus a reduced Bp. When

the initial equilibrium has a larger Bp, then the plasma cur-




rent must increase more rapidly to maintain flux conservation
during compression and this gives rise to a stronger decrease
in B4,.

p

The magnitude of the vertical field required to compress the
plasma increases with Bp as can be seen in the results presen-
ted in Fig.11b. Because of this larger contribution of the
vertical field, less flux is required to be provided by the

OH system to maintain flux conservation if the compression is
begun with a higher Bp. This effect can be seen in the calcu-
lations of Yog given in Fig.12 where we also observe that the

vertical field flux is so large in the highest B, case, that

flux must be subtracted by the poloidal field sygtem. As the
B8p decreases during compression, however, the relative contri-
bution of the VW o4 becomes less so that the Y4y, required to
compensate its effect will be smaller. The behaviour indicated
by these calculations demonstrates the desirability of using
feedback control of the poloidal field system or at least some
form of Bp dependent programming of Y gy in order to avoid or

limit the occurrence of skin currents during compression.

Profiles of the current density and pressure before and after
compression for the case with Bp = 1.55 initially are shown in
Fig.13. These results are illustrative of the behaviour ob-
served in all calculations made using this code, that profiles
essentially maintain their initial form during compression so
that no strongly localized effects were observed. For the
special case of B8p = 1.0, so that f(y) is initially equal to

fo throughout the plasma, it was found that, for the pressure
profile corresponding to the initial current density distri-
bution given by eq.(6) with & ,=0, the f£(\) variation pro-
duced by compression indicated that the plasma became para-
magnetic in the outer regions and diamagnetic closer to the
centre (Fig.14). The detection of similar behaviour in the ge-
neral compression case is complicated by the influence of other
stronger effects on the behaviour of the f function, however,
in the Bp = 1.0 region, such variations in the poloidal current
distribution due to compression could be important to the sta-

bility properties of the plasma.




o= A

Conclusions

The technique for computing toroidal plasma equilibria con-
serving adiabatic quantities, which is described in this paper
has enabled calculations to be made of the evolution of plas-
ma parameters during major radius compression. In maintaining
exact flux conservation in the equilibrium calculations, the
variations of the plasma current and the poloidal beta during
compression have been found to be substantially different

from the scaling predicted by circular, large aspect ratio
approximations to the adiabatic behaviour. Geometric and kine-
tic quantities were, however, found to agree quite well with

these simple scaling predictions.

Calculations of the OH coil flux required to prevent the for-
mation of poloidal skin currents during compression have de-
monstrated the need for considering the influence of the
plasma poloidal beta on the operation of the vertical and
poloidal field systems. The results indicate the need for a
more detailed understanding of the behaviour of a resistive
plasma subject to large and relatively fast changes of the
external fields which will occur during major radius compres-

sion.
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Table I:
Parameters of ZEPHYR Compact Ignition

Experiment Design

Major Radius 2.025 m

Minor Radius 0.61 m

Plasma Current 2.47 MA
Toroidal Magnetic Field 6.1 T

Average Density 1 - 2+1020 =3
Safety factor, g ~3

Vertical Field_Data Design Currents at Full Compression

Coil Radius (m) Distance from Symmetry axis(m) Current (kAa)
1 1. 1.4 558
2 1.4 930

. 0.8 1488




Figure Captions

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

10

Geometry of the equilibrium solution.
Flowchart of the adiabatic equilibrium algorithm

Convergence of the outer iteration loop for one
compression step. The Y error is the maximum
difference between y ot values for successive iter-

ations.

Flux contours before and after major radius com-

pression of a plasma with a uniform vertical field.

Variations of the total volume V, and average minor
radius a (1fa2 = cross-section area) with compression

ratio C = BQ where Rpl is the major radius of the
Ppl

plasma centre and Rp is the initial value of Rpyj.

Dashed lines indicate the scalings predicted by the

simple large-aspect ratio approximation.

Average pressure P and toroidal beta variations

during adiabatic compression with Bp = 0.67 initally.

Variations of the poloidal beta during compression
for high and low initial B8p cases compared with

C1/3 scaling.

Behaviour of the total plasma current IP' and also
the flux change of the OH coils, ¥ gy during com-
pression. Positive values of vy og Correspond to a
change in the same direction as vy
flux.

pl’ the plasma

Flux contours before and after compression for the

ZEPHYR Compact Ignition Experiment design values.

Variations of the poloidal beta with compression
ratio, C for initial equilibria with different ini-

tial Bp values.
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a) Plasma current variation for compression of

plasmas with high and low initial Bp values.

b) Vertical field variation required for com-

pression. The factor B, is the fraction of the
vertical field corresponding to the coil confi-
guration given in Table I which is required for

equilibrium.

OH flux variation required to suppress skin cur-

rent formation during compression.

Profiles of the toroidal current density and scalar
pressure before and after compression (J in Am~2

and P in Nm~2; normalized to po) -

Behaviour of the toroidal field function, £ (y )
during compression for the case with Bp = 1.0 ini-
tially.
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