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Abstract

This lecture deals with the nonlinear properties of individual
tearing modes. First the purely resistive case is considered.
The nonlinear island growth is a slow diffusion process on the
resistive skin time scale. The different effects determining

the saturation are outlined. Tearing modes in a high temperature
plasma are thendiscussed, where, in addition to resistivity,
diamagnetic and viscous effects are important. Nonlinearly,
these so-called drift tearing modes may behave quite similarly
to purely resistive modes, since diamagnetic effects are quenched
at a certain island size depending on the rate of cross-field
plasma diffusion.
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PURELY RESISTIVE TEARING MODES

Teafing modes lead to a new more complex magnetic topo-
logy called magnetic islands. The nonlinear theory of the tear-
ing instability therefore deals with the behavior of magnetic
islands of finite size. Let me introduce a system of resistive
MHD equations that take into account the most important proper-
ties of tearing modes in low B plasmas, and which shall be the
model equations of the first part 6f this lecture. I consider
a plasma imbedded in a strong magnetic field go' For sufficient-
ly simple geometry, to which I restrict myself, such as plane
or cylindrical configurations, ﬁo is homogeneous. In addition
there is a current } flowing within the plasma essentially

along ﬁé. It generates a poloidal field component ﬁi

N .
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Tearing modes grow essentially perpendicularly to T, the basic
geometry being two-dimensional. Hence ¥ is the vector potential
in the direction of the ignorable coordinate and therefore a
flux function, which is conserved in the limit of vanishing
resistivity. The plasma motion, too, is in the plane perpendi-
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cular to B0 and hence incompressible
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From the parallel component of Ohm's law

E, = nj (3)
and the definition of E, one obtains the equation

N, Yy =nj-E (4)

where E0 is the electric field externally applied along ﬁo to
maintain a resistive equilibrium, corresponding to the loop
voltage in a tokamak. An equation for the stream function ¢ ,
introduced in (2), is obtained by taking the curl of the equa-
tion of motion thus eliminating the pressure. Because of the
two-dimensionality of the system only the z-component of V X v

is non-vanishing, z+(V % 3) = V2¢ , satisfying the equation
9 - 2 o :
(5E-+ veV)V 9 = zo (VW x V]) , (5)

where p = Py = 1 is assumed for simplicity. Equations (4), (5)

are our model equations written in the following units: a typi-



cal poloidal magnetic field Blo , the corresponding Alfven

172 , and a typical width a of the cur-

speed T Blol(éﬂpo)
rent carrying region, e.g. the plasma radius. In these units

n is the inverse magnetic Reynold's number S
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Characteristic values of S are

S n 106 - 107 for present day tokamaks

N 108 for reactor plasmas

Quasilinear Theory

The linear growth rate of the tearing mode is proportio-

3/5

nal to a fractional power of n , vy v n , intermediate between
an MHD process and resistive diffusion. This property of the in-
stability is, however, already changed at a very low amplitude,
where the influence of plasma inertia becomes insignificant,

as has been shown by Rutherford1). He considered the quasilinear
change Gjo of the current density jo(x) within the resistive
layer 65 " n2/5 around the singular surface Xos where kB = 0.
Equation (4) yields

36y,

R o (7)
ot el JO




3 . . . . 2 - .
Since the skin time of the resistive layer Gs/n von 1/5 is

small compared with the growth time Y_1 v n_3/5

, the current
distribution relaxes instantaneously within 65. Hence the first
term on the 1l.h.s. of eq. (7) is negligible and Gjo becomes
V> (8)
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For ¢y = ¢1(x)cosky , ¢ = ¢1(x)sinky one has Gjo = k¢1¢;/2n.

Insertion into eq. (5) gives
R (PRI Ty 1
ot k(¢0¢1 ¢tJo) kl1’1630
which may be rearranged as

) k2¢%
(7= + =) ¢" = linear terms (9)
ot 2n 1

1f ksz/Z >y the first term on the l.h.s. of eq. (9), which

represents the effect of inertia, is negligible. Using

n3/5A'4/5(ﬁ-§)'2/5

[ n (10)
1
5 a2 (11)
s
and the definition of the island width W
a 142
Wo=4 /D (12)



it is readily found that inertia becomes unimportant as soon
as the island width exceeds the width of the resistive layer.
The tearing instability thus changes its character at a small
amplitude W SS. Since further growth proceeds on the resis-
tive time scale as a sequence of equilibrium states j = j(y,t),
it has been argued that there is no such thing as a tearing
instability in a real (non-idealized) plasma configurationm,

but only diffusive growth or decay of magnetic islands.

Nonlinear Island Growth

The diffusion process just mentioned is elegantly described
by a set of generalized differential equationsz). Averaging
eq. (4) over the magnetic surface Y enclosing the volume V and

writing ¢(;,t) = ¢(V(;,t),t) ,one obtains the diffusion equa-

tion
p(v,t) _ 3 . 3
ot "3v K 3y (13)
where
2
K=< |w|®> (14)

\Y

is an inductance coefficient V being normalized such that
¢ ds/|vV| = 1 . K characterizes the geometry (island size etc.)

which at each instance is determined by Ampere's law




v2y = j(V,t) (15)

Equations (13) to (15) were solved numerically for the case

of island growth in a symmetric plane sheet pinch. For more

general asymmetric configurations, however, the numerical treat-

ment would be quite involved. For small islands eq. (13) re-

duces to a simple equation for the island width W
— = '
dt Vi A'n (16)

i.e. W increases linearily with time, a result first obtained
in ref. 1. Equation (16) can also be derived using a rather

crude argument. For small W eq. (4) becomes

8,

= = nw'{ a7n

In the regime of exponential tearing mode growth where W < 65
one has (because of the constant w1 property)
¢i+ = ¢;_ A'¢1
" — = (18)
Y1 8¢ Ss
For W > GS , however, the current-carrying layer is given by
the island width. Replacing GS by W in eq. (18) and substitut-
ing the result in eq. (17), one obtains eq. (16) up to a nu-

merical factor of the order unity.

L)



The same argument also leads to the correct time dependence
of small but finite islands in the case where the dominant dissi-
pation in Ohm's law is the perpendicular electron viscosity rather
than the resistivity. Instead of eq. (17) one has

oy
2

By analogy with eq. (18) sz is approximated by

1
AI
wllll > = !p
1 371
65

Replacing §, by W for W > §g in this relation and inserting

the result in eq. (19), one obtains

gﬂ3 . A'
at =~ Me
and hence
We (uate)'/3 (20)

3)

in agreement with a recent more exact calculation™’.

Saturation Island Width

For not too large islands a theory of island saturation

has been given in ref.4. The basic equation is




% = n(a"(W) - aW) (21)

where A'(W) 1is the difference of the derivatives of Y
taken at the radii corresponding to the inner and outer edges
of the island. The main stabilizing effect comes from the de-
crease of A' with growing island width; it represents the
decrease of free magnetic energy, which is the main energy
source for tearing modes. The relation A'(W) = 0, in general,
gives a good estimate of the saturation island width. The
a-term in eq.(21) contains additional nonlinear effects, in
particular the influence of a self-consistent change of the
resistivity profile, i.e. the electron temperature6). Let me
give a simple estimate of this effect. Averaging eq.(4) over
a flux surface |y makes the covective term vanish

G, = NWIW) (22)
Let us consider eq.(22) at the O-point and the X-point, where ¢

the average term on the l.h.s. degenerates to a local expression

(23)

(the average value over the separatrix Vo is,d identical with
the value at the X-point because of the dominating weight of

the latter in the average). For not too large islands



¥ = Y, + Yqcosky (24)

is a good approximation, higher harmonics being small. Insert-

ing eq.(24) into eq.(23), one obtains

2 ;1 = ()° - (¥
&= ?_noj1 + 2n4d,
3, e A;(W)wi . n'y, , n'= %%
hence
g_‘g = nA'(W) + j o'W (25)

This result shows that for n' >0 , i.e. Te lower in the is-
lands than on the separatrix, the islands become larger, while
n' < 0 leads to smaller islands. n(y) 1is determined by the
electron energy balance. It turns out that for reasonable as-
sumptions on heat sources and heat conduction the temperature
profile is rather flat within the islands. The saturation is-
land width is only slightly larger than in the case n = no(r),
which is often used in the 2D-simulations, and which corresponds

to n' <0 .
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Application to Tokamak Theory

Tearing modes obviously play an important role in tokamaks.
Because of the geometrical complexity the nonlinear behavior of
magnetic islands has thus far only been investigated in the cy-
lindrical tokamak approximation, to which attention will there-
fore be restricted. In this geometry individual nonlinear tear-
ing modes generate a helically symmetric configuration. All
quantities depend only on r and & - nz/mR , and the flux function
to be used in eqs.(4) and (5) is the so-called helical flux

function ¢, defined by

8_111*=B _nrg
ar 8 mR o
(26)
. o2 n
jo= V. +2 2B,

The eigenfunction ¢, in a cylindrical plasma is of the form
1 y

6)

shown in Fig.1 , being large inside the resonant radius r..
It resembles an internal kink mode, which is MHD stable accord-
ing to Newcomb's criterium. This is in general not true of the

(m,n) = (1,1) mode, which plays a special role and which will be

discussed in a subsequent lecture.

The saturation island width is essnetially determined by
the current distribution. A general tendency is that peaked

profiles lead to small islands, while flat-topped, square-shaped

4),7)

profiles may give rise to large islands , primarily owing



to the strong current density gradients at the resonant radius.

It is rather tempting to interpret this behavior as due to the
island width being proportional to the gradient of the original
current profile, but this would be an oversimplification. The
island size is a functional of the global current behavior, though
the vicinity of the resonant surface has a particularly large
weight. Nor is there any simple relation between the original A'

or the linear growth rate, and the final island size.

The theory of tearing mode saturation as just outlined has

been applied quite successfully to explain the amplitudes of

5)

Mirnov oscillations observed in tokamaks and similar devices.
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TEARING MODES IN HIGH TEMPERATURE PLASMAS

At high plasma temperatures eqs.(4) and (5) give a rather
poor approximation since, in addition to resistivity, various
other non-ideal effects are important. In recent years the linear
theory has been substantially refined by including diamagnetic
effects, viscosity, parallel plasma flow, drift-kinetic descrip-
tion of the electrons etc., and various different types of un-
stable modes have been found. As will be shown, the nonlinear
behavior of these modes may, however, be quite similar to the
behavior of purely resistive tearing modes treated in the first

paragraph.

Two-fluid Model Equations for Drift-Tearing Modes

A rather simple generalisation of eqs. (4) and (5) for a
high temperature plasma is obtained within the framework of
two-fluid theory. Again let us restrict ourselves to cylindri-
cal geometry, denoting the helical flux function defined in
eq. (26) by ¢ for simplicity. Ohm's law (3) is generalized

by including the electron pressure term

Ew = nj-—V"Vn (27)

using V T, = 0. The incompressible part u of the ion velocity

contains the ion diamagnetic drift




_13_

(28)

while the compressible part due to the polarization drift can

be expressed by V,j
nal smallness parameter o

diamagnetic drifts

The basic equations replacing eqs.(4) and (5) are

%%—+ 3-V¢ = nj -a EE—;—IiEi (; x V) +Vn
%%—+ u¥n = a (; x Vp)eVj - V nv

L R 2L AL

3gi¢ 2 i = Gi*)-vv2¢ - (z x Vn)-V-%-2

= (; X v¢)-vv2¢ + v-uivv2¢

: 2
Here temperatures are measured in 380/4v and hence

the order of the poloidal beta,

Bp = 2(Te+ Ti)

because of quasi-neutrality. An additio-

arises through the polarisation and

(29)

(30)

(31)

(32)

(33)

are of
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A polytropic gas law is assumed for the ions
Vpi = Yi’I‘iVn

The properties of the unstable modes described by eqs.(30)-(33)
are primarily determined by the ratio m*/YT s Wy = m*(rs)

is the diamagnetic drift frequency and Yo the tearing mode
growth rate for w, + 0. The linear dispersion relation is ap-
proximately given by (for details see for example ref. 9)

0 = 0,) @ - u )’ = i) (34)

which inmediately yields the limiting cases

iYT s Wy << Yq
w = (35)
. 2/3
me* + 1YT(YT/m*) ;L UJ* >> YT
It is seen that for large w, the growth rate is strongly

reduced.

Nonlinear Behavior of Drift Tearing Modes

Generalizing the treatment outlined at the beginning, it

8)

can readily be shown ° that, just as in the case of the purely

resistive tearing instability, the exponential growth is ter-
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minated as soon as the island size W exceeds the current-carrying
layer width 63; for W > 68 inertia is negligible, j = j(¥).
Here 65 depends on the ratio m*/YT through the relation

~ 1
6, = nd /y.

Simultaneously, a quasi-linear flattening of the density
profile at the resonant surface takes place, reducing the drift-
frequency w, « né(rs). Let us estimate the mode amplitude or
the island size at which the density gradient né(rs) vanishes.
From eq.(31), neglecting the r.h.s., one obtains the following

approximate diffusion equation

an 19 an
— 0 = Rl s —f)
ot r or =D or (36)
= 2 ®y2 1,12
D y &) 1el (37)
w
2
= vég for W= &g, |r - rsl 5 Sg

It can readily be seen that for W 3 85 a density plateau is
formed and hence the diamagnetic frequencies vanish. The de-

velopment of y and ® with growing amplitude is shown qua-
litatively in Fig.2. For island size W > §_ the density be-
comes a flux function n = n(y), and eqs.(30) and (33) essen-
tially reduce to the corresponding equations (4) and (5) .for

the purely resistive case. Hence in the present model the sa-
turation island size does not depend on the parameter o ,

i.e. on diamagnetic effects, but only on the current profile
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and the behavior of the resistivity n(y,t) ; island rotation
can only be due to plasma rotation. Numerical solution of eqs.

(30) to (33) confirms thes qualitative arguments.

Influence of Cross—-field Plasma Diffusion

The model (30) to (33) can, however, not be applied directly
to interpret observations in tokamaks. It turns out that plasma
cross-field diffusion, which is not accounted for in eq.(31),
strongly competes with the quasi-linear flattening of the densi-
ty profile just described. Comparing the diffusion coefficient

(37) for the latter process

2 2
Dp = Y6 "‘\’e(f‘*)z(ﬂ a'an)?/3 (38)
P
pe
with neoclassical plasma diffusion
2 2,R.3 2
D, = vepd 2B 102 (39)
2 2
= 10% Bv, (=)
pe

it is seen that neoclassical diffusion may already dominate
over the quasi-linear flattening. By including particle diffu-
sion (with appropriate particle sources to maintain a certain
overall density profile) the density gradient thus remains fi-
nite for W R 6  and the ¥V n term in eq.(30) continues to

couple n and y. However, as the islands increase in size,
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perpendicular convection U as well as parallel flow v in eq.(31)
will increase the tendency to make n a flux function and thus
flatten the density profile, finally overcoming the effect of
cross-field diffusion. To estimate the necessary island size, one
may tentatively replace Y6;2 by YWZ (z A'nW because of eq.(16)).
Equating YWZ with the observed plasma diffusion coefficient

gives the island size W, , above which no' and hence w, should

be substantially reduced and the arguments given in the previous

section should apply.

Experimental observation of plasma conditions during Mirnov
oscillation activity do in fact reveal a temperature plateau in
the island region, but no visible density profile flattening.
This is consistent with the observed mode frequency being rough-
ly equal to the diamagnetic frequency given by the average den-
sity gradient instead of the pressure gradient. Only if the m = 2
mode grows to large amplitudes prior to a major disruption, does
the frequency decrease to zero. It is tempting to identify this
slowing down with a flattening of the density profile (still un-

observed experimentally) for W > W, as discussed above.




SUMMARY

The nonlinear evolution of individual tearing modes is
discussed. For magnetic island size W exceeding the thin re-
sistive layer Sg carrying the perturbed current, the mode
growth proceeds on the resistive diffusion time scale. The sa-
turation width is primarily determined by the exhaustion of
the magnetic energy reservoir and is approximately given by
A'(W) = 0. In a high temperature plasma further non-ideal ef-
fects such as diamagnetic drifts and parallel flow have to be
taken into account. Though the linear properties strongly
depend on these effects, in particular on the ratio w*/yT,
the nonlinear development and saturation may be the same as
in the purely resistive case because the diamagnetic effects
are quenched at a certain island size depending on the rate
of plasma cross-field diffusion. The nonlinear theory of
tearing modes can explain a number of effects observed in

connection with Mirnov oscillations.
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Figure Captions

Fig. 1 Eigenfunctions ¢, ¢ of the resistive tearing mode

in a cylindrical plasma, m = 2, n = 10'6

Fig. 2 Time development of growth rate and frequency of

drift tearing modes. Island size W(ty) = 68
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