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Abstract

The thermal analysis of the cryogenically cooled toroidal tape-wound
magnet system of ZEPHYR is described.

The methods and calculation technigues developed for this study can
generally be used for cryogenic coils which are energized by short
current pulses (At-10s). The limitation for the short pulsed coil
system is due to the adiabatic heating of the coils, which determines
the temperatures in this case where heat conduction plays a minor
role.

This report is subdivided into two parts. In the first one analytical
calculations are described. Temperatures of (steel-copper) compound
conductors are calculated as functions of the initial temperatures
before the current pulse is started and of the steel-copper-ratio.
The influence of magnetoresistance and nuclear heating are taken into
account.

The temperature gradients in the electrical insulation layers are
determined by solving the one-dimensional heat conduction equation
for a strip with time-dependent boundary conditions.

The second part describes the numerical investigations. The numerical
calculations are carried out by using a finite element subdivision

of the winding. The temperature profiles within the winding, the
ohmic losses, the electric power and the heat deposited are calcu-
lated. Finally, optimum cryogenic temperatures T, are derived to
which the coils should be cooled down between two pulses to minimize
the electric power needed by the refrigeration system.
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1. Introduction

This report describes the thermal analysis for the tape-wound toroidal
field coils of ZEPHYR /1/. The thermal analysis includes: temperature
profiles in the coil winding due to ohmic heating and nuclear heating,
temperature profiles in the electrical insulators layers, electrical
power and total heat depesited in the toroidal coil system.

The toroidal (TF) coil system treated in this report is described in
detail in Ref. /1/. The geometry of a TF coil is given in Fig. 1=

Fig.1l Geometry of the

center line

TF-coil for ZEPHYR
Xy = 0.5725 m
Xy = 3.11m
Xz = 1.09 m
X = 2.188 m

— Ly = 1.25m
D =0.345m
B =0.432m
By = 0.212 m
Xp ~1.1m

The coil is composed of two sections, a C-and a D-shaped section, which
join togeter at x = X, thus forming a bending-free coil configuration
J2):

The TF coil winding is heated by the ohmic 1osses and by neutrons and
gamma radiation.

The time history of the current pulse by which the coil system is ener-
gized is shown in Fig. 2. The current rise time is 7 s, the flat-toptime
65 s and the shut-down time 7 s. The total current Ig flowing during the
flat-top period in the coils is 61,7 x 106 A (Ig=Ic-n-N;IC = current of
a conductor,



I Fig. 2
- Current pulse for the TF coil
Igr system.
tR : rise time 7 s
| | tFT : flat-top time 6.5 s
oy o ity ty shut-clown time 7 s
& tg - burn time 5 s
s h ==l —t I : total current 61.7x10%

n = number of coils, N = number of turns per coil).To ensure mechanical
stability, a conductor is composed of a stainless steel (SS) -copper (Cu)
tape /1/ with an average SS/Cu ratio a = 1.

The average current density (j» in the coil throat

(planz z = 03 xl—D/2<xs>ﬁjD/2) is <j» = 5.589 x107 A/mz. The high current
densities produce high ohmic Tosses ?e-jz (ye = specific resistivity). In
order to sustain the current pulse for 6.5s the coils have to be cooled
down to cryogenic temperatures. In this study the temperature range for
the initial temperature To’ the temperature before the current pulse

is started, is varied between 30 and 80K. For this temperature interval,
supercritical helium and/or 1iquid nitrogen (n)>70K) can be used /1,3,4/
as cooling medium.

In addition to this ohmic heating the winding is also heated by neutron
and ¥ -radiation for pulses with burning plasma. The values for the nuclear
energy deposition q,.2r€ taken from /5/.

2. Analytical calculations

The heat conduction equation for the case that the thermal properties vary
with temperature but are independent of position is given by /6/:

e L aaT B (R (I (Vg g,

where A is the thermal conductivity, gmthe mass density, c the specific
heat, and q the spatial density of heat generation. The heat generation
term in our case is composed of two parts, the ohmic heating term yejz and




the nuclear energy deposition term gnyThe specific resistivity §e is composed
of three parts:

9= oot for ™) * fen - (2)

where Pas is the residual resistivity at low temperatures (T < 10K), jé'(T)
gives the temperature dependence due to the electron-phonon scattering and
Pep takes into account the magnetoresistance. Data for c and 2. are collected
in the Appendix for the materials used in this study (copper, stainless
steels and electrical insulators).

2.1 Temperature profiles in the conductors

2.1.1 Temperature profiles without magnetoresistance and nuclear heating

The temperatures in a conductor which has to be a conmposite for mechanical
stress reasons /1/ are calculated for adiabatic conditions (A = 0). Equation
(1) yields for this case

2T - 9 (3)

2t -
The assumption that the heating process can be calculated under adiabatic
conditions is justified by comparing the heat diffusion time tj for conductor
dimensions considered with the effective pulse duration téff, which yields
t, > teff' The basic equation which has to be solved is given by

T T -2
.B_t_ = e ? (+) ; (4)
Pl

For deriving analytical solutions a simple formula for the "material function"
f = fe/fmc was needed by using the valuesshown in Figs. Al and A2.The function
f was calculated and is plotted in Fig. 3, which shows the dependence of f
on the temperature for a copper conductor (a=0) and a composite conductors
with « = 1 and 2. The f-curve for o = 0 is approximated by a linear function
{1 (T>40K):
-9
4, = 51340 T . (5)

For composite conductors the linear approximation shown in Fig. 3 is given
by (see Appendix II)

fo =SB0 (6)

Atd
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Fig. 3 shows that the linear approximation of the "material function" f by
relation 6 is accurate enough for rough temperature estimations. The diffe-
rential equation (4) can now be written in the form.

AT _ shk-107°T ON

2t (444) (7)

This relation (7) is valid for an adiabatic situation with a copper conductor
(R = 100; neglecting the magnetoresistance) reinforced by stainless steel;
J (t) is the current density in the copper.
The solutions of (7) are
s009 b3 2

3C1+a) 3th

T=Toe " O'f- t £ tR ) (Ba)
$1073 (aatnld) 4o
L1070 (40 rtain) 42

T=—l—°ei(4+-¢) .bkcté-ta}tFr ) (8b)

S0y stai3etoh)-4r . 5 'ng“ﬂ‘t‘)s‘j’:”*:
e

T-T,e 3CAnL) 3(42) (8C)

tarigp <t e tp ttprtin.
Equations (8a) - (8c) describe the dependence of the temperature T on time t
during the rise time, the flat-top time and the shut-down time (see Fig. 2).
TO is the temperature at the beginning of a current cycle and jo is the
current density in the copper during the flat-top period.
The current density jo in the copper is given by

3" . (1+a)
®  n[B-4B31LD-4D]




L . LgCt4d) x<Xg - (10)
'}’c s,
nlD -aD1L Lxp +an(nin)-AB]

N: total numer of coils B
Ig: total current in the flat-top period
B: axial width of the coil in the region X»Xg &9' see Figs.l
D: radial thickness of the coil 2 and 4
Xg: tapering edge _

Xy x-coordinate of the centre of a winding cross-section

AD takes into account the reduction of the conductor area by the high-voltage
insulation A]H and the electrical insulation between turns, which has the
thickness A]i. AD is given by

AD = 2AL, + (N-1-AL;, (11)
where N is the number of windings of each coil. AB is the reduction of the
axial coil width:

4B = 24L, * AL, (12)

where A]S is the thickness of the spacer plate, placed in the central place
of the coil (each coil is composed of two pancakes /1/). If forced cooling

in tubes is used, the area reduction by the tubes can be related to an effec-
tive A]S value. The scheme of the winding cross-section in the coil throat

is given in Fig. 4.In the calculation model it is assumed that the current

Fig. 4
s Scheme of the winding

cross-section in the
coil throat.

conductor
o copper
steel



density j is constant over the winding cross-section. For a tape-wound
coil with varying winding cross-section in the tapering region this is

an ideal assumption because conductors (tapes) then have be made with
varying thicknesses in the tapering region. In reality, the coil has to
be subdivided into sections where each section has conductors of constant
thickness.

In the following figures the temperatures for a conductor in the coil
throat where the j-values are highest and for a conductor in the region
with parallel coil flanks (x>xg) are shown. The steel-copper ratio a is
one. Further values used are:

Al, = 0.3 cm,

H
Al = 0.04 cm,

A11 = 0.6 cm,

= 57.25 cm (plane in coil throat)
= 16 ,

= 43,

43.76 cm,

= 34.5 cm,

100.

K O W =Z S X
= u
n

The current density in the coil throat which follows from eq. (10)

(xM = 57,25 cm) is 1.109:x 104 A/cmz, and for the coil section with x2x
the current density is 5.624 x 10 A/m2 Ceq.(9)].

The dependence of the temperature T on the time t for a conductor in the
coil throat with different initial temperatures T0 (TO = 40, 60, 80 K) is
shown in Fig. 5. The influence of the current density j on the temperature

is demonstrated by the curve for a conductor with TO = 40K placed in the

S

coil section with parallel flanks (x>xs). The reduction of j from

1.109 x 104 A/cm2 to 5.624 x 103 A/cm2 leads to a reduction of the tempera-
ture increase AT =T (t = 20.5s5 ) - T0 from 86 K to 14 K.

In the remainder of this section the influence of the steel-to-copper

ratio o should be discussed on the basis of eqs. (8a ... 8c). The expo-

nent of the e-function in eqs. (8a - 8c) varies as (1 + «), because jg scales
as (1 + a)2, and the specific heat of the composite conductor as (1 + g).
The temperature therefore increase with a as e (1+GJ. Figure 6 shows the
dependence of Ton « at the end of the current pulse ( t = 20.5 s) for three

initial values s ( 40,60 and 80K).
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2.1.2 Temperature profiles with magnetoresistance

As can be seen from Fig. Al, the resistivity SeB which results from the
magnetoresistance is rather high for windings placed at the inner edge of
the coil throat if the temperatures are below 100 K. The magnetic induc-
tion at this location is 16.6 T, producing on the copper a feB value of
about 0.8 x 107/
the Kohler plot for copper (see Fig. A2) which reads

2 m. This value follows from a linear approxination of

frg = 5107 B Lacml, (13)

The_ﬁJ: function ( A féo+-PeIT) + feB) can be approximated by (see Fig.7)

fo o A2 (35+445T) (14)
- (a4<)
for T 2 50K.
6 1 T
= sl 109 Fig. 7
-E; f"=1Ta(75+]'45” o a=0 'Material function"f
é br > 7 versus temperature for
5 e a copper conductor
o /
<3 . (¢ =0, R = 100)
including magneto-
2 n resistance
1+ i
Ol ! 1
0 100 200 300

The solution of eq.(4) using eq. (14) as "material function" is

:
445-10°, _ty 2

ToCT, 5170 <4 ¥ retet, | (15a)
44503 0y 13)gr
TLTes13le M TN s ta ¢ titgrte ,  (190)

1.45- m's e b 4.55-2.“ (tg-h)"_ !
i) ‘(*Ft*{'ﬂ-”’t”g) & Zr S 3ts o (15c)

T=[T+511]e - 513

tarteg ¢t dtatter ety .
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(the value 51.7 is the ratio 75/1.45 of the coefficients in the linear

f -function). The curves in Fig. 8 labelled with A give the temperatures
according to the relations (15a)-(15c) for a conductor at the Tocation A
shown in the insert of Figure 8. At this point the maximum magnetic induc-
tion of 16.6 T occurs. From Fig. 8 the temperatures difference in the coil
throut between inner (A) and the outer conductor (C) can be seen. This
temperature difference is due to the difference in the magnetic induction

B which is assumed to be zero at the outer winding edge. Numerical field
calculations show that this assumption is justyfied. The curves C are taken
from Fig. 5 Cthe temperatures are calculated without magnetoresistance).
The curves in Fig. 8 show that the temperature difference between the inner
and outer conductors in the coil throat increases with decreasing initial
temperature.

2.1.3 Temperature profiles with magnetoresistance and nuclear heating

If the plasma is in the burning state, nuclear energy (neutrons and gamma
radiation) is deposited in the coil winding. For a former design (which is
classified as C1_5/330 in our notation) the nuclear energy deposition

in the coil was calculated /5/. For the present design (C1.5/345) the burn
time tp is 5 seconds. The burning phase starts at 8.5 s (1.5 s after the
current has reached its full value) and ends at 13.5 s (tR + tFT). From
/5/ the nuclear energy deposition for C1_5/345 is estimated to be

Ad
Gny* W,e ’ LR S (16)

-+ d)
Qo = Woe ’ (1-8hap)™* xrx, , (17)

where d is the thickness of the flange, d is the distance from the inner coil
edge and is the coordinate where the flange begins. The value of wo and
A are 12 N/cm3 /5/ and 9.61 m_1 respectively. The differential equation for
the burning plasma phase now reads

E‘: - » zct) (A4) 18
I o 457:_-2?n ’ e

where (e is the specific heat of the copper in J/cm3K and f5 " is given
by eq. (14). To get analytical solution of eq. (18), the specific heat
P ¢(T) is approximated by a constant value §p ¢ for the temperature interval
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Fig. 8 Temperatures at the inner edge (point A) and at the outer
edge (c) of the coil throat. The temperatures in A are cal-
culated taking into account the magnetoresistance.

8.5 s and 13.5 s. To get an idea of the influence exerted by the nuclear
heating term q(gmc(T(t = 8.5 s)), it is compared with faj2 (t = 8.5 s).

This data, which are determined by T values of Fig. 8, are shown in Table I
( for position A: q = NO):




- i &

Table I
T, | 7(e8.55) | £, («=1.T)) £ .32 | Wy/ppe(Ty) T Jpc= c(T)
Paint 4 racn?Kk[J] LKis] | CKis] LK] LJ/cm:”K]
40 78 0.7 x 1077 8.61 | 6.74 126 | 2.65
60 105 0.9 x 10-/ | 11.07 | 5.10 157 2.94
80 134 1.15 x 107/ | 14.14 | 4.38 190 512

Table I shows that the ohmic heating term is larger than the nuclear hea-
ting term. The difference is largest for the TF coil system with an initial

temperature T = 80 K. For a TF system with TO = 80 K the increase of T
due to ohmic heating is about 14 K per second, and the increase due to
the nuclear heating term about 5 K per second. The mean value of the
specific heat f;@ follows from curve A3 at the temperature ?, which

is defined as

T=TCt=855) 2 q_Aj_
Q€

(19)

with 4t = tB/Z. The g¢.c -values are taken from the curve for the spe-
cific heat of copper (Fig. A3).

The solution of eq. (18) where fé is written in a general form as

k-ad 20)
is given by
i e
T=[Teolble (") 3t -afb 0¢tety | (21a)
-2
2de . (galavts)
T=iT,talble ™ AT alb talt ftattyr-ty [(21b)
. -2
b;% (ter-tg+tell) ilflt‘
T={[To4alb—.le (1) & a . *Q.E.‘H'_l_§e C1da) :'__a!b- 4-(_1&-):
%o bg,..'.r. 1}[:»5:“:.

-1 .1 01
b 33 b —-3-'—" (t_. rtal3+is)d
Tafalamd o [ e AT [T, vatsle ™ {21c).
g“(a'b'}%
s Cto-ty)?
. e (1) 3tp -alb et T4 Eatter b

)
OLtL‘tB ,
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Dependence of the conductor
temperature at point A on
pulse time with and without
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Fig. 9 shows T versus t for a conductor located at A (q = NO) with and
without the influence of the nuclear energy deposition. The initial tempe-
rature T0 is 80 K. In this case the additional increase of T due to
nuclear heating is about 28 K.

2.2 Temperature profiles in the electrical insulation layers

In this section the temperature profiles in the electrical insulation layers
are investigated. Two insulation systems exist: the high-voltage insulation
system and the interturn layer system. The high-voltage layer system is
placed at the outer edges of the winding and protects the winding against
electrical breakdown to ground. The temperature profiles are calculated for
t = 13.5 s ( end of flat top), where the components of the winding are most
strongly influenced by forces. The temperature at the layer boundary are
taken from the curves A in Fig. 8. The curves A in Fig. 8 show the strongest
temperature increase perunit time and the highest T values of the whole coil.
In this coil vregion the electrical insulation layers are therefore sub-
jected to the largest temperature differences. For calculating the tempera-
ture profiles in the insulation layers we use the curves of Fig. 8, where

the conductor temperatures are shown taking into account the magnetoresistance.

The reason why we do not use the conductor temperature dependence shown in
Fig, 9, where the nuclear heating is taken into account, is that the insu-
lator is also homogeneously heated by the nuclear radiation by the same
amount as the conductor ( ATx20 K). The temperature difference between
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conductor and insulator is therefore given by Fig. 8.
We start with the thermal heat conduction eg. (1). To eleminate the term

QR [(OTY* (2T )%, (2L)*)
a transformation to the heat potential S is carried out /6/

T
4 A1
SCT) = . 1S'l(,'r)ch" (22)

where A, = YT =T,).
Using the relations

s . 2. 9T
oEl T P -
g;iz_;_[g.%}+1%] ete

The differential equation for the heat potential is now given by

A9 L 9 -y
as RCs) 9+ % Ro (24)

where the coefficient «(s) is defined by

- ) e (8
R(SI= s g, (25)

Equation (24) has the same structure as the heat conduction equation (1)
if92/9QT = 0. The coefficient « depends on S and via eq. (22) also on T.
The temperature dependence of « is only weak because A (T) and ¢ (T) show
the same tendency in their temperature dependences. With decreasing
temperature 2 (T) andc (T) decrease. The weak temperature dependence of «
justifies the simplication of keeping « constant when solving eq. (24).

A mean value « is used which is defined as

®=[R(T,) "x(Trhan)]Il (26)

K(To) being the value for the initial temperature T, and «(T___) the

max



- 15 -

k-value for the maximum temperature Tmax at 13.bs.

For the temperature prefile calculations the following model is used
(see Fig. 10). The insulation layer is infinitely extended in the z and
y-directions.

~N

Fig. 10

Scheme of the insulation Tayer which is infinitely
extended in the z and y-directions. For an inter-

T(t) T(t)

turn layer the insulator at x = 0 and x =1 is in
contact with the conductor. The high voltage insu-
lation is in contact with the conductor at x = 1.

conductor

ol |

Because the thickness 1 of the insulation layer is of the order of 1 mm
whereas the extent in the other two directions is of the order of 1 m, this
approximation of an infinitely extended sheet is justified.

Depending on the fact whether the insulation Tayer is an electrical interturn
layer or the high voltage layer at the winding edge, the following boundary
conditions are used:

T= 4(t) N (27a)

for the inter-turn layer and

T = 44) =4

2T .o x<0 (27b)
for the high-voltage insulation layer, which is heated only at x = 1.
The condition@T/@x = 0 at x = 0 means that the heat flux is zero at x = 0.
The solution of eq. (24) with the symmetrical boundary condition (without

the sourceterm q) and for a temperature distribution jz(x) in the layer
at t = 0 is given by /6/
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® _an'nit/e? { ;
s =t Ee in S L f g0 o e+
t - 21410 2
R antuit/e ‘ " '
+ hz ge -Hct)-c-ﬂ 4&’)}:&] . (28)

For the assymmetrical boundary conditions (27) (q = 0) the solution
reads /6/

€ R(zns)T4L* ="
9 @neA)rx [ 2nedmn (1)
SCe)x gL e Tl

P Rcamentwt it et , 3 e [
(e 404t jff(x‘)-cos-—';fﬁ- dx' 1 (29)
0 0

As boundary temperature function f (t) an approximation Ta (t) is
used. The construction of the function T is shown in Fig. 8. The

app
linear function Tapp starts at t = 5 s and intersects the actual tempera-
ture function at t = tp + Ty (13,55} Tapp is given by
- -
Topp = 90 +18.5¢5-¢ (30)

where t* is (t-5) sec.
For carrying out the transformation to the heat potentials s the dependence
of the thermal conductivity & (T) on T has to be known. Figure A4 shows that

the dependence of A on T of the insulation to be used can be described by
a linear function

ACT) = ¢L+[3T

(31)
The linearized boundary function Tapp
Tapp = To*t AT (30')
is transformed according to (22) into
o b."l} =l *
SCH*) = M t + At : (32)
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Inserting eq. (32) into eq. (28) yields the solution for S(x,t) with symme-
trical boundary conditions

L 1
SCx,t*) =:+;ﬁ-t'1 + At" —[%][:—f— t* « -:*] + ;"—Q%I'Exl-xzj-

20 - o 2w 2
2 1] . 4 Atp g4 e.x.fi Wt * (2w4) WX
LA+t -x c « fin =——— ¢
AR5 o (2n41) » mi
2 (W NIgpr/er
paagr § ot L i Qmlm (33)
A Bl el (2ne4)3 L
The back-transformation from S to T is given by
1 12
Te F{L2pCAS5+¥)+0’]"" -a} (34)
with (35)
¥zl %Tol .
For deriving formula (33) the following relations were used:
-
A4 o Cadr

Eo (2:\{4) Sln L = T\'Il‘ )
g 1
5 g &ang o T % 1) (36)
E;O'EE:§?33 sin == e x/ ,
2 . 5
z N SRR C2ns )iy . 2 C4-x10) (4 +xll - $¥er) .
So (2nam)§ v 96 2

For the asymmetric boundary conditions (27b) the solution for S is given by

(! 1 _.,a 2 1 y
gC&,‘t’):-é'z—Aj?f + ht* - _E_%J[%g—t“-b%] t L@!— .

L8 ig I -
b3 2
g 3k 5o nglt -2'-: e R e etlue

-—-—+

228 " gr T dT Gl

B e o 1(9..\;4)5'
n  SR(In1)imitn 44z
CneNiTx 6428 ) ¢ ) (Am)ix
"CO0S T 9 ¢ £ EW?Y_ C2ns1)? €os “11_ .

Relation 37 can also derived from Eai (33) by carrying out a transformation
of the centre of the layer and by substituting 21 for 1.

For insulation layers heated symmetrically at both boundaries (x = 0, x = 1)
temperature profiles are shown in Fig. 11. The thickness 1 of the layers

varied from 0.06 cm to 1 cm. The profiles are calculated for the end of the
flat-top phase (t = tR + tFT). During the flat-top phase the highest load

to the coil occurs at the end of this phase because then the highest temperature




coincides with the full magnetic forces.

~ 1B =

For calculating the temperature profiles the following material relations
The linearized thermal conducti-

and data were used (see Fig. A4 und A5).

vity & (T) is given by

and the mean value of x, ® = 1.64 x 1073

ATy = 916" + 5.93-10°°T

(cmzs_1

).

(38)

The temperature profiles shown in Fig. 11 calculated with rel. (33) are
identical with the profiles for a high-voltage insulation layer [boundary con-
ditions (27)1, which are only half as thick as the inter-turn layers.

$ TIK] b 11K g Fig. 11
260+ 260 260+ Temperatur-
260 | 260 profiles in
220+ 2205'"'""'ﬂ-—_“—’—’ 220F inter-turn
200k 200k 200- insulation
180 [=006cm 180  l=01cm 180 [=0.2cm Jayers. for L=
t=135s t=135s 0 cooled coils
160 160 1601 (T, = 80) at
1601~ 1601 140 the end of the
1201 120 120+ flat-top phase
1001 100} 100 t= i85,
80 L L le 80 VRSN R T TOL gl B W boendl3a8 5]
003 unxt.icmt]l.os 006 0.05 3‘?3m1 009 01 o’.‘w[.cm] 018 02 (Qnly one half
of the layer is
shown because the
A TIK] $T11KI] $1LK] temperature are
260 2601 260 symmetric to
240 240 240k the middle plane)
220 220 220+
200 200 200+
180 180 180
160 160 160
140 140 140
120 120 120
1001 100 100+
om0 0:03 04 05 08 b5
x[cm] xlcm]
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3. Numerical calculations

As described in Sec. 2, analytical calculations can only be carried out by making
symplyfying assumptions. The material function f, for instance, was approximated
by a linear function of the temperature. To omit such approximation mimerical
calculations were made.

3.1. Description of the TEVBA computer code

With the TEVBA computer code the temperatures and the ohmic heating losses

of the tape-wound toroidal coil system can be calculated. The abbreviation
TEVBA stands for the German words, Temperatur und Verlust fiir Bandspulen-
systeme (temperature and loss for tape-wound coil systems).

The computer program is based on eq. (3) - neglecting the thermal conduction -
and reads

9'“(:.2{ = fe j'&) *q .
(3")
where ¢ -c is the specific heat (in J/m3k), fe = the specific resistivity,

J = the current density and q = the nuclear energy deposited in the winding;
P Co andJJe are temperature-dependent,j and q are time-dependent.

The specific resistivity is composed of three parts, the residual resistivity
foo? which depends on the degree of the imperities of the copper, the "phonon

term" g,, (T) and the magnetoresistance feg

fo = Seo * fep(T) + Ses
(2)
The residual resistivityj;o of copper can be described by the residual re-
sistivity ratio R =f;(300)/15(4.2) in the following way:

_ _2x Lakd

Ceo = R [..D.rn].

(39)
The "phonon temﬁ'fLP(T) was fitted by a polynamical of the seventh order

+

- n
fe?(T) = 2, bnT

n=o0 (40)
The specific heat fuctions of copper and steel (see Fig. A3) are also fitted
by polynamicals of the seventh order

3 2
C, = Z:__aqun Swidy B }n’_mqu C }lag K] (41)
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where c stand for copper and s for stainless steel. The coefficients by
a_, a.. are summarized in Table II.

cn sn

n acn asn bn 212
o | 1.268 1,9667 4.7228 x 10

1 | ~1.2938 -1.4177 1.3337 x 10712
2 | 9.7959 x 1072 1.3615 x 107+ -4.167 x 10713
3 | -6.879 x 107% | -1.8821 x 1073 2.0006 x 1014
4 | -6.9413 x 1077 1.3328 x 107° -2.0208 x 10716
5 | 2.4101 x 108 | -5.2003 x 1078 9.7319 x 10717
6 | 9.0142 x 107 1.0588 x 10710 -2.3290 x 10721
7 | 1.0688 x 10713 | -8.7257 x 1074 2.2121 x 1072

Table II: Coefficients for the specific heat of copper (acn)’ for stainless

steel 310SS (a

sn) and for the specific resistivity of copper (bn).

For the specific masses of copper and stainless steel the values 8.9 x 103kg/m3
and 7.9 x 1O3kgfm3, respectively, were used.

The accuracy of the polynomal fit is shown in Table III, where the
Cer G and g,-values at the reference points taken from the figures Al and A3
are compared with the corresponding values yielded by the polynomicals, which

were derived using the least squares fit technique.

As can be seen from Table III, the specific heat data are well approximated

by the polynamicals for temperatures T > 10K. The "phonon term" of the specific
resistivity fe is only well approximated for temperatures T £ 20K. Because
the residual resistivity R of the copper material used in magnet design

is 100 about a factor of as large (see Al) as the g,, values below 20K, this
inaccuracy has no noticeable influence on the calculation.

The magnetoresistance term for copper (see A2) is given (in linearized form)
by

7% a-B

11

The numerical value of a is 5 x 10 =~ am/T
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X (1) Y (1) YP (1)
0.0 0.0 1.96671D+00
1.00000E+01 5.00000E+00 -3.49457D-01
2.00000E+01 1.20000E+01 1.49879D+01
4.00000E+01 6. 90000E+01 7.18477D+01
6.00000E+01 1.40000E+02 1.374250+02
8.00000E+01 2.00000E+02 1.97400D+02
1.00000E+02 2.45000E+402 2.48576D+02  Specific
1.50000E+02 3. 50000E+02 3.49814p+02  neat of
2.00000E+02 4.21000E+02 4.21415p+02  Stainless
2 .50000E+02 4.62000E+02 4.61902D+02  Steel S310
3.00000E+02 4.85000E+02 4.84937D+02
0.0 0.0 1.26822D+00
1.00000E+01 1.00000E+00 ~2.56553D+00
2.00000E+01 7.00000E+00 9.03843D+00
4.00000E+01 6.00000E+01 6.26041D+01
6.00000E+01 1.38000E402 1.33676D+02  SPecific heat
8.00000E+01 2 .00000E+02 2.01956D+02  of copper
1.00000E+02 2.56000E+02 2.56292D+02
1.50000E+02 3.26000E+02 3.25602D+02
2.00000E+02 3.58000E+02 3.58165D+02
2 .50000E+02 3.78000E+02 3.77952D+02
3.00000E+02 3. 90000E+02 3.90008D+02
0.0 1.00000E-14 4.72282D-12
1.00000E+01 5.00000E-13 _5.52890D-12
2.00000E+01 8.00000E-12 ~4.59503D-12
4 .00000E+01 2.00000E-10 2.44915D-10  specific
6.00000E+01 1.00000E-09 9.41313D-10 resistivity
8.00000E+01 2.00000E-09 2.03533D-09 of copper
1.00000E+02 3. 40000E-09 3.393330-09  ("phonon term")
1.50000E+02 7.20000E-09 7.19830D-09
2.00000E+02 1.10000E-08 1.10008D-08
2. 50000E+02 1.43000E-08 1.42995D-08
3.00000E+02 1.70000E-08 1.69993D-08
Table III Comparison between the material data at the temperature EI]

taken from the curves Al and A3 Y [I] and calculated with the
polynomials YP [1]
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The numerical calculations are carried out using a finite element sub-
division of the coil. In Fig. 12a the finite element subdivision used for
the following calculations is shown. The coil is subdivided into 3-dimensio-
nal isoparametric volume elements with 20 nodal points (for a description

of this element see /8/). For each nodal point the temperature T and for
each element the ohmic heating losses p, are calculated.

Fig. 12a Subdivision of a half-torus magnet into elements. The number
of elements is 336 and the number of nodal points 2101.

The principal calculation process is as follows:
a) Calculation of the current density j for each nodal point. The
current density j is given by

tltg oﬁt’&*l\

) j.{d toc tetqatbey
e
1 i bn"“n‘t&h\"trr*to > (42)

where jo depends on the x-coordinate of the nodal point X (see
relations (9) and (10)).

b) Calculation of the magnetoresistance term fes = a-B.
The magnetic induction B at the inner edge of the coil for the
plane i (see Fig. 12b) s given by

o1
27R; (43)

For nodal points which are located at a distance & from the inner edge,
the magnetic induction value is calculated from

B =B;[1-8/D], (44)
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which means that a linear decrease of B over the winding is assumed.
c) Calculation of the nuclear heating term g
The nuclear heating term is given by

28
9.z W, e X ¢{Xg

A8 +d) al2
=\, e C‘i-c”‘M:D) >R
U Wo P (45)
where d is the thickness of the flange which supports the coil

for x » Xg -

center line

nodal point

Fig. 12b Scheme of the coil with the plane i havig 5 nodal points

For calculation of both Band q, the distance § has to be determined. For
this purpose the nodal points located in the plane i have to be known.

d) Calculation of the temperature
Equation (3') is solved for each nodal point.

e) Calculation of the ohmic heating losses
The ohmic heating losses are calculated for each element.
The Tosses are given by

PeSe (TM)- éz'vcu (46)

(TM = mean temperature of the element considered and ch = copper
volume of the element); Vcd is given by

Veu= V, T (47)

)
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where T'is the filling factor, given by

CB-4B1[D-4D] X7 Rg
o= B-DLA+u]

L 2% tan (win)-4B]1 LD-4D] ALK
2 Xy tan (Win) D LA+ (48)

( 8B and aD are defined by egs. (11) and (12)),

The input data for TEVBA are:

AC(N)

AS(N)

BW(N)

BAX
BRA
DEL
DELTA
DERY
DHIS
DLIS
DSPL

FABB
FL
NC
NDIM
NLSP
NSP
NSW

NxM

RHOO
STR
TD
TF

coefficients of the polynonial for the specific heat of

copper [J/kg K

coefficients of the polynonial for the specific heat of

the steel UJ/kgk J.

coefficients of the polynonial for fitting the specific
resistivity of copper

axial width of the coil winding

radial width of the coil winding

distance of the nodal point from the coil inner edge

thickness of the flange

error parameter for RUNGE-KUTTA

thickness of the high-voltage insulation

thickness of the layer insulation

thickness of the spacer plate; for hollow-conductor cooling
DSPL = F1 x NK/BRA, where F1 is the cross-sectional area and NK
is the number of hollow conductor

coefficient of the magnetoresistance termCam/T]

nuclear absorption coefficient (reciprocal of the mean freepath)
number of coefficients

number of layers per coil

number of coils

= 0 without nuclear heating ( Q = 0)

= 1 with nuclear heating

number of nodal points

residual resistivity ratio

specific resistivity of copper at room temperature
total ampere-turns of the torus

shut-down time

flat-top time

)




loop over all elements

TR
TTO

Wo
XG
XS
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rise time

start temperature (temperature at the beginning of the
current pulse)

nuclear heat deposition at the inner coil edge

X coordinate at the beginning of the flange

tapering edge.

CALL
KONST
ENKETS

Y

Read. FE-subdivision Fig. 13
Number and coordinates
of the nodal points Structure of the

Data for TEMP
Times TEVBA computer

Element description

loop over all nodal points

program

Calculation:
Constants for TEMP
Assignment of nodal
points to planes

Calculation : RKGS
Magnetic induction CALL FUNC
Magneto-resistance TEMP FUNR
Nuclear energy FUNJ
Temperatures FUNQ

WRITE
Nr. of nodal points
Coordinates, BHWI, BI,T

9

b

A

Calculation : > CALL
Mean values ABB, XMM,TM,0IV2 CALL JACOB=
Volume of the elements GAUSS

Ohmic heating losses IAN

5
WRITE
Number of the element
Volume of the element
XMM, ABB, TM, DIV 2,
PTV, PIVG,

[WRITE loss of the coit |
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The structure of the TEVBA program is shown in Fig. 13. At the beginning

of the calculation the subroutines KONST and ENKETS are called. The KONST
subroutine contains the coefficients collected in Table II. The ENKETZ
subroutine /9/ is used for calculating the shape functions /8,9/ and their
derivatives at the mesh points.

The finite-element subdivision, (given by the numbers NK, NR, NS), the

numbers of nodal points, the coordinats of the nodal points, data for the

TEMP subroutine, times at which the temperatures are printed and the des-
cription of the FE elements are read. The data which describes the FE sub-
division is calculated by the MESHGEN computer program /10/.

The next step is the calculation of constants which are used for the TEMP
subroutine and the correlation of the nodal points to the planes. After

the correlation procedure is carried out the distance of the nodal point

from the coil inner edge, the magnetic induction value and the magnetoresistance
according to eq. (41) are calculated for each nodal point. By means of

eq. (45) the nuclear energy deposited at the nodal points is calculated if NSW
is set equal to one (NSW = 1). The TEMP subroutine is then called. With this
subroutine the differential equation (see eq. (3 '); dT/dt = Fi (%5 ¥, (M))

FACXY (M) = RHO()sJwsl w ., QK
4 CHCY) cHuy) (49)

is solved (RHO(Y) (T)3CM(Y) = Qe C{T)+Lfmg Cc(T)5 Q(X) = Gmygs

gmare the specific masses). The TEMP subroutine calls the RKGS, FUNC, FUNR,
RUNJ subroutines. The RKGS subroutine solves the differential equation by
the Runge-Kutta-method. The FUNC and FUNR subroutines calculate the specific
heat of the copper-steel compound according to

CMLY) = SUMM( ACN) + ALE = ASCN))n Y=z (N-1)

and the specific resistivity RHO according to

RHO = (BW(N)sYnxN) + RHOO/R + AB+B . -

The FUNJ and FUNQ subroutines calculate the current density j and the
nuclear heating at the nodal point.
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The computer program continues by writing the number of nodal points,
the magnetic induction value BHWI at the inner edge of each plane to
which the nodal point is correlated, the magnetic induction value of
the nodal point BI and the temperature T. The second part of the

TEVBA program is concerned with the calculation of the ohmic heating
losses. For each element the mean values of T, XM, DIV2 and AB are
calculated. The average procedure covers the twenty nodal points of
each element. To get sufficently accurate results (as a consequence of
the averaging procedure), the coil is subdivided into a fine mesh (see
Fig. 12a)across the winding where the strongest variations (T,B and q)
ocurr . DIV 2 is the current density in the tapered region of the coil.

To calculate the volume of an element, the GAUSS and JACOBIAN subroutine
are called. These subroutines are described in Ref. /9/. The ohmic heating
lToss per element 1is then calculated using eqs. (46) - (48). The output
data from the second program part is XMM (mean XM value of the element),
ABB (mean magneto-resistance value of the element), TM (mean T value of
the element), DIV 2(mean current density of the element), PTV (ohmic
heating Toss of an element without taking into account that only the
fraction Mis filled with copper) and PTVG (ohmic losses produced in the
copper of an element; see relations(46)-(48)),

Finally, the PIVG values are summed up giving the total ohmic heating
losses of half a coil.

3.2. Some numerical results and comparison with analytical calculations

Temperatures profiles and the dependence of the temperature on time calcu-
lated numerically with the TEVBA program are shown in Figs. 14 - 18.
The following data are used (see page 24-25):

NWS = 1 (nuclear heating encluded)

NSP - 16 (number of coils)

NW = 43 (number of layers per coil)

FABB = 5x10_1141-m (coefficient of the magneto-resistance
term)

ALF = 1 (steel-copper ratio)

BAX = 0.437 m (axial width of the coil in parallel flank

region (x » Xg))
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BRA = 0.435 m (radial width of the coil; D in fig.1)
Wo = 127 % 106 w/m3 (nuclear heating at the inner
coil edgq) '
DHIS = 0.003 m (thickness of the high-voltage insulation;
A]H in rel. (11))
DLIS = 0.004 m (thickness of the inter-term insulation;
Ts, in rel. (12)
DSPL = 0.006 m (thickness of the spacer plate)
FL = 9.68 m'1 (nuclear absorption coefficient)
R = 100 (resudual resistivity ratio)
RHCO = 1.7 x 1078 am (resistivity of copper at room
temperature)
STR = 61.7 MA (total current of the TF system)
DELTA = 0.1 or 0.05 m (thickness of flange)
TR = 7 s (current rise time)
TF = 6.5 s (flat-top time) see Fig. 2
D = 7 s (shut-down time)
TTO = 30-80 K (stark temperature T,)
XG = 1.1 m (x coordinate of the beginning of the flange)
XS = 1.1 m (x coordinate of the tapering edge)
260 T T T T T T
240 = Fig. 14
220+ . Temperature profile
at the end of the
200 current pulse
(t = 20.5.5)-for
B an initial temperature
160 T0 = 40 K
140 B
To= 40K (start temperature)
120k — thickness of the flange Scm
- -~ thickness of the flange 10cm
100l R=100;a=1; t=205s B
________________ o
80 7
1 R e >
3
[._ﬂ | 1 1 1 1 1
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300 n
Fig. 15
2801 E Temperature profile
at the end of the
2601 To =80K (start temperature) m
—— thickness of the flange Scm current pulse
240+ - - - thickness of the flange 10cm - (t=20.5s) for
‘ R=100;a=1; t=205s Fr sl
i an initia
= temperature
200~ T0 = 80 K.
180
1601
1401
120+
100}

80 1 1 1 | 1 |

In Figs. 14 and 15 the temperatures along the inner edge, the centre line
and the outer edge (curves 1, 2 and 3) for coil with an initial temperature
T0 = 40 and 80 K are shown. The temperature jump at X

1.1 m is produced
by the flange. The jump of the temperature at x = 1.1 m is governed by the
thickness of the flange. Although the current density is constant across
the coil winding area, there are large temperature differences between the
inner and outher edges. They are produced by the enhanced resistivity at
the inner edge due to the magneto-resistance and by the nuclear heating,
which decrease exponentially across the winding.

With decreasing initial temperature T0 the temperature difference AT
increases as shown in Fig. 16b, because the influence of the magneto-
resistance and the nuclear heating increases. The maximum temperature
Tmax (temperature at point A for t = 20.5s) strongly decreases with
decreasing T0 (see Fig. 16a). The temperature rise of a conductor at the
locations A, B, C, D, E, F with an initial temperature of 40 K and 80 V

is shown in Figs. 17 and 18.
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The results of Figs. 14 - 18 were calculated with a residual resistivity
ratio R = 100. This value is characteristic of commercial copper . The
influence of R on the maximum temperature Tmax and AT in the coil throat
are shown in Figs. 19 and 20. With decreasing R the maximum temperature
increases; the temperature difference AT across the winding in the coil
throut decreases with decreasing R (increasing defect concentration).
Both figures show that the influence of R increases with decreasing
initial temperature TO.

In Fig. 21 numerically and analytically calculated T values are compared.
The curves correspond to temperatures of a conductor at point A with

nuclear heating. The difference in the maximum temperature at the end
of the current pulse is 2,8 %.

In designing a toroidal magnet system the ohmic Tosses and the total
energy due to the ohmic Tosses deposited in the system during the current
pulse are important parameters.
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Dependence of the maximum
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The dependence of the ohmic losses on the time are shown in Fig. 22.
The initial temperature varies between 30 and 80 K. As a consequence of
the large increase of the electrical resistivity the ohmic heat losses
strongly depend on the initial temperature. For the results of Fig. 22
the flange thickness is 10 cm. The maximum electric power for compensa-
ting the ohmic losses as about 170 MW for a Tiquid-N,-cooled system

(T0 = 80 K).

The energy deposited in the TF system produced by ohmic heating is given
by
20.5
Egy * [Py, dt
2 (52)
The energy EOH has to be cooled away in the time interval (pulse cooling
time) between two pulses. A pulse cooling time of 1 h is envisaged. As
Fig. 23 shows, the energy EOH strongly decreases with TO. Reducing TO
from 80 K to 40 K produces a reduction of EOH-from 1.37G) to 0.43°GJ
(~ 30 %).
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Fig. 22 Ohmic heating losses for the TF coil system during the current
cycle. The initial temperature T0 varies from 30 K to 80 K.
The Tosses are calculated with (-) and without (--) nuclear
heating; the resistivity ratio R = 100, the steel copper ratio
a = 1 and the flange thickness d = 0.1 m (see Fig. 12b)

The electric power necessary for cooling the TF coil system during 1 h
depends on the energy deposited in the coil winding and on the efficiency
of the refrigeration system. The efficiency is characterized by the

ratio Pe/PC, where Pe stands for the electric power and PC stands for

the power "cooled away" at cryogenic temperature TO. P_. is given in our

C
study by PC = £/3600, where £ is the energy deposited in the magnet system.

The ratio Pe/PC is given by
3 —-1H4
‘PEIPC = 5.0’5-'10' "0
(see figure on page 6 of Ref. /4/).
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Fig. 23

Total ohmic heating energy
deposited in the TF coil
system after the current
cycle versus the initial
temperature TO.

‘Fig. 24

Electric power Pe for the
refrigerator, for cooling the

TF coil system, versus the

initial temperature To' Cooling
time one hour.

In the curves a and b only the
ohmic Tosses fzjz are considered.
The difference between curve a

and b is that for curve b the
additional heating by the nuclear
energy is taken into account.

Curve c was calculated, taking into
acount in addition to the ohmic
losses the nuclear energy deposited
in the TF coil system see eq. (55)
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With relation (53) the electric power is calculated for the refrigeration
system necessary to cool down the TF system during two pulses to the

inital temperature TO.(The energy deposited in the TF magnet system as

a function of T0 is given by Fig. 23.) The results are shown in Fig. 24.
Curve a shows the electric power for the cooling system as a function

of TO for the TF system, where the cooling power PC is calculated from
curve a of Fig. 23 as Pc(To) = EOH (TO)/3600. Curve a in Fig. 23 shows

the time-integrated (over the current cycle 0 <t ¢20.5) ohmic losses for
the whole TF coil system for the case where the nuclear heating is not
taken into account [q,; 0 in eq. (3')] . Curve bof Fig. 24 shows the
electric power calculated from the time-integrated ohmic losses (EOH values
of curve b of Fig. 23) for the whole TF coil system, but, unlike in curve a,
with allowance for the influence of the nuclear heating. The increase
results from the increased temperatures (see, for instance, Fig. 9),

which produce higher ;»c(T);i2 values. Curve c of Fig. 24 was calculated

from the EOH values of curve b in Fig. 23 (including nuclear heating)

and the nuclear energy deposited in the TF coil system. Pc for this case

is given by

R =L Epu(To) + E,  1/3600 (54)
with

El'h“ = f fqn,f"“..dv
tg vV
(tB = burn time; V = volume of the TF system ). The En value was

¥
found to be 216 MJ.

The curves of Fig. 24 have minima. These minima correspond to optimum
temperatures T0 if the electric power for the cooling system is considered.
The optimum initial temperature T0 is 44K for pulses without nuclear
burning (curve a). If nuclear heating is included the optimum value

for T0 is 70 K.



References

/1/

Fef

/3/

/4/

/5/

/6/

e

/8/

/9/

/10/

/11/

/12/

U. BroBmann, J.E. Gruber. W.D. Haubenberger, 0. Jandl, M. So11,
B. Streibl: "Tape-wound Toroidal (TF) Magnet for ZEPHYR", Max-
Planck-Institut fiir Plasmaphysik, Report IPP 1/176 (1979)

M. S611: " Bending-Free Shapes for Toroidal Magnet System", Max-
Planck-Institut fiir Plasmaphysik, Projekt Systemstudien, Interner
Report No. 19

U. BroBmann, J.E. Gruber, W.D. Haubenberger, 0. Jandl, F. Mast,
M. S611, B. Streibl: " Toroidal Field Magnet for ZEPHYR; Tape and
Bitter Concepts Conductor and Insulation Materials", Internal
ZEPHYR Report

A. Elsner: "Gedanken zur Kinetik und Thermodynamik der Verdampfung
von LN2 bei der Abkiihlung der ZEPHYR-Magneten", Max-Planck-Institut
flir Plasmaphysik, Report IPP 1/183 (1980)

H. Brockmann, H. Krause, U. Ohlig: "1D Radiation Analysis for the
Fusion Ignition Experiment ZEPHYR", Max-Planck-Institut fiir Plasma-
physik, Report IPP 1/173 (1979).

H.S. Carslaw, J.C. Jaeger: "Conduction of Heat in Solids", Oxford
University Press 1976

M.B. Kasen: "Mechanical and thermal properties of filamentary-rein-
ford structural composites at cryogenic temperatures", Cryogenics
(1975) 337

M. So11, 0. Jandl, M. Gorenflo: "Mechanical Stress Calculations for
Toroidal Field Coils by the Finite Element Method", Max-Planck-In-
stitut fiir Plasmaphysik, IPP 4/142 (1976)

H. Gorenflo, 0. Jandl: "Calculation of the Nodal forces in the 20-node
Isoparametric Three-Dimensional Solid Element by the SHAPE Computer
Program", Max-Planck-Institut fiir Plasmaphysik, Report IPP 4/167 (1978)

H. Gorenflo, 0. Jandl: "Mesh Generation for the 20-Node Isoparametric
Solid Element by the Computer Program MESHGEN", Max-Planck-Institut
flir Plasmaphysik, Report IPP 4/148 (1977)

"Handbook on Materials for Superconducting Machinery", Metalls and
Ceramics Information Center Battelle (1977)

BBC; private communication




Appendix I

Material data

The material data used for this study are shown in the following figures.
Figure Al shows the specific resistivity of copper with a residual
resistivity ratio R = 100 and R = 30. The resistivity at point A

(see Fig. 8 or 14) produced by the magneto-resistance PeB is plotted

in Fig. Al. It is obvious from Fig. Al that for Tow temperatures T< 40 K
the magneto-resistivity is the dominant part for high magnetic induction
values (B> 10 T).

Fig. Al
10° Specific resistivity
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The specific heat functions per unit volume P"{C(T) for copper and stainless
steel S 310 are plotted in Fig. A3.They were produced from the specific heat
data c per unit mass (J/kgK) /11/ and multiplied by ¢ = 8.9 x 1073 kg/cm3
for copper and by 7.9 x 10_3 kg/cm3 for stainless steel.

The temperature profiles in electrical insulation material (Sec. 2.2) were
calculated by using the material data (Orlitherm) from Fig. A3 and A4.

The electrical insulation material Orlitherm was proposed by the firm of
BBC/12/ in a study for the ZEPHYR toroidal magnet system.
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Fig. A4 Thermal conductivity A(T) for electrical insulation materials.
Curve a shows A (T) of epoxy filled with 16 % quartz /7/ and
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Fig. A5 Dependence of specific heat
(values from BBC /11/ and the
literature /7/ )




Appendix II

"Heat equation" for a compound conductor

In adiabatic approximation the temperatures are calculated by

LR "W i

2t [ Poa € (A1)
In eq. (Al) it is assumed that the material heated by j@jz and q is
isotpoic and homogeneous.
We discuss in this appendix the changes which have to be carried out
with respect to eq. (Al) if a compound conductor is used.

/ Fig. A6
1 steel Geometrical arrangement of a
’// compound conductor consisting

Q "2} o,

copper

The heat absorbed by the conductor-assuming constant temperature in the
conductor - is

i T
Qg fcM abldt + ¢ [c(T)abyL.dT
To T (A2)

Using the definition o = bz/b1 (steel-copper ratio), b1 and b2 can be ex-
pressed by

b, = blt112) s+ by &-blc142)

) (A3)
and Q by
-
Prac-Ce 4 PrngCs X
Q= Vf[ ?:11'-!.) : CA4) ]CIT )
To (Ad)

where V = a*b-1.
The specific heat for the compound is found from A4 to be

C= griCelCasd) + g, tsfcata)
¢ ¥ Sems s (h4)




The specific resistivity of the compound conductor is ( fbs))jic )

‘P-. z fGCC"H'd‘.] : (AS)

The term = f.jz/gmc in eq. (Al) is changed for the compound conductor ;;0

1 _ fec (1) q

Jlﬁ#_ = Y,

S Frmc -Cpet Purg Cs (A6)
where j is the current density for the whole compound conductor with the
cross-sectional area a-b.

To find an analytical approximation the "material function" f =ji/jL;c
was calculated for a =0, o = 1 and a = 2 (see Fig. 3). The expression

f —tue
S Cc WPpns s (A7)
was used. The coefficient ( 1 + a) was taken into account for calculating
the current density jo =J (1 + a) in the copper (9), (10) in the flat-top
phase. Figure A3 shows that 3_“-5‘0) x g_“-c‘a') ; the material function
f hencecan be approximated by f3 ( see relation (6)).

fec A8
{- Omc-Cc 1421 (A8)
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