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Abstract

More refined numerical calculations of trapped-ion anomalous transport
in a 2-D slab, trapped-fluid model suggest an anomalous diffusion
coefficient D 22 3.5 x 10-2 Jo 0\2 JJ:W for a tokamak plasma with-
out shear. This supersedes earlier results. The new formula is inde-
pendently confirmed by two different analytical calculations. One of
them uses a similarity analysis of unabridged Kadomtsev-Pogutse-type
trapped-fluid equations and the "multiperiodic" spatial structure of the
saturated trapped-ion wave found in both the earlier and the recent
numerical calculations. The other calculation yields a class of exact
nonlinear solutions of the trapped-fluid equations. The new shearless

result is used to derive the anomalous diffusion with shear effect by a

method described in an earlier paper. The new transport formulas
have been numerically evaluated for several tokamaks in an IPP report,

where the results are shown in graph form.



1. INTRODUCTION

Earlier numerical calculations by SAISON et al. (1976, 1978) of the
anomalous diffusion coefficient D caused by the dissipative trapped-ion
instability in a (toroidal) plasma without shear, approximated by a

slab model, gave a BOHM-like diffusion formula. Recently, this
earlier shearless result was used to derive an anomalous diffusion formula

that takes shear effects into account (SARDEI and WIMMEL, 1979).

Now, more refined numerical solutions (SARDEl and WIMMEL, to be
published elsewhere) of the unabridged KADOMTSEV-POGUTSE trapped-
fluid equations (see SAISON et al., 1978, and further literature cited
therein) in the form of an initial-value problem with appropriate
boundary conditions have provided a more accurate result for anomalous
transport without shear: see Table |. As in the earlier calculations,

the time-asymptotic plasma state shows a coherent nonlinear wave-type

solution (rather than turbulence). The existence of a saturated state is
guaranteed by the use of unabridged trapped-fluid equations (see
SAISON et al., 1978). From Table | the following average scaling

can be deduced for the range 0.5 < m < 6.0:
marg
-2 2
D~ 3.6x10° & v, a© (1.1

where cgs units are used, a is the minor plasma radius, V: is the

effective collision frequency of the trapped ions, i.e.
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Y, ® Y. /‘So ) (1.2)

Y;. being the 90° Coulomb collision frequency, and go is the fraction
of trapped particles in equilibrium. The value l{-’/l)e = 1.17 x 10_2
was used in the calculations; this is valid for a deuterium plasma with

T. = T according to BRAGINSKII (1965). The quantities m
i e marg

defined in eq. (1.4), and ));’/))e are the only relevant dimensionless
equilibrium parameters, as is shown in Sec. 2. Moreover, o arg is
an approximate expression (valid for ¥; << Y, ) of the marginally
stable mode number m . The new diffusion coefficient of eq. (1.1)
is independent of the magnetic field strength B. From this new shear-

less result the corresponding new formula for anomalous diffusion in a

plasma with shear can again be obtained by the general method of

SARDElI and WIMMEL (1979). This derivation will be done in Sec. 4.

The other main subject of this paper is to confirm the new shearless
formula, eq. (1.1), by two independent methods. This is done in
Secs. 2 and 3. The first method (Sec. 2) combines a similarity
analysis of the unabridged trapped-fluid eqructions
(see SAISON et al., 1978) with a simple property common to the
earlier and the recent numerical solutions. The scaling of eq. (1.1)
follows. The "simple property" means that the saturated trapped-ion

wave pattern is nearly "multiperiodic” in the ignorable y-direction of



the slab model used (see Fig. 1), with a dominant wave number m

that, for broad-spectrum initial conditions, is given by

m X 4m ; (1.3)

dom marg

with

1/2
mmc:rg =b (J)p_)/;_) /(271'-' \70) . (1.4)

Equation (1.3) holds for mmorg}" 1/4. "Multiperiodicity” means

that the wave pattern has several (more than one) periods in the
y-direction, the fundamental period b’ being given by b’ = b/mdom< b,
where b is the extent of the slab in the azimuthal y-direction. In
addition, ), is the effective collision frequency of the trapped

electrons, and 9, is the trapped diamagnetic drift velocity, viz.

"9, =(5OCT)/[2eBY;,V(1-SO)J>O} (1.5)

where gaussian cgs units are used, T is the temperature in

0, 0 . g . .
erg,r =n /nx is the scale length of the radial density profile
of the trapped particles (subscript x denoting the radial derivative),
and the remaining notation is standard. The equilibrium parameters
in the formulas for Y., Y, and W must be understood as averages
over x, so that Y, JJe , and v, are constants. The quantities B

and 80 are taken as constants too.

The second method of confirmation consists in constructing exact

nonlinear solutions of the unabridged trapped-fluid equations



(see SAISON et al., 1978) using the ansatz
j 0 § 4 Ky —cot = of ()
mt = () + m? (x) + mé (x) cos |[Ky- P
for the trapped-particle densities, with K =27['|m/‘@v. These solutions
represent stationary nonlinear waves similar to those developing at late
times in numerically solving the initial-value problem with initial
perturbations monochromatic in my. From these solutions an analytic

expression for the accompanying anomalous diffusion coefficient can

be obtained (Sec. 3).

We should also explain why the earlier calculations (SAISON et al., 1976,
1978) gave a different result. Common to the earlier and recent cal-

culations is the use of a 2-D slab model, with 0 < x £aq,0 < y < b,

x being the radial and y the azimuthal coordinate; and in both instances

the initial-value problem for the unabridged trapped-fluid equations

[see SAISON et al., 1978] was numerically solved with the appropriate

boundary conditions (see Sec. 2) and using LELEVIER’s first-order,

"one-sided", explicit difference scheme, which is a specialization of
the CARLSON scheme (see RICHTMYER and MORTON, 1967)." The

recent calculations differ in that they employ an additional (GAUSSian)

spectral cut-off in both Kx and Ky' set b = a instead of b = a, use

a finer y - grid for large values of mmurg and m , and evaluate a

dom

diffusion coefficient D averaged over x, y, and t rather than over y

only and taken at the special values x = a/2, t Even though

= f.. .
final

the unabridged trapped-fluid equations used by us exactly provide for




saturation of the density amplitudes (see SAISON et al., 1978), an
additional cut-off (or damping) at short wavelengths is advisable
because the drift approximation breaks down there, the linear growth
rate increases indefinitely with Ky' and without cut-off dis-
continuous solutions would not be excluded. We chose a mathe-
matically simple cut-off procedure, rather than one that would
quantitatively represent an actual physical process. This seems
appropriate because the anomalous transport proves to be mainly
produced by long-wavelength parturbations (see also Appendix C).

In addition, this approach provides the opportunity to test various
cut-off and damping procedures as to their consequences for numerical
stability and convergencé. From our calculations and tests we con-

* clude that the deviation of the earlier numerical results (SAISON

et al., 1978) from the present more refined ones stems mainly from
the lack of a cut-off in the earlier ones and from the fact that the
numerical grid was too coarse for large values of M om and m

marg’

For a more detailed discussion see Appendix C. It should also be

noted that the unabridged trapped-fluid equations that we use avoid

three severe approximations employed in the original work of

KADOMTSEV and POGUTSE (1970). These approximations (not used
by us) destroy the saturation of the instability and remove an impor-

tant symmetry of the equations (see Appendix C).

It could be argued that anomalous transport should be determined from




nonlinear kinetic equations rather than from a fluid approximation.

In Appendix C we point out, however, that this would be beyond
present means of research. Neither any relevant numerical nor
reliable analytical calculations of this kind can now be made. An-
other point concerns the existence of non-fluid-type varieties of

the trapped-ion instability for which magnetic drifts are destabilizing
and hence essential (see TAGGER et al., 1977, and TANG et al.,
1977). Again, there is at present no adequate way of dealing with
these in the nonlinear regime, and it appears that the nonlinear
behaviour of the simpler; fluid-type instability ought to be investigated
before one attacks these non-fluid-type instabilities (see Appendix C).
Whether it would be a sound approach to modify the trapped-fluid
equations by adding terms that imitate microscopic effects seems to be

a complex mathematical question and remains to be seen.

Granted that several microscopic processes are missing from the trapped-
fluid equations used by us, the mathematics by which these equations
are solved is correct. This is confirmed by the agreement of the

results of three different methods, namely numerical solution of the

initial-value problem, similority analysis, and construction of particular
analytical solutions. Hence we argue that our results are the only ones
in trapped-particle anomalous transport theory that are based on a
systematic and consistent mathematical analysis. Clearly, the basic

equations, i.e. the physics involved, should be improved in the future, -



if possible. However, in view of the complex mathematical problems
involved it would have been unreasonable not to begin research on

the basis of the simplest set of pertinent equations that is available.




2. THEORETICAL DERIVATION OF THE TRAPPED-ION ANOMALOUS

TRANSPORT WITHOUT SHEAR (SIMILARITY ANALYSIS)

The unabridged KADOMTSEV-POGUTSE trapped-fluid equations (see

SAISON et al., 1978) will be used in the form (j=1i,e):

~ s Ged reg. ~e) = 2.1)
rni +vj%4 + 9% Oy +A("ﬂ->¢%} i ) 0 (

with the anomalous diffusion coefficients Di = for trapped ions and

electrons respectively, both being given by the ambipolar formula

S A
pr A Loy, > s

]

(see WIMMEL, 1976a, and SAISON et al., 1978). Here %#(x,y,1)

&

are the trapped particle density perturbations, the subscripts x,y,t
designate derivatives, Q = - &%, n°(x) is the trapped-particle den-
_— — &- /NP = : .

sity in equilibrium, GOg= n"/N" = const is the relative number of
trapped particles in equilibrium, the pointed brackets denote the aver-

age over x, y, and a suitable interval of t, and the additional constant

A is defined as

cT T=_2________TQ'_E
2e BN (1-4,) } T+

NP being the x-averaged total plasma density of trapped plus untrapped

) (2.3/4)

A =

particles (of one species). The other quantities were defined in Sec. 1
or are standard. Contrary to some of our earlier work, D is defined

relative to VNP rather than Vno, and the sign of A has been defined




differently, viz. '\):3> 0. Equation (2.2) is an approximation that holds

if Vv, << })e (see Sec. 3).

By passing to dimensionless quantities we carry out a similarity analysis
and obtain another formula for D. The transformation used is

—A
‘t =Y, T ) X = ijf ) Ej = &%’11/ J

i = (ofn)o ()4 (§0), =
g = (o/n) () o (5ou7)

where o n® (%)%o(%) = const is the scale of the radial density

X
variation in equilibrium. Equations (2.1) and (2.2) are then transformed
into

pd +~’-}* +—;; n ( if*'m f*n}*j) i

and

2
D x - 50 Qﬁ:}o &6, &y > . 2.7)

The boundary conditions (see SAISON et al., 1978) require periodicity

in y, with the period b, and

IF\_J()(:O) = /P{ﬂ(x:a) =0 (2.8)

for all y and t. This transforms into periodicity in UK with the period 1,

and

pi(5=0) = pi(5=4) =0, =z
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Consequently, the solutions )A? depend on 5,‘}’1, T, the initial

conditions, and the dimensionless equilibrium parameters
cy =¥ /l’e ] C, = /(l"& P’) : (2.10)

If the dependence on the initial conditions is irrelevant for late

times, it follows that

D~ o, % g(cs <) 2.11)

or, equivalently,

Yy
D= 50 Y o 94 (';7& ) ’mmw), (2.12)

where M narg is defined in eq. (1.4). The question of the irrelevance
of the initial conditions was discussed ealier (SAISON et al., 1978;
SARDEl and WIMMEL, 1979). The numerical calculations support the
assumption that D is approximately independent of initial conditions.

In comparing eq. (2.12) with numerical results one should also consider
the spectral cut-off used in the more recent calculations. This cut-off
was employed in order to regularize the trapped-fluid equations at short
wavelengths. The cut-off was applied to the time-increments of the
trapped-particle densities. In order to derive eq. (2.12) it has been
tacitly assumed that D does not noticeably depend on the cut-off half-
widths over Kx and Ky' if these half-widths are reasonably chosen. We
show in Sec. 3 that at least the Ky cut-off does not influence D in the
case of solutions that are monochromatic in Ky' A more general inves-

tigation of this point is not practical with present-day computers, but
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there are indications that the dependence of D on the cut-off may

be weak.

It is possible to eliminate the dimensionless parameter mmorg from
eq. (2.12) and arrive at a more explicit formula for D. In fact,
the solutions to the fluid equations and the diffusion coefficient
must remain virtually unaltered when the original y-period b is
repiaced by the approximate fundamental period b’ = b/mdom of
Sec. 1, with . given by eqgs. (1.3) and (1.4). In eq. (2.12)

L L then replaced by

- ~ -'j_yi__ 1
mavg = Mmasg 1T = TQ

r

) is a function of ].J./]Je alone. The diffusion
marg L

and 9y (Ci’ m

coefficient now assumes the final form (for m s 1/4)
marg

A ))‘-'
Do dv oo a(5). 214

This confirms the scaling of eq. (1.1). We note that D is independent
of the magnetic field B, the azimuthal beriod b, and the |en'gfh scale
o of the radial density variation. Of course, the existence conditions
in parameter space of the fluid-type trapped-ion instability (see Sec. 4
and Appendix C) must also be considered. For instance, when

ro>o, with the other parameters kept constant, then m the

marg”’
mode Ffequency and wave number formally go to infinity. The

condition Ky R;’<7t' (Ri being the ion gyro-radius) is then violated;

the fluid-type instability disappears, and the pertinent anomalous

= . (2.13)
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diffusion vanishes. But within the existence range of the fluid-type
trapped-ion instability (see Sec. 4 and Appendix C) the shearless D

is indeed independent of B, b, and r . even though the independence
of r, may seem somewhat paradoxical. It should be noted that the
final result of eq. (2.14) only uses the "multiperiodicity" of the
solutions (see Sec. 1); a sinusoidal dependence on y is not required.
It should also be noted that the scaling of eq. (2.14) is compatible
with the low=-8B, collisional, quasineutral scaling derived by CONNOR
and TAYLOR (1977), if Q0 and ¥; /b, are introduced as additional

parameters.
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3. EXACT ANALYTICAL SOLUTIONS OF THE NONLINEAR FLUID

EQUATIONS

This method employs more assumptions than the method of Sec. 2, but
the results also contain more detailed information than eq. (2.14).

In particular, it is possible to take the spectral cut-off in the y-direction
explicitly into account and show that it does not enter the formula for
the anomalous diffusion coefficient D. As in Sec. 2, shear effects are

omitted here.

We start with the unabridged trapped-fluid equations (see SAISON et al.,
1978) supplemented by the K)’ cut-off, viz. (j=1i,e):

~ o~ ( < _ e . 9) _b 3.1)
n, +l; yym® +A My Ny = My Ny, y
where ]-:} is the (GAUSSian) spectral cut-off in the y-direction, and

nf = n°+ At are the trapped-particle densities. Equations (3.1) can be

i e .
expressed by gi n -n alone, viz.

Gue +(veenly g + wh [T - v (n vl

~1
+Ar {3»’; Qut S’g[; S’xf}‘—'o- (3.2)

In order to solve eq. (3.2) for late times, we use the stationary, mono-

chromatic wave ansatz

g = 94(x) + 9, (xJ-cas[K(wé—uU - (F(x)} , (.9
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where (W= Ku = const, K=?7r'm/ﬂr, and m is an integer. The
cut-off factor of the mode m is denoted by 9y with g, = 1 for m = 0.
Assuming nz, '\3:), YV;, Vp to be constants and substituting eq. (3.3)

in eq. (3.2) yields three equations for the case g?_ =+ 0 , viz.

Yo = V¢
w = — 8%‘0‘0 W ) (3.4)

2
Y, = Vs VeVe [ Ve +e
_C_l__E_«i_: -2 )] - = (-3'———) / (3.5)

d % VetVy ¥ W, \ Yo~V
- A Uy + L,

dgw S TR AN IR
X 6 e "o

with dgd /c{x“= const, &JO:K\&O. Here one has 9, = A'}’L; <, O)
the sign differing from that of eq. (1.5). These equations are exact in
the sense that the nonlinear terms of eq. (3.2) do not produce second
harmonics from the ansatz used. Equation (3.5) can be written in another

form by using the exact expression for the marginally stable mode number

(see SAISON et al., 1978), viz.

A va; ) Ve +V. (3.7)

W y
R TS X
Equation (3.5) then becomes

A 2
dgy  Ya-a m® 194 = Mmary (3.8)
Te Vel ¥ m ’
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In the case ¢, = 0, eqs. (3.4) and (3.5) do not apply, and eq. (3.6)

assumes the alternative form

982 Gw¥ite
' % AKw 5

On choosing 31():’) antisymmetric and gz(x') symmetric with respect to

(3.6q)

x = a/2, one gets for 0 < x < a

| d o -
gi'(x) = o\z'i -(X‘— —2-) (3.9)

and
4
g, (x) = [C x(a-X)jl z } (3.10)
with
/s A -
TS AL,

The boundary conditions require g: 0, nj' vVi=0atx=0and x = a.
These boundaries are then characteristic surfaces, the fluid equations
leaving M,{,, undetermined. This permits one to put ?4 ey ?2: 0 at

the boundaries. Then eq. (3.6a) is satisfied at the boundaries. The
function ?1 (_x‘) is discontinuous at x = 0 and x = a. Our numerical
results make it probable that an additional Kx cut-off would smoothen

out these discontinuities of ?1 . The solution found does not determine

the values of K, and hence of m, W, W. Also T(x) is left undetermined.

In fact, the dominant wave vector K (and, hence, also m, W, w)

appears to remain variable in the numerical calculations, too; in the sense
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that K can be influenced by the initial conditions. For broad-spectrum
initial conditions the dominant m satisfies the relation m & 4mm0rg'

but monochromcﬁc initial conditions allow the dominant m to deviate
from this standard value. It should be noted, by the way, that the

above solutions are independent of the cut-off factor 9 except

eq. (3.4) for the phase velocity u.

From the above solutions one can then derive the respective ambipolar

anomalous diffusion coefficients D. One has the definition
| p
D= - <>/ Ny 52

Here ‘\__g_: = C {_Exg]/Bz ) with '\B’X'=-A?H_ because

of quasineutrality (see SAISON et al., 1978). The densities nf are

given by
v a4t ("i + Y 53) (3.13)
Mmh = Nn = 3% Y‘E e J ;
) 0 4. -1 . \

The pointed brackets in eq. (3.12) average over y and t. On using

the solution for 8 one obtains

' S wr 91 (x)
j)(x) = 5 'ye+ VL (Mox*)z )

with Wy = K‘Uro . Substituting ‘?2 and doing an additional average

(3.15)

over x finally yields
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A 2
D _ Cg; Q?‘ 2 Ve 1 _ fm/\mnfg
12 vty m : (3.16)
Contrary to the analysis of Sec. 2, here m and m (or m )
marg marg
: - 1 a
are completely arbitrary, i.e. mmcrg> zorm=my = 4mmcrg

are not required. As in an earlier paper (WIMMEL, 1976a), unstable
modes, with m > [?.'mcrg’ yield outward diffusion (D > 0), while
damped modes, with m < %marg, formally yield inward diffusion

(D 0). For m>> mmarg’ V<< Ye , eq. (3.16) gives

Dx ..i_d'z_. CS\O Vi Q?' , which agrees with the numerical scaling

of eq. (1.1) and the theoretical scaling derived in Sec. 2. The
absolute value of D here derived is about twice the value determined
from numerical calculations (with broad-spectrum initial perturbations).
This relatively small discrepancy may stem from the assumption of
monochromaticity, the lack of a Kx cut-off in the analytic derivation, 1
and numerical grid effects. It should be noted that the diffusion
coefficient of eq. (3.16) is independent of the Ky cut-off factor 9, ‘
This supports the omission of cut-off effects in the similarity analysis

of Sec. 2. To check for consistency we consider the case My = V, »

The instability is absent and D must be zero for V= Yp . In

eq. (3.16) r?]morg and the unstable m > amorg go to infinity for

V: > VY, [see eq. (3.7)] . The existence condition KH RL< 7 of

the fluid-type trapped-ion instability (see Sec. 4 and Appendix C)is

then violated, whence D = 0. This argument resembles that on the -

independence of D (Sec.2). Equation (3.16) is further discussed in

Appendix A.
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4. ANOMALOUS TRAPPED-ION TRANSPORT WITH SHEAR EFFECT

The anomalous trapped-ion transport without shear can be modified,

by a general method presented earlier (SARDEI and WIMMEL, 1979),

so as to include shear effects. This will be done for the new result

of eq. (1.1) in this section. Comparison with experiments should then
be done using the modified formulas  egs. (4.1) and (4.2) below

In applying the following results to experiments one should also remember
that the anomalous trapped-ion diffusion is always ambipolar (see SAISON
et al., 1978) so that an anomalous trapped electron diffusion equal to

that of the ions is always present.

The method mentioned above consists in replacing in the shearless
formula, eq. (1.1), the minor radius a by the distance Aa of two

properly chosen mode-rational surfaces (where Kl\ =0). This yields
='D 2
D, = 3.5x10 9, Vi (Aa) ) (4.1)

where Ds is the anomalous diffusion coefficient with snear, and Ao

is given (see SARDElI and WIMMEL, 1979) by

Do = man {O‘i 19 (‘rﬁ //W‘o\m)} | 4.2}

with m defined by eq. (1.3), and r_ = q/q" = length scale of the
dom q

radial variation of the safety factor q = 27/L . The replacement of

a by Ao takes into account the effective radial localization by strong

Landau damping of the dominant trapped-ion modes in a sheared toroidal
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field (see GLADD and ROSS, 1973, and SARDElI and WIMMEL, 1979).
The validity of this method was discussed extensively by SARDEI and
WIMMEL (1979), and this discussion will not be repeated here. However,
the reader is reminded that in evaluating eqs. (4.1) and (4.2) one must
also consider the existence conditions for the fluid-type trapped-ion insta-
bility (see Appendix C). These are: 27['2/}" e Cd‘g'i' J W <L Cd'g"j |
K%‘ R-L< ?t',cmd Kx REL <, i.e. at least RBL < ACL. Here
w‘&'j' are the bounce frequencies of the trapped ions and electrons, W= (J,
is the dominant mode frequency, Ri is the ion gyro-radius, and RBi is the
trapped-ion banana width. If not all existence conditions are satisfied
for m = M 4om’ then, as an approximation, one can put Ds = 0. By this
device one neglects the possibility that other unstable modes, with
mmcrg< m < 4mmc1rg’ might take over and yield non-vanishing anomalous
transport. This does not provide a general problem because the transition
to D5 = 0 often takes place in a parameter range where the anomalous
energy transport caused by Ds is smaller than the neoclassical energy
transport by the ions and/or the anomalous energy transport by electrons.
In using the fluid equations and the above conditions one also neglects
possible contributions of modes that may exist outside the parameter range
determined by the above conditions (see Appendix C). As an additional
point, KADOMTSEV and POGUTSE (1970) indicate that a transition to the
collisionless trapped-ion instability should occur whenever M, < }(‘3'0; or,
i/2
equivalently, m2> L '())a /)J;,) . A BOHM-type diffusion is

suggested for this case, but trapped-ion depletion may well enforce a

lower diffusion level (see WIMMEL, 1976b,and Appendix B).
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Let us consider the three cases following from eq. (4.2). When

Ao = M {"'§ = O , then eq. (1.1) is recovered,
with D replaced by D_, . When Ao = Min {} =,
then
D, = 35> 1072 S, wr;—, i3

which is usually similar to eq. (1.1). However when

Aq. - {..,i QI//W\ , then substituting B e from

eqgs. (1.3) and (1.4) and putting E'—Z'Trf leads to

_ 2 e
‘DS% ~ 2.2 % 10 2 J, (—ﬁ—) v, (4.4)

This formula applies in a wide range of equilibrium parameters, e.g.

forr < aand m > 0.25, whence m > 1. It contains the
q marg dom
z
factor U[,/.UQ , which recalls the formula by KADOMTSEV and
2
POGUTSE (1970), viz. DKPz(CS\O/Z)'('O'o /er). We want to
emphasize, though, that eq. (4.4) differs from DKP in these five
respects:
. . . 2
a) Equation (4.4) contains the geometrical factor (rq/r) . Such an
additional factor is necessary in order that the formula be compat-

ible with the trapped-fluid equations and the necessary boundary

conditions.,

b) The numerical factor in eq. (4.4) is much smaller than the one

occurring in DKP'

c) The physics involved in deriving eq. (4.4) (boundary conditions,

shear effect) is different from the one used in deriving DKP'
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d) Equation (4.4) is only a special branch of a more general formula

[eas. (4.1), (4.2):[.

e) Via eq. (1.1), eq. (4.4) is derived from extensive numerical
calculations; and it is confirmed by the two independent theoretical

analyses of Secs. 2 and 3.

It sh‘ould be noted that the fact that the numerical factor in eq. (4.4)

is small does not, by itself, make traﬁped-lon transport, with shear
effects included, irrelevant. Recent studies by COPPl and MAZZUCATO
(1979), and PFIRSCH et al. (1979) have shown that the anomalous energy
transport by electrons can also be expected to be smaller than previously
anticipated (in the case of large tokamak machines). An additional

discussion of equivalent energy confinement times as they follow from

eqgs. (4.1), (4.2) is given in Appendix B.




22

5. CONCLUSION

Improved results for the anomalous transport in tokamaks caused by the

dissipative trapped-ion instability have been derived. Three independent

methods have been used in order to arrive at reliable and consistent
results, viz. numerical solution of the initial value problem, similarity
analysis, and construction of special nonlinear solutions. As a basic

set of equations, unabridged trapped-fluid equations (see SAISON et al.,
1978) were used. The present results are the final ones of a series of
more preliminary results. To date, essentially four different nonlinear
fluid theories of the anomalous trapped-ion transport exist that are all
based upon the trapped-fluid equations, originally proposed (in an
approximate form) by KADOMTSEV and POGUTSE (1970). These theories
and their authors are listed in Table I, where the resulting anomalous
diffusion coefficients have been classified according to their B-dependence
and the absence or presence of shear effects. Theory N2 4 is the one
presented in this paper. We have listed only 2-D fluid theories (without
and with shear effect) that lead to simple scaling laws for D. " The 2-D
work by COHEN and TANG (1978) is not listed because the only scaling
law they give holds only in the marginally unstable case and yields an
infinitely large diffusion coefficient in the limit of vanishing weak Landau
damping (i.e. for n: = C[DM.T" /ol by NP-—% -3%—) See SARDEI! and

WIMMEL (1979) for a more extended discussion. See also Appendix D.
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In an IPP report (WIMMEL, 1980) the trapped-ion anomalous energy
transport with shear has been evaluated numerically and compared
with anomalous energy transport by electrons (see COPPl and
MAZZUCATO, 1979, PFIRSCH et al., 1979) and neoclassical ion
heat transport for several tokamaks. Preliminary calculations showed

the following:

a) In the PLT heating experiment (EUBANK et al., 1979) the
trapped-ion anomalous energy transport is smaller than twice
the neoclassical energy transport and equals about 5% of the

anomalous energy transport by electrons.

b) In JET the trapped-ion energy transport is generally larger than

the anomalous energy transport by the electrons.

c) In INTOR the trapped-ion energy transport allows relatively

large values of T_ and N‘C’E and does not, by itself, prevent

E

ignition of the plasma.

The correctness and validity of our results and methods are carefully

discussed in Appendix C. Apart from the quantitative aspect of

these results there are two points of more general import. Firstly,

our results rigorously refute the widely used and believed approximation
4 :

formula D NC}:/K_L (see Appendix C). Secondly, they also refute

the belief that anomalous transport from the trapped-ion instability
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(or in general) are necessarily connected with "turbulence". In
our case, the plasma state and anomalous transport are determined

instead by saturated nonlinear coherent waves.
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APPENDIX A. A SIMPLE INTERPRETATION OF THE ANOMALOQOUS

DIFFUSION COEFFICIENT

The general expression for the anomalous trapped-ion diffusion coefficient

D S <?t?};> ) (A.1)

B (Ye-¥;) My

can be put in a form that permits a simple physical interpretation.

On using the quasineutrality relation

g = Z'Q__NP(/.["J_;__)__. ¢, ) (A.2)

T

¢' being the electric potential, and introducing the fact that the

time-asymptotic solutions are travelling waves (in the y-direction),

with CO/K = W, one obtains

55 5= Su_ Z(v)2> g A9

a (uz‘v;.) Ve

where W = ¢ E%/B is the x - component of the E x B drift velocity,
and 9 is the spectral cut-off factor for b(y =27T’M //@ Equa-

»e_-))'

tion (3.4) gave W =- b l

( ) gav g% ° (ya‘f‘l"{.

which yields a cut-off independent result:

> < sk <O,

Even though this formula looks similar to a random-walk result, it has

) for @ monochromatic wave,

been derived and is valid for a coherent wave pattern. Comparison

with eq. (3.16) yields

A 2
T M &
o> = g {1-(Zms) p, s
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A
which for m>> L simplifies to an m-independent expression:

2
y a
2 00— Vi Yy o (A.6)
Hence, the fact that D is independent of m (for m>> njﬂ\lmcrg)' o

and B can be reinterpreted to mean that the square-averaged -l
saturates independently of these quantities. The same conclusion

holds for the Squcre—-overcged y-derivative ofg because

A
D = < vﬁu.; <(?‘a)2> ! el

whence"

1 a’

()0 = o 25 T =
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APPENDIX B. SCALING LAWS FOR THE EQUIVALENT ENERGY

CONFINEMENT TIME

From the anomalous diffusion coefficient with shear effect, Ds' of

eq. (4.1) an equivalent energy confinement time T can be defined by
Te = (% a)/(2D). (5.1)

In order to obtain scaling laws for T ., we shall put r~r ~ a in

D, but keep b and J'o as independent parameters.

For low temperatures the existence conditions of the fluid-type insta-
bility are violated (see Sec. 4 and Appendix C), and from DS =0

one obtains 'C'E-.:. co . For higher temperatures, but with mmcrg> 4

— T' — -
one has Ds Ds3' It thus follows that “e = Tgg v with

. T8 N 82 1 - ‘SQ_
T L | —= Qa 7 . (B.2)
E3 ( o,) m ¥/2 505‘"

The strong dependence on rn/o requires that Teg be evaluated by a

- numerical transport calculation by which the density profiles are
determined self-consistently. For high temperatures, with
1
. 2 . . < .
())1. /pz) e mmcrg < 1/4, and assuming ]q\ a, one obtains

TE._ = tE'Z , with

3/2
o< e T/ )
th o N o *

This scaling is independent of B and a. Consequently, in the validity

(8.3)

range of Tk, (or ’tEi) a larger tokamak with a stronger B-field does
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- not perform better than a smaller one with a weaker B-field. How-

ever, by sufficiently increasing B and/or a one may also increase

m to fall in the range m > 1/4 so that the alternative
marg marg

scaling of eq. (B.2) again applies. The scaling of mmcrg is given

by

¥ 2 N B 1"'50 (B.4)

n —
’W‘mra we —= & T /2 $F ¢

For still higher temperatures, with m < l/y‘.’ [ s KADOMTSEV

and POGUTSE (1970) assume a collisionless trapped-ion instability and
BOHM-like diffusion. A plausible ansatz for this regime could be

DCL = max (Dsz’ DBohm)' However, this ansatz neglects the fact

that the collisional D, of eq. (4.1) may lead to a considerable

depletion of the trapped ions, and that the trapped ions are supplemented

only slowly by collisions. This fact will probably modify DCL to read

_DCL'P’» Man {DSZ ) Max (bsz !DBohw )} j)sz ) (B.5)

It then follows that eq. (B.3) approximately holds in the whole high-

1]

temperature regime with mmarg< 1/4. This can only be correct if the
trapped-ion depletion does not lead to anomalous collisions caused by
some micro-instability (inverse loss-cone instability, see WIMMEL, 1976b).
The argument also rests on the usual assumption, inherent in the fluid
theory, that the untrapped particles do not contribute to the anomalous

. — . 1
f - . i e
rapped-particle diffusion. The validity of D51 or Ds?_ for mmcrg<

4

rests on the results of Sec. 3.
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APPENDIX C. QUESTIONS AND COMMENTS

The referees of this paper raised a number of questions that require

comment which we think will be of interest to the reader.

.One question refers to the relation between the original, approximated
fluid equation by KADOMTSEV and POGUTSE (1970) and the un-
abridged trapped-fluid equations used by us [see eq. (2.])] , in
connection with the question of saturation (see SAISON et al., 1978,
and further literature cited therein). The unabridged trapped-fluid
equations used by us constitute a system of two first-order partial

differential equations, while the approximate equation used by

KADOMTSEV and POGUTSE (1970) is just a single first-order equation.

In fact, KADOMTSEV and POGUTSE (1970) employed three severe
approximations, viz. Y, =0, 3%& /Qt = 0, and, in the con-
vection term of the trapped-electron equation, n,=n_. These
approximations destroy the saturation of the instability, distort the
linear dispersion equation for the unstable branch at large values of
KY (the damped branch is removed altogether), and destroy an im-
portant. symmetry of the equations. It should be noted that, for
instance, LAQUEY et al. (1975) and COHEN and TANG (1978) use
these approximations in their work, with the consequence that they

do not find saturation without adding further dissipation terms. Never-
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theless, these approximations and their consequences are not discussed
in the literature (see, for example, the review paper by TANG, 1978)
except in our earlier work (SAISON et ai., 1978, and further papers
cited therein). In the unabridged trapped-fluid equations used by us
the (nonlinear) convection terms in the two trapped-fluid equations are
identical. Hence, a linear equation is obtained by subtraction of the
two equations. This symmetry is destroyed by the three approximations
mentioned. When the unabridged trapped-fluid equations are used, as

in our case, the saturation of density amplitudes can be rigorously

proved (SAISON et al., 1978). If, in addition, short wavelengths

are cut off or sufficiently damped as in our case, saturation of the

density gradient amplitudes also follows. The unabridged trapped-fluid

equations that we use, together with a discussion of their main properties,
are already found in our earlier papers (WIMMEL, 1976a, 1976b;

SAISON et al., 1978; SARDEl and WIMMEL, 1979).

Secondly, the referees ask whether the trapped-fluid equations are not
too simple to describe the dissipative trapped-ion instability. It is
argued that anomalous trapped-particle transport ought to be derived
from nonlinear kinetic equations. These are in fact two dIFFergnt
questions, and the question of non-fluid-type branches of the trapped-
jon instability is also involved (see further below). Granted that the
linearized. theory of trapped-ion modes is in a comparatively advanced

state, even though even there considerable problems concerning the
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collision terms, boundary conditions, numerical evaluation, and
comprehensive parameter studies remain (see, for example, MARCHAND
et al., 1979, 1980), there are, nevertheless, at the present time
insuperable obstacles to solving this nonlinear kinetic problem. This
is easily demonstrated. Let us consider, firstly, attempts at solving
the problem numerically. Our study of the trapped-fluid equations
has shown that about 64 grid points (or more) are needed for each
spatial dimension, and that the number of necessary time steps is about
104 or larger. Let us also assume that the numerical grid in two-
dimensional (¥, ;) space consists of 16 x 32 = 29 points. It then
follows that at least 2 x 643x 29 x 104’;& 2.7 % 10]2 values of fi and
fe must be dealt with. Replacing, conservatively, each drift-kinetic
equation, including collision terms, by only 10 multiplications yields
2.7 % 1013 multiplications for one run of the initial-value problem.
We assume a vectorized multiplication time on the CRAY-1 of

0.5 % 10—7 sec. One single run then takes a computing time of

1.3 x 106 sec® 15 days. To derive scaling laws for the anomalous
transport coefficients a comprehensive parameter study is required.

This necessitates many runs, and the total computing time is increased
accordingly. It should also be noted that the computer would have to
run about 400 times faster in order to get the computing time for one
single run down to 1 hour. This rules out numerical solutions for the

time being.
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It should also be noted that the numerical solution of this problem
would probably be difficult even in case the computing time could
be made reasonable. Such a linearly unstable, multidimensional,
nonlinear initial-value problem, with largely differing multiple time
scales, can be expected to exhibit a certain degree of intrinsic
stochasticity, in the sense that certain features of the solutions

will sensitively depend on initial conditions, equilibrium parameters,
and numerical or analytical approximations. Numerical methods that
guarantee numerical stability and convergence are then not available.

Rather must they be sought by intelligent trial and error.

Consider, secondly, attempts at solving the (kinetic) problem
analytically. An analytic solution of the nonlinear drift-kinetic
equations, with collisions and self-consistent fields, in the way of
an initial-value problem, can only be attempted with the aid of
drastic approximations. However, as discussed above, this nonlinear
kinetic problem can be expected to be sensitive with regard to such |
approximations. In particular, certain standard approximations, e.g.
quasilinear theory or random-phase, wave-kinetic equations, cannot
describe coherent wave phenomena and hence do not permit general
application. Since numerical solutions are not available, it is also
difficult to check the reliability of analytical results obtained with
the aid of approximations. The standard estimate of transport

2
coefficients, viz. D ’VX/ K.L , cannot be used either. Firstly, ;
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this formula is without general foundation because many more
expressions would be permitted for dimensional reasons. Secondly,
our above results explicitly refute this simple ansatz for D. In

the present case a different relation, of the form D ¢ "%“ fgg}'/ K:
does in fact approximately hold; but the dominant values of Kx
and Ky' the latter determining ), must be obtained from the
(nuinerical) solution of the initial-value problem. Consequently,
this formula does not save one the task of solving the trapped-fluid
equations or the self-consistent kinetic equations. Moreover, this
relation may be invalid for more complex problems. In general,

D will depend on the structure and the parameters of the basic
equations, on geometry and boundary conditions, and on the
consequent properties, particularly the coherence properties and

characteristic amplitudes, of the solutions.

Linearized kinetic theory shows that other varieties of the dissipative

trapped-ion instability exist for which magnetic drifts are destabilizing

and hence essential (see TAGGER et al., 1977, and TANG et al.,
1977). This non-fluid type of trapped-ion instability is not now

amenable to adequate nonlinear analysis because a fluid model does
not apply, and the nonlinear kinetic problem cannot now be solved,

as explained above.

In Secs. 2,3, and 4 a number of "existence conditions" for the
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fluid-type dissipative trapped-ion modes considered by us are
mentioned. Let us explain this terminology. These conditions are
usually introduced as necessary conditions of validity of pertinent
fluid or kinetic equations. For instance (see Sec. 4), the condi-
tions 27?',1)9 < &)‘@5’ characterize the banana regime, where
trapped and untrapped particles can be distinguished. Using the
drift approximation for particle trajectories requires KyRi<?(‘ond

K R.< 7 because the E x B drift loses its validity if the E - field
considerably varies over one ion gyro-radius. If, in addition, an
average over the bounce motion of the trapped particles is applied
and the banana width RBI is neglected in comparison with the
pertinent radial wavelength the conditions U< C\J'Q’j and kx. EB{ <7
must hold. All these conditions are implied when the trapped-fluid
equations are used. In our case, these validity conditions are at

the same time existence conditions for the instability considered

because in our calculations this instability is defined by the trapped-
fluid equations. Consequently, we are led to assume that the mode
amplitudes and the anomalous transport vanish when not all of the

above conditions are satisfied.

A final question is whether our spectral cut-off is physically motivated
or ad hoc. This concerns an important point that will be explained in
some detail. First of all, our earlier numerical calculations (SAISON

et al., 1978) did not use any additional cut-off or damping terms;
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however, the numerical scheme (see Sec. 1) provided for some damp-
ing at short wavelengths. Similarly to the present results, a coherent
wave pattern was obtained rather than turbulence, with the spectrum
peaked at large wavelengths. On the other hand, a short-wavelength
cut-off (or damping) is clearly advised by, for instance, the fact that
the unstable modes grow owing to E x B drifts, and the drift approximat-
jon breaks down at wavelengths comparable with the ion gyro-radius.
In addition, the trapped-fluid equations are mathematically ill defined
at short wavelengths because the linear growth rate ) increases in-
definitely with Ky' and discontinuous solutions can exist (see SAISON
et al., 1978). One will then prefer a cut-off or damping that is in-
dependent of the numerical scheme and the numerical grid. The next
question is then whether one should use some complicated cut-off that
explicitly describes certain physical damping mechanisms, but is
pos-sibly not well understood mathematically; or whether one should
construct mathematically simple cut-off procedures whose effects upon
the solutions, numerical stability and convergence can be checked
and studied. We chose the latter approach because it was already
known from the earlier calculations (SAISON et al., 1978) that in
the present problem anomalous transport is determined by long-wave-
length perturbations. This has been confirmed by our present results.
The coherent, long-wavelength solutions found numerically for the
nonlinear initial-value problem confirm this assumption. Consequently,

we use the assumption that the anomalous transport is only weakly




dependent on the cut-off lengths chosen, as long as the cut-off
lengths are small relative to the dominant wavelengths. A definite
proof of this assumption is not now practical, considering the
computing times that would be required on present-day machines,
e.g. the CRAY-1 computer we used. The analytical result for D

derived in Sec. 3 is in fact completely independent of the K cut-off.

For a critical discussion of other authors’ work with various nonlinear

equations related to our problem, see Appendix D.
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APPENDIX D. ON RELATED WORK

A critical assessment of related nonlinear work of some other authors
is presented here. Our critique is not intended to detract from such
work. Despite its shortcomings we consider the work discussed to be
worthwhile and original. On the other hand, some of the comments
of one of our referees lead us to believe this evaluation of related

work will help readers to arrive at a better assessment of our results

as presented in this paper.

The first study to be discussed is that of KADOMTSEV and POGUTSE
(1970). These authors were the first to formulate trapped-particle
fluid equations as a macroscopic model for the dissipative trapped-ion
instability, both in the linear and nonlinear regimes. Unfortunately,
they introduced the three approximations mentioned in Appendix C
and an additional expansion in JJ; , thus arriving at eq. (9.5) of

their paper. It is easily seen that this approximate equation does

not yield amplitude saturation because it follows that

a ‘@‘ 2 (5\2 : ra ! 2
4 N2_ 2% 9 \dol\dy (28] > 0
tl‘t tlk“ 0\3 (M+) = JJ& . 13» g‘j’
0 o s B
(in the notation of those authors) if the density perturbations n_‘;_ are

periodic in y (with period b) and vanish at the boundaries x = 0,

x = a. (We thank one of the referees of this paper for suggesting a




similar result for boundaries at x =% .) Independently, it was
shown using the unabridged trapped-fluid equations that their putting
1’;_'=O would lead to vanishing cmo_ma[ous diffusion (WIMMEL, 1976).
The neglect of radial boundary conditions by KADOMTSEV and
POGUTSE (1970) is unjustified because the explicit dependence of
anomalous diffusion on the radial extent of the slab is easily derived
by a simple similarity analysis (this paper, and SARDEl and WIMMEL,
1979). In fact, it was shown that the diffusion formula proposed by
KADOMTSEV and POGUTSE (1970) is in contradiction to the unabridged
trapped-fluid equations including radial boundary conditions (see SARDEI
and WIMMEL, 1979). The assumption of isotropic turbulence in the
work of KADOMTSEV and POGUTSE (1970) has been explicitly refuted
by numerical analysis of the unabridged trapped-fluid equations (see

SAISON et al., 1978, and the present paper).

A second nonlinear study to be mentioned is that of LAQUEY et al.
(1975). Again, the authors use only one approximate equation (first-
order in time) that requires adding an extra Landau damping term in
order to secure amplitude saturation for 1. < 2 . For values Vl > 2
T3 S
there is no saturation. In addition, the analysis is only one-dimensional
in space, which is tantamount to again neglecting radial boundary con-
ditions. A further shortcoming is the restriction to V; = 0 (see above).
Finally, an equilibrium spectrum and an anomalous diffusion formula are

found; but COHEN et al. (1976) later showed that both are invalid
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- because the equilibrium spectrum is linearly unstable. Additional

questionable points were discussed by SAISON et al. (1978).

A third nonlinear study to be mentioned is that of COHEN et al. (1976).
The authors use the same basic approximations as LAQUEY et al. (1975),
but do obtain specialized wave equilibria that are linearly stable. In
addition, they discuss the case Y.+ 0 and dispersion effects due to

finite ion banana width. But their results are nevertheless to be
questioned because the authors restrict themselve to a one-dimensional
analysis, neglect radial boundary conditions, and use only one approximate
trapped-fluid equation, first~order in time, instead of the unabridged

system of two trapped-fluid equations. Their analysis is again restricted

to cases with M. < 32- Particularly, they obtain infinite anomalous
diffusion for "rt;_ = 52—— (and for Vu::i , which is, however, outside

their parameter range). These and other questionable points were more

fully discussed by SAISON et al. (1978).

The fourth nonlinear study to be mentioned, that of COHEN and TANG

(1978), supersedes the preceding two by furnishing a two-dimensional

analysis, so that a comparison with our two-dimensional work would,

in principle, be possible. This study again uses a two-fluid theory that
contains additional terms that simulate several microscopic effects. How-
ever, this advantage is again compensated by the use of a simplified

fluid description that consists of only one approximate fluid equation
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(first-order in time, see above). Consequently, saturation is obtained

2 . 5 " .
only for W< oo o in the second and third studies mentioned above.
In addition, COHEN and TANG (1978) restrict themselves to specialized
forms of wave spectra and wave-wave interactions. For an assumed
three-wave interaction their result remains inconclusive because the

resulting equilibrium spectrum turns out to be linearly unstable. No

scaling law for transport is given in this case. For an assumed four-
wave, one-mode self-interaction, the result holds only for rather small
saturation amplitudes close to marginal stability. Here a scaling law is
given [eq. (45) of their poperj[ , but that result cannot be compared
with ours because taking the limit of vanishing Landau damping in their
formula, i.e. letting N B §2— , makes their anomalous diffusion coef-
ficient D go to infinity. Two possible reasons for these discrepancies
can readily be named, -Firsfly, the use of a drastically approximated
version of a set of basic equations for describing a complex, multi-
dimensional, nonlinear, initial-value problem with largely differing
multiple time scales may completely change the character of the solu-
tions. Secondly, a similar problem arises with respect to approximate
methods of evaluation of the basic equations. In particular, our numeri-
cal work shows that rather long relaxation times to the saturated state
prevail. Then, quite erroneous final states may be obtained by dis-
carding most degrees of freedom and classes of interactions involved,
keeping only a few Fourier modes. The general problem of accessibility
of final states cannot be reliably and realistically investigated in such an

approximate way.
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Mmarg DA govi 02) D/(cgo = vo) D/DKP (e¢/T)me Mdom cy moy Ny
0.5 | 4.10x1072 4.43x10°° 8.21x1072 1.43x107) 3 4 8 64
1.0 | 3.37x107 7.27x107° 2.69x10"" 1.42¢107] A+ 5)| 8 | 16 64
2.0 | 3.40x1072 1.47x1072 1.09 1.54x10" 8+ 9| 16 | 32 | 128
3.0 | 4.19x1072 2.71x10”2 3.02 1.73x107] 14(+15) | 32 | 64 | 256
4.0 | 3.39x1072 2.93x1072 4,34 1.58x107) 16(+18) | 32 | 64 | 256
5.0 | 3.02x1072 3.26x1072 6.04 1.61x10"" 20(+...)] 40 | 80 | 256
6.0 | 2.77x1072 3.59x1072 7.98 1.73x10") 22(+...)| 48 | 96 | 256

Table 1. Anomalous trapped-ion diffusion coefficient D versus M rarg” the marginally

stable L for ))L/J/e' =1.17 x 10_2. Quantities: (yo—_: fraction of trapped particles,
a = minor plasma radius, = trapped diamagnetic drift velocity, )}J (j =4,e) =

effective collision frequencies of trapped particles, D, = Kadomtsev - Pogutse diffusion

KP
coefficient, Cb = electric potential, m = dominant azimuthal mode number m ,
dom y
m . = half-width of numerical cut-off of m , m. = highest m present in the initial
c Y

perturbation, Ny = number of grid intervals in the y-direction, oy 16 = half-width

= 64 = number of grid intervals in the x-direction. The values

of (e(b/ )mcx hold for 5021/2.

of cut-off of m , N
X X
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Table 11, Classification of the fluid theories of trapped-ion anomalous transport

according to the B-dependence of the resulting anomalous diffusion coefficients D

and D .
s




Figure Caption

Fig. 1. Trapped-ion density distribution ni(x,y) in the x-y plane,

for 0 i 1; example of a saturated state of the instability at late

times, with the initial perturbations monochromatic in K .
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