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Abstract
The linear and nonlinear properties of the m = 1 kink mode have been

investigated numerically and analytically within two fluid theory
taking into account diamagnetic drifts, ion viscosity p and plasma
diffusion k in addition to resistivity n. In the regime of strong
diamagnetic effects, w,/Y, > 1, the linear growth rate is a very sensi-
tive function of k, being strongly reduced and even negative around

K > n. Nonlinearly the mode is found to saturate at finite amplitude

in contrast to the resistive regime w,/y, < 1, where complete re-
connection occurs. The main stabilizing effect is a nonlinear azimuthal
flow near the resonant radius; hence there is a strong dependence on
M. A quasi-linear theory can explain the main numerical results. Brief
application to tokamak experiments is given.

Die nachstehende Arbeit wurde im Rahmen des Vertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europiischen Atomgemeinschaft iiber die
Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiibrt.




1. Introduction

In a toroidal current-driven plasma configuration the mode
with (dominant) poloidal and toroidal mode numbers (m, n) = (1,1)
may play an important role. This mode is destructively unstable
if the safety factor q at the plasma boundary a is smaller than
unity, which limits operation to q(a) > 1. In this case the q = 1
surface is located within the plasma column, and since the m = 1
kink mode is confined to the interior of this surface, the mode can
only affect the central part of the plasma. In tokamaks and similar
devices the sawtooth oscillations, in particular the internal dis-

ruptions, are attributed to this mode.

Since in ideal MHD theory the m = 1 mode is only weakly, if at

1)2)3)

all, unstable , nonideal effects dominate its linear and parti-

cularly nonlinear properties. In the low-temperature regime resistivity

1/3 4)

n is the most important effect. The growth rate y ~ n is much

larger than in the case of (MHD stable) m 2 2 tearing modes with

Y v n3/5. In the resistive regime the nonlinear behavior of the m = 1
mode is quite well understood. Computer simulations6) have confirmed
the picture given by Kadomtsev7) of an m = 1 magnetic island growing
without saturation until completely filling the interior of the original
q = 1 surface. It is said that the mode leads to complete reconnection
of the helical magnetic flux inside this surface. When the system re-
assumes cylindrical symmetry, the final state is determined by total
helical flux conservation since the process occurs on a time scale fast
compared with the resistive skin time a’/n. The magnetic reconnection
is accompanied by plasma motion which drives the hot central plasma in-

to the region surrounding the q = 1 surface. This picture gives a very

plausible interpretation of the internal disruption.

In high-temperature plasma, however, further effects play a role
in addition to resistivity, for instance diamagnetic drifts and

viscosity. The linear theory of the m = 1 mode was recently generalized

to include several of these effects8)9)

. The main result is a strong
reduction of the growth rate if the diamagnetic frequency exceeds the

resistive growth rate w, > Yps which is quite similar to the case of




m 2 2 drift tearing modes. Using these linear results, in particular
the strong dependence of the growth rate on the magnetic shear, a
theory of the sawtooth oscillation has been given10)which assumes
that the nonlinear time scale is given by the linear growth time,
and that the mode does not saturate just as in the resistive case

Wy < Yoo This assumption is based on the somewhat vague argument
that the final state is the one of lowest magnetic energy consistent
with the single constraint of global helical flux conservation inde-
pendent of the particular nonideal effects, which only determine the

time scale.

In recent neutral beam heated tokamak experiments, however, the
behavior of the sawtooth oscillations is different and more complex1
and some observations indicate the presence of a finite amplitude
m = 1 mode not leading to an internal disruption. Since in these ex-
periments plasma temperatures are particularly high, diamagnetic and
viscous effects should play an important role. In the present paper
we have therefore investigated the nonlinear behavior of the m = 1
mode in the high-temperature regime. Our main result is that, roughly
speaking, for w, > Yo the m = 1 instability in fact saturates at a
finite amplitude. In Sec. 2 we briefly discuss the basic equations.
Section 3 gives some new results on the linear theory, in particular
the effect of plasma diffusion. Section 4 is devoted to the nonlinear
properties. We present results of numerical simulations and discuss
the dominant stabilization process. Section 5 gives a summary and a

brief application to tokamak experiments.
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2, Basic Equations

The model equations we are treating have been discussed in

several previous publicationsg)13)

. Let us briefly repeat the main
approximations implied. Regarding geometry we restrict ourselves to
the lowest order in the so-called tokamak expansion, where the in-
verse aspect € = a/R and the ratio of poloidal to toroidal magnetic
field components Be/B0 are small relative to unity such that the
safety factor q = EBO/B8 is finite. Hence the equilibrium has
cylindrical symmetry, while the nonlinearly perturbed state is heli-
cally symmetric, depending only on r and 6 - z/R for m = 1. The
magnetic field is written in terms of the helical flux function ¢

and the "toroidal" field B » B0 = const in the following form:
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Here h = z+(r/R)® is a vector in the symmetry direction, i.e. the
direction of the ignorable coordinate, and { is the component of the
vector potential in this direction. It should be mentioned that in

the tokamak approximation the ideal m = 1 mode is marginally stable.

We want to derive an equation for y within two-fluid theory.
First it is noted from the general definition of the electric field

> ; i
E that the helical component 1s

= Y
Eh = (2)

From the electron equation of motion, i.e. Ohm's law, neglecting
electron inertia and viscosity and assuming infinite parallel electron

heat conduction V"Te =0,

y P 1
- & (3)
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we find that
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since heVf = O and jh z j Ju >> j; in the tokamak ordering.
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From eq. (3) one obtains

> ~+++
Ver = Vg & Vak 2
> - - -
y _EXB_zxVt > __ VPexw
VE 2 B Tex enB (5)
B o o]

Combining egs. (2), (4), (5) yields

Y - IR |
+ v v = ni, nev"pe . (6)
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(Note that because of h-Vpe =0, lee and V.,pe are in general not

independent.) The perpendicular ion velocity is
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assuming adiabatic change of P; > and vp 1s the polarization drift.

> > > -
We only need to determine the incompressible part of Vigs W=Vt S zxVo

*
(the stream function ¢ should be distinguished from the electrostatic
potential ¢ in GE’ which will not enter the final equations). An
equation for ¢ is obtained by applying the operator z+Vx to the ion

equation of motion, which yields

2
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The term Vi*'VW, displaying the effect of magnetic viscosity, as
o ; . 2 . o .
well as the collisional viscosity term uV W originate from the 1ion

: - > > .
stress tensor. With v, = u-v. eq.(5) can be rewritten as

s B owa



%% " :-V¢ - njz " (TeEOAT.) é-(vnwi), (9)

again using V”Te = 0. The change of the electron density n
(n = n, =0 because of quasineutrality) is determined by the

equation

an -

5+ Vv ,n - Vv, * «v2n s (10)
which becomes

on | * _ e 2

=% & Vn = eV"JZ + kVn (11)

on neglecting ion parallel flow and making use of the relation

VeV = 0

Let us introduce the units a = plasma radius, Be(a), n_ = central
plasma density and hence the poloidal Alfvén speed v Be(a)/VminO.
Now eqs. (8), (9), (11) take the dimensionless form

-~ 2 A
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o T (u—vi*) * VW - zeVnxVz— = z-VyxVj + uvow , (12)
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1, =70 4 2q(1) , W=Ve(nV¢) , u = zxV¢

Here we have introduced Eo’ an axial electric field (corresponding

to the loop voltage in a tokamak), E0 = n(r)jo(r), and a source term
2 sias s ; : ; » .

- KkV'N , N(r) = equilibrium density distribution, in order to prevent

resistive or diffusive decay of the global configuration.

Equations (12) to (14) contain the dimensionless smallness

parameters n, Y, K, all measured in units of v,a, where n” 1= S



the magnetic Reynolds number, and the parameter o = (c/mpia)(Be(a)/Bo),
measuring the compressibility of the ion flow (polarization drift).

The temperatures T, ; are given in units of B 2(a) ; hence 2(Te+Ti)

g1 0
is the poloidal B. The magnitude of the diamagnetic effects is measured
by aTe’i.

Let us briefly discuss the magnitude of the parameters n, u, K.
For typical tokamak plasmas one has n v 10_7 - 10-6. Expressing the

collisional ion viscosity p in terms of n

1/2
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poz 0.1 s(f—ﬁl) n o,
i e

we find p/n 2 0.03 - 0.1. The neoclassical diffusion coefficient in

the banana regime is
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The experimentally observed diffusion coefficient, however, is much
larger, at least by a factor of 10. Because of this magnitude plasma
diffusion plays an important role for the m = 1 mode, as we shall dis-

cuss in the subsequent sections.

Equations (12) to (14) were solved numerically for various values
of the parameters n, a, U, K. We choose a static equilibrium 30 =0
(which implies the presence of a certain radial electric field to
compensate the ion diamagnetic drift). The equilibrium current profile
is jo(r) = 252(1+32)/(r2+32)2 , 8 = 0.6 and q(1) = 3.4, q(0) = 0.9,
so that the resonant radius ro q(rs) =1, is r_ = 0.2. We assume

2/3 with

equal electron and ion temperature profiles, Te = YiTi o« jo
Te(rs) = 0.84. Two different numerical programms have been developed,
one using a finite difference scheme in both the radial and poloidal

directions, the other using a Fourier decomposition in 6.




3. Linear Theory

The linear properties of the m = 1 instability were recently
investigated extensively, including even additional effects not
accounted for in egs. (12) to (14), such as toroidicity or kinetic
effects. Here we should like to point out the influence of plasma
diffusion, which has previously not been considered, and which
significantly modifies the properties of the m = 1 mode. Figure 1
shows the growth rate y as a function of k for different values
of n, u and a, i.e. we*/YT. To summarize the results, the function
v(k) changes character when we*/YT is increased above a certain
value. While for me*/YT $ 2 vy grows monotonically with k, for
we*/YT > 2.5 there is a deep well, even a stable region for suffi-
ciently small p (Fig. 1b) or sufficiently large we*/YT. The value
of k, where y is minimal, is approximately K, = 0.3n (me*/IT)S/Z'
There is a correlation with a change of the eigenfunction n(r), Fig.2.
For k << Ko n ha;)an oscillatory structure around r  as predicted
from k = 0 theory ', while for k > K, these oscillations are smeared
out over the entire volume inside the resonant surface. This behavior
is analogous to the decrease and reincrease of the growth rate of
m > 2 drift tearing modes observed in a previous investigationtB).
Moving across the transition region k ~ Ko from small to large values

of k, the real part of the frequency w increases from —w. to mE*~ W,

An analytical theory of the behavior for k << Ky and ¥k + @ can
easily be given. In the first case the dispersion relation was derived

in Refs. 8 and 9:

3
YT
r =y - iw = T——————T + 1w, (15)
©ialex o
with
1
= - = =0
me,1* T Ve,l* (rs) > Yr v (o, )

. - - - 5%
(Note that we use a static equilibrium, u = 0, in contrast to Ref. 9,
0]
where the ions move with the diamagnetic velocity. The difference,

however, only amounts to a Doppler shift w; ). Hence in contrast to



m > 2 drift tearing modes the m = 1 mode does not rotate with
the electron fluid (which would have the frequency w Y )s

1/3 %

Since the perturbed magnetic field « $(rs) v is small for

8) . ;
m =1 , the mode is not as strongly tied to the electrons as

for m > 2 where w(rs) is finite ("constant y" property).

Now consider the opposite case of large k, where the den-—
. - v, . S ik
sity perturbation n is suppressed. Linearizing eqs. (12), (13)
; ; 't . . .
and assuming a time dependence e ~, one obtains in the vicinity

of the resonant radius, with x = ror, wo'/r =(x/rs)w0"(rs) = xF ,

n(rs) =1,
(r - in )¢ = ixFy’ , (16)
(T + iw, )$ - ixF$ = nwn (17)
with
We = Wy T Yiu v

Proceeding as in Refs. 4 and 8 one introduces the auxiliary function

¥ defined by x' = x$". Integrating eq. (16) once, we obtain
' i(r-iw, )
A X$ -y =- ——-F—L—- § . (18)

Substitution of $ by x in eq. (17) yields

x" - i x' - (A + sz)x =0 (19)
with
F+im* FZ
A= ’ B = T=iw, on
1%

The solution of eq. (19) is

2
X = x, e Ax /2 (20)
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Insertion of eq. (20) into eq. (19) yields the dispersion relation

A2 = B or
; 2 ;
(T+iwy) (F-lmi*) = an - YTB (213
For w, = 0 we have the well-known result T = Yo = n1/3 F2/3 ,
while w

% > Yo gives

3.,1/2

Tp .
T = 5 - iw, . (22)
ex

Thus for large k the mode rotates with the electron fluid in contrast

to the behavior at small k, eq. (15), and the growth rate is signi-

ficantly larger.

To obtain an estimate of the transition point Kk, we treat the

diffusion term in the (linearized) density equation eq. (14) in the
following approximate way, szg = - Kkzg with k2 = 5;2, GS the re-
sonant layer width 62 = n/y see eq. (25) in the subsequent section.

Now the density perturbation becomes

i, 1

"
o T+ry/n ¢

v
n =

Inserting this expression into the (linearized) ¥ - equation we find
instead of eq. (17)
iw

(F+im*)$ - ixF(1+ F—:EE;7E ) $ = n$"

We again obtain eq. (19) with a modified coefficient B. Approximating
ky/n by ky(x=0)/n the dispersion relations A2 =3B again reduces to

polynomial form

. k, T (2 BT BT T
(T+iw,) (P_lwi*)[r+ﬁ(a;*) YT] = YT[r+n(me*) YT+1w#}

which can easily be solved numerically. We find that at « = K the most

unstable mode switches from the branch w = - W to the branch w 2= wy,

)5/2

where Ko = n(we*/YT




4, Nonlinear Behavior

In this section we first describe numerical simulations of the
nonlinear evolution of the m = 1 instability, identify the most
important nonlinear process and then give a qualitative analytical
interpretation. The main numerical result is that in the case when
diamagnetic effects are important, roughly speaking for ME*/YT > 1,
the Kadomtsev theory of complete flux reconnection no longer applies.
Instead the instability saturates at a finite amplitude (and island
size). Figure 3 shows the evolution of the growth rate, the frequency
and the mode amplitude Re {$ (rS, t)}, and snap shots of the convec-

tion pattern ¢(r,8) in the linear phase and of ¢(r,8), ¥(r,8) in the
6

saturated state for n = 3x10 ~, a = 8x10-3, corresponding to me*/yT = 2,5,

-5 -7 : .
The parameters « = 10 7, u = 10 represent typical experimental con-

ditions in tokamaks, where the collisional viscosity p is smaller than
n, while the effective diffusion coefficient is larger, as discussed

in Sec. 2. The dependence of the saturation amplitude wm, the saturation
value of maﬂjw(r)l} , on o, W, K is shown in Fig. 4. As already
mentioned, wm decreases on increasing o, i.e. me*/YT. Somewhat sur-
prisingly, one finds a strong dependence on p for u above a certain
value, ¢m increasing with u. We also find that wm depends sensitively

on Kk, in a similar way as the linear growth rate, Fig. 1.

In order to identify the dominant nonlinear process, we artifi-
cially freeze two of the three quantities to their initial values, the
average current profile jo(r) = <j(r,8) >, the average density profile
no(r) and the vorticity distribution Wo(r). We find that the quasi-
linear change 6Wo(r) is by far the most important effect in the regime
me*/YT > 1. Neither Gjo nor Gno may keep the mode from completely re-
connecting. Inertia effects thus play a dominant role in saturating
the m = 1 instability, in contrast to nonlinear drift tearing modes
with m > 2, which are mainly stabilized by a modification of the current

profile and where GWO only leads to a reduction of the mode frequency‘i).

To demonstrate the quasilinear character of the stabilization, we
use the vorticity kéwo(r) as an initial equilibrium property, where
5wo(r) is the distribution generated nonlinearly at the saturation

time. We find that for k > 1 this equilibrium is stable with respect to

_‘lo_



an m = 1 perturbation, for 0 < k < 1 the growth rate is reduced
compared with the original static equilibrium, and for k < 0

the mode becomes more unstable. We also show that only the local
velocity shear given by GWé(rS) is important for stabilisation
(note that Wo = const only leads to a rigid rotation which cannot

affect the instability).

Let us now outline a qualitative analytical theory explaining
the numerical results. Averaging the vorticity equation (12) over 6
yields
BWO Y
s T < zeVYXV] > + “Wo” (23)
First consider the regime of small viscosity, where the u - term
in eq.(23) is negligible. As long as the amplitude is not too large,

N ; . . i
U(r) in the nonlinear term may be approximated by the linear eigen-—

function. Integrating eq.(20) we obtain
4 -AXZ/Z ( —Ay2/2 vy + i(wx -w)
b= y_(e - Ax|e dy) , A= (24)
n

X

Neglecting n; and using BGWOIBt = 2y8W_, w, >> vy, we find on inte-

*
gration of eq.(23) that
! o~ _._1_ m”*
8¢; = T Im {YPy"'*}
s
2
]w |“ 0 we- w -
© 1___*—@"‘/” (25)
Yr n
s
2 ®
(6, ) 2 a2
= g e Im{ e A*x"/2 [ . Ay~ /2 a5
" %
From eq.(25) we compute SWé = 6¢;' at x = 0
W= W
' = E : 2
L n2 |wsl L

S

- 11 -



It is interesting to compare eq. (25) with the corresponding

result for m > 213):

[

>

E
<

1
6¢0 r Yn

(27)

i
|

=

<

2 ; .
where Aw = w - 0w, = = ¥y /w* is the small frequency mismatch between
the mode and the electron fluid. For m = 1 this mismatch is much

larger, Aw Vv wg,

1

which leads to the larger value of 6¢0 in eq. (25).

Since Swo(r) has been found numerically to be the most important
stabilizing quantity, the only nonlinear term to be kept in the equa-
tions of the fluctuating quantities is U'VW in the W equation. Equation
(16) then becomes

. " i . v . Ny
~ B = X " 2
(r 1ml*)¢ W o6 = ixFp" (28)

r
]

. v . .
while the Yy equation remains unchanged:

un

r+iw)@-1%H =" . (29)

As mentioned before, the main stabilizing contribution comes from
SWJ (rs) given by eq. (26). Thus in eq. (28) SWJ may be considered
constant. But even with this simplification the system (28) and (29)
is equivalent to a fourth-order differential equation (or an integro-
differential equation), which has not been solved. We can, however,
estimate the stabilizing effect of SWé by inserting %n from eq. (29)

into the r.h.s. of eq. (28)

. 2_2 T+iw
e i . x F * 1
¢ [ 6Wo + ; T J %

T-1wi*

_ . xF Mtiw, $ (30)
1 T-iw. ’
1%

Consider the imaginary part of the expression in brackets on the 1l.h.s.

of eq. (30), which is the only term where GWé enters.

_12_



Since

T+iw

Im { }

n

one has

]
|
O
=
+

s (31)

m{[ ]} 1
s

To obtain an estimate of the magnitude of SWé necessary to sub-

stantially change the growth rate, we set expression (31) equal to
2 Z : .

x F w*Yolnw , where Y, is the linear growth rate for 6Wé = 0. Hence

we see that 6W$ > 0 exerts a stabilizing influence. The relation

2.2
X Y oYk
n 2
w

?L-éwé = (32)

s
yields a rough value of the saturation amplitude L) X being some
characteristic layer width. For not too small amplitude it is natural

to choose x _ equal to the island half-width 6, Gi z 4|ws/FrS

Inserting eq.(23) into eq.(32) we thus find

Y 0, Y n
Yy = 2r Fn g « (33a)
m s 2
(m*— w)w Wy

Note that Yo» t0O, depends on w, as given in eqs. (15) and (22). For
very small amplitude the island becomes thinner than the original
resistive layer width 65, 62 Q" n/Yo , which appears in eq.(25). In
this case we have to choose X, = 63 in eq.(32) which yields the

scaling
(33b)
The strong dependence on w, for relatively large saturaticn amplitude,

(33a), as well as the weaker scaling with w, for small island size,

(33b), are consistent with the simulation results, Fig.4a. Also the

..13..



absolute values of §  are in satisfactory agreement.

Let us now consider the cpposite case, where in eq.(23) the

viscous term is larger than ths 1l.h.s.,
~n
< ZeTPxT] > + wew! = 0

Integration yields

-
U)* w

SW' =z 2 |v |2 (34)
o r un s
s
Performing the same analysis as before we obtain the scaling of the
saturation amplitude o for 61 > 6S
Y u
o =
L 2 (35a)
Wy
and for §_ < §
I s
1/2
b= (”“)2 (35b)
w

*

The increase of the saturation level with increasing u, which is
in qualitative agreement with the simulation results, Fig.4b, is
due to the fact, that viscosity reduces the stabilizing nonlinear

flows, eq.(34).

The diffusion coefficient k does not appear explicitly in the
estimates (33) and (35), since this effect has been ignored in the
preceding analysis. Nevertheless the main dependence on x is con-
tained implicitly through the linear growth rate Yo As we have men-—
tioned before, wm has about the same k-dependence as Yoo which is
clearly seen when comparing Figs.4c,d with the corresponding plots

of vy in Fig.1.

The preceding quasi-linear analysis is limited to sufficiently
small amplitude to justify use of the linear eigenfunction (24) in

eqs.(25) and following. In fact the relations (33) and (35) only

= |




give the amplitude, at which the original exponential growth is
quenched. Whether this implies full stabilization or only further
growth on a slower time scale as in the case of m 2 2 tearing modes
growing on the resistive time scale‘a) cannot be decided on these
grounds. The numerical simulations, however, strongly suggest true
saturation at amplitudes consistent with the estimates (33), (35),
at least for small values of u. For larger u continued slow growth

cannot be excluded.

We should also mention, that for w*/YT %< 1 and also for suffi-
ciently large values of p or x, the mode fully reconnects as pre-

dicted by Kadomtsev's theory.



5. Conclusions

We have presented a theory of the m = 1 kink mode including
a number of nonideal effects in addition to finite resistivity,
namely diamagnetic drifts, ion viscosity and plasma diffusion,
which should be important in high-temperature tokamak plasmas.
Concerning linear theory we find, in particular, a strong dependence
of the growth rate on the plasma diffusion k, the growth rate being
reduced or even negative in a certain range of x values, k > n, which
is experimentally the most interesting parameter range. Nonlinearly
we find saturation of the m = 1 instability in the high temperature
regime m*/YT > 1 in contrast to the theory of the resistive m = 1
mode as given by Kadomtsev predicting full reconnection. In addition,
we observe a strong dependence of the saturation amplitude on both
the viscosity and diffusion rate. The results of 2D numerical simu-—
lations can be explained qualitatively by a simple quasilinear theory.
The dominant nonlinear effect is found to be an azimuthal shear flow
GWé around the resonant radius, in contrast to m > 2 drift tearing
modes, where this effect does not significantly change the saturation

amplitude.

The consequences of our theory for high-temperature tokamak
operation are significant. Since the m = 1 mode, if unstable at all,
no longer leads to internal disruption but saturates at low amplitude,
the safety factor on axis q(o) should not be limited to 1, but may
become smaller, perhaps as low as 1/2. Experimental evidence of such
behavior is still scarce. Most tokamak discharges clearly show saw-—
tooth activity though operating in the regime w, " Yoo where saturation
effects should start to show up. Possibly the effective ion viscosity
is larger than the classical value u % vipiz, damping the nonlinear
flows as outlined above. Absence of sawtooth oscillations, however,
were recently observed in some neutral beam heated devices. In PLT,
where temperatures are particularly high and hence conditions most
favorable for saturation of the m = 1 mode, a number of discharges
have been observed with persistent m = 1 oscillations of relatively
low amplitude without internal disruptions. Similarly in recent ex-

periments on the W-7a stellarator an increase of the plasma temperature

= §B)




has led into a regime with no visible sawtooth activity. Although
these experimental observations seem to confirm our theoretical
predictions, one should not overlook the difficulties encountered
when interpreting the experimental data on neutral beam heated
machines. For instance, one of the crucial parameters, Yops requires
knowledge of the central current profile, which is only very poorly

known, nor are there any measurements of the effective ion viscosity.
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Figure Captions

Fig. 1 Linear growth rate y as function of k.
a) y(k) for n = 3}{10'_6 5 10-6 ;oo /YT = 2.4, 3
-7 *
u = 3x10
b) yv(k) for n = 3x10_6 w /Y. =3 and u = 10“7
> Tex 'T :
Fig. 2 Linear eigenfunctions gR = Re { %(r) Y, }R . $R
for small and large value of k.
Fig. 3 Nonlinear behavior of m = 1 mode for n = 3x10_6 5
5 7

Kk =10 , W= 10 °

a) growth rate and frequency y(t), w(t) , and
. n,
amplitude wR(rS,t);

b) contour plots of the plasma flow ¢(r,8) in the

linear phase, ¢ and in the saturated state,¢s 5

L 3
and of the helical flux ¥(r,6) in the saturated

state, ¢S , showing (small) magnetic island.

Fig. 4 Saturation amplitude b, as function of me*/YT s

u, K for n = 3x10-6.
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