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Abstract

Anomalous transport due to the dissipative trapped-ion instability,
anomalous heat conductivity of electrons, and neoclassical heat
conductivity of ions are considered. The energy confinement time
resulting from the combined effects is represented graphically as

a function of the mean temperature and for several values of the
mean density for the following tokamaks: ASDEX, INTOR, JET, PLT,

TFTR, and ZEPHYR.




1. Introduction

Anomalous transport due to the dissipative trapped-ion instability
has not been detected so far in tokamak experiments. On the other
hand, one is interested in forecasting energy confinement times

T for existing devices at higher temperatures, not yet reached,
and for tokamaks not yet in existence, but being planned, designed
or built. For this purpose, anomalous trapped-particle transport

should also be taken into account.

This report presents g (T) plots for the tokamaks ASDEX, INTOR,
JET, PLT, TFTR and ZEPHYR for several mean densities and for
rn/a = 0.5 and 1.0. The confinement times are calculated from a

zero-dimensional model. The transport processes considered are:

a) trapped-particle anomalous energy transport due to the

dissipative trapped-ion instability [j,Z:I,
b) anomalous heat conductivity of electrons [3,&,5:1,

c) neoclassical ion heat conductivity [E:].

It should be obvious that a zero-dimensional calculation can only
give a rough estimate. For more accurate information one has to
invoke a self-consistent numerical transport code in at least one

spatial dimension.

In Sec. 2 the transport formulas used in evaluating T, are listed.

The g (T) plots for the six tokamaks considered are discussed in
Sec. 3. Tables I to VI list the machine parameters of the six toka-
maks. Figures 1 to 36 present the 3 (T) plots, there being six

plots for each of the six tokamaks.




2. Formulas for the Energy Confinement Time

Under the assumptions mentioned in the Introduction the combined

energy confinement time TETOT of the plasma is given by

i Lo ——r—i + —4
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where TESW is the trapped-particle T, as given by Sardei and
DP . ’ o
Wimmel [5,2:], TE P 1s the anomalous electron TE as given by Diichs,

Pfirsch et al. [?,4,5:1, and TENC is the neoclassical e [E:].

The trapped-particle energy confinement time is defined relative to

the total energy content of the plasma by the formula [j,Z:I

T W e (2.2)
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Here r = [N/N'| is the scale length of the radial density variation,

a is the minor plasma radius, and DS is the average anomalous diffu-
sion coefficient due to the dissipative trapped-ion instability, the

effect of shear being taken into account. The quantity DS is given by
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within the existence range of the instability (see below), where
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is the effective collision frequency of the trapped ions, and Aa

o} ; ; :
60 = n /N is the relative number of trapped particles, v, =

is the distance between properly chosen mode-rational surfaces

(with K" = 0), viz.
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Here rq = |q/q'| is the radial scale length of the safety factor q,
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m ~ 4m is the dominant poloidal mode number, with m given
dom marg marg
by
a
w = —— Y, V. (2.5)
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W is the effective collision frequency of the trapped electrons, and

S, T o 2hT

= ) (2.6)
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with T, = average temperaturesin erg, B = magnetic field in gauss,

e = proton charge in esu and c = 3.10*° cm/s. The above formulas other-—
wise all use cgs units. The numerical evaluation of TESW uses an average
density N and assumes T, =T = T,n=d1lnT/dInN =1, and Zeff = 1.
For tokamaks with noncircular cross-sections the minor radius a is
replaced by an average radius st whose definition is adapted to the above

formulas, viz.

1/ ¢ ~1/%
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with aH = horizontal minor radius and aV = vertical minor radius. The

quantity & is then calculated at r = aH/Z, viz.

Ay
é\o = 2R ' (2.8)

The existence range of the dissipative trapped-ion instability is given
by the conditions [1,7 |: 2 . < . (3 =i
y [:, ] ™ vJ wa (3 i,e), ©30m < mbj’ Ky R, <,

and K RB' < m for the dominant mode. Here w, . are the bounce frequencies
X pE bj

of the trapped particles, Ri is the gyro-radius of the ions, and RBi is

the banana width of the trapped ions. If any of these conditions is viola-

ted, then the approximation Ds =0, TESW = @ is used instead of eq. (2.3).
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The anomalous electron energy confinement time was given by Diichs,

Pfirsch et al. [?,4,5:1. Relative to the total plasma energy, with

Ti = Te assumed, it is given by

. D 55 50 TLOOO NO.S&&T B 2 =
E = ' e off
4.04 A.6% 2,28
x qq A a_ (] (2.9)
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Here TE 1s glven 1n ms, TQlS the average temperature in keV, N 1s
-3

the average density in units of (10*® e¢m °), B is the magnetic field

in tesla, q, is the safety factor at r = a, A is the aspect ratio,

: . . . ; ; DP
and a 1s the minor plasma radius in m. The confinement time g ~~ 2TEe

relates the energy flux to the total thermal energy of both ions and

electrons. Again, Ti = Te = T and Zeff = 1 is assumed in the evalua-

tion. For tokamaks with noncircular cross—sections the minor radius

a is here replaced by an average radius Eb

mately adapted to the scaling of eq.(2.9), viz.

- ¥ g -1/2
Q’]}p — -V—é_ O‘H qv (O‘H + C{V) ) (2.10)

p whose definition is approxi-

where ay and ay have been explained above. In addition, the definition
A = R/aH of the aspect ratio was used in these cases. Equation (2.9)

involves a best fit of experimental data of many tokamaks with a sta-
DP

tistical error of about 20% [3,4,5:]. The T-dependence of Ty was

inferred from results obtained with the PLT heating experiment [E:].

The neoclassical energy confinement time of the ions, re-normalized

to the total plasma energy, with Ti - Te assumed, can be defined as

NC 3N v a
’t.‘E =
2.’C£

) (2.11)

where Ly = IT/T'| is the scale length of the radial temperature
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variation, and the thermal conductivity ks is given by [E:I

1/2
k. = KZ (vf, i) . N e 9;9 /'CZ: ) (2.12)

* 3 .
with € = r/R; the quantities Vi pie and T, have their usual meaning

and are defined in ref. [6 |. Furthermore [6 |,

1
Ky = kzo 1+ a, Vyj* + & v

4 C§ V: Eg ) (2.13)
/@2 (1 + q, VL* 2,3/2)
with
K,, = 0.6¢
a, = 4,03 (2.14)

, = 0.31
C 5 =0.%4

These neoclassical formulas are in cgs units. In the evaluation,

ry, = a/2 was used. For tokamaks with noncircular cross-sections the
minor radius a in eq. (2.11) is again replaced by EDP of eq. (2.10),
and r, = EDP/Q is used. On the other hand, the value & = aH/(ZR) was

used, by analogy with eq. (2.8) for 60 and with the above definition

of the aspect ratio A.



3. Discussion of the Results

The machine parameters of the six tokamaks ASDEX, INTOR, JET, PLT,

TFTR and ZEPHYR are listed in Tabs. I to VI. Figures 1 to 36 then pre-
TOT
) £ SW DP
the six tokamaks and, as dotted lines, the functions g (T), T (D,

sent the total energy confinement times T (T), T = temperature, for

and TENC (T), as far as they fit within the chosen frames. Let us first

ESW’ TEDP and TENC. The trapped-
B TESW, is infinite for low temperatures, decreases with medium
temperatures and increases again with high temperatures. The anomalous

discuss the temperature dependence of T

ion T

electron Tg» TEDP, always increases with temperature. The neoclassi-

cal Tpo TENC, varies little with temperature. Contrary to its depen-

. NC s s 5 .
dence on density, o (T) exhibits a minimum in the plateau regime;

this is a consequence of the interpolation formula chosen by the authors
of ref. [E:I. Another interpolation formula, chosen by Diichs et al.
[j@], yields somewhat smaller values of TENC at lower temperatures,

but also exhibits a minimum when varying T. According to the different
o PE E (see eq. (2.9) and ref.[1 [) a

scalings of 1 T , and T
variety of qualitatively and quantitatively different 1. (T) curves

E > E
E
is produced for different densities and machine parameters. It is
; . i T . P
seen that it would be misleading to simply put T_ = T 0

E E *
times done. Deviations from anomalous electron energy transport are

as 1s some-—

brought about by neoclassical effects (at high densities) as well

as by trapped-particle effects, i.e. by the dissipative trapped-ion
TOT
E

onset of the dissipative trapped-ion instability, with the consequence

instability. The step visible in the T (T) curves indicates the
of finite values of TESW for temperatures higher than the onset
temperature. One should also note that TESW o (rn/a)3 in the medium
temperature region. Hence a knowledge of the density profile is
rather important in order to determine TETOT. In order to show the

influence of varying (rn/a), the evaluation was made for two values,

i.e. r /a__ = 0.5 (triangular density profile) and r /a = 1.0
n' “sw n sw

(trapezoidal profile).

The more pessimistic cases, with rn/a = 0.5, are discussed first.

It is seen that at lower densities two temperature regimes exist;




T : .
at low temperatures TE ox i1s determined by TEDP(anomalous~electron
regime) and at high temperatures by g (trapped-ion regime). At

higher densities there is also an intermediate temperature regime

with T tam determined by T N

. E (neoclassical regime). In parti-

cular, the trapped-ion Tgr Tp o is predominant
for T ;3 3 to 4 keV in the case of ASDEX,
for T 2 8 to 13 keV in the case of INTOR,
for T2 5 keV in the case of JET,
for T 2 3.5 keV in the case of PLT,
for T 2 6 keV in the case of TFTR,
for T 2 7 to 10 keV in the case of ZEPHYR,

depending on the density. These numbers hold, of course, only
within the density regime considered. Neoclassical transport is

seen to matter in the following cases of those considered:

ASDEX, N = 10'* ecm 73,

INTOR, N = 2 x 10*" em 3,

ZEPHYR, N = 10'° cm ~°.

In many cases the effect of the anomalous trapped-particle trans-
TOT

port upon TE

is quite dramatic when rn/a = 0.5 is assumed.

The trapped-particle transport is less important, however, in

the other cases considered, viz. with rn/a = 1.0. In these cases
the general remarks of the preceding paragraph remain true, but,
as mentioned, the impact of the anomalous trapped-ion transport

is now less severe. This is best seen by looking at Figs. 1 to 36,

but one may also note that Tt is now only predominant

E

for T2 5.5 to 8 keV in the case of ASDEX,

for TZ 12.5 to 22 keV in the case of INTOR,



for T 2 8 keV in the case of JET,

for T ;3 5 to 6.5 keV in the case of PLT,
for T 2 10 keV in the case of TFTR,

for T 2 12 to 18 keV in the case of ZEPHYR,

depending on the density.

Finally, a few remarks on the reliability of the results are

added. In fact, the theories of all three transport mechanisms
considered have their specific shortcomings. The theory of trapped-
particle transport [1,21 is only based on an approximate, fluid
theory [éi] with the addition of strong Landau damping at mode-
rational surfaces [?,1[1, but without consideration of other par-
ticle effects. On the other hand, the evaluation of these equations
by numerical and analytical methods [1,21 seems quite accurate

and reliable. At present, nonlinear microscopic transport theories
cannot be carried through, and the estimate D ~~ y/KﬂL2 should

not be used after its invalidity has been demonstrated in the case
of trapped-particle fluid theory [j:l. It follows that eqs.(2.2)

to (2.6) represent the best estimate for trapped-particle transport

now available; but the error involved in this estimate is, of course,

not now known.

In the case of anomalous electron energy transport, eq. (2.9) is
not the result of a physical theory, but of a regression analysis
of experimental results. However, the result of this analysis alone
is not unique because internal relations between parameters exist
owing to ohmic heating (and, possibly, for other reasons). The

T-dependence of T is then taken from only one experiment [9:]

without knowing wﬁether this result should be generalized to all
other tokamak experiments. Moreover, owing to the empirical and
statistical method used, no information exists on the regime of
validity of eq. (2.9). A further ambiguity arises in that eq. (2.9)

does not distinguish between global parameters, like the minor

radius a, and local parameters like the scale lengths r and r
n
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of the radial density and temperature profiles [5:].
Even in the case of neoclassical transport there are at least
two causes of possible inaccuracies regarding eqs. (2.11) to
(2.14). Firstly, neoclassical transport has only been calculated
for € = r/R << 1; when applied to cases with, for example,
€ ~ 0.2, the inaccuracy of the theory is not known. Secondly,
practical formulas for neoclassical transport are based on
interpolation [5,1@]. These interpolations can differ by, for
example, factors of 2; moreover, the interpolations used seem to
be ad hoc. That is to say, there is no discussion of how to

interpolate in a multidimensional parameter space so that the

interpolation chosen can be considered reasonable or even opti-
mal. Nevertheless, the inaccuracies of the neoclassical transport

theory may, perhaps, be less severe than those of the other

theories.

It should be mentioned that the theory of trapped-particle anomalous
transport [j,él is in agreement with the results of the PLT heating
experiment [321, where no such transport has been found so far. In
ref. [jél maximal ion temperatures of 6 keV and 7.1 keV (on the
magnetic axis) and average densities between 1.5 x 10*? and 3 x 103
cm™® are reported, together with maximal electron temperatures of

2.2 keV. Let us consider the following example:

6 kev, T
e

= 2.2 keV, Nav =2 x 10*® cm™®. Then we may

i,max .

choose T. = 3 keV, T = 1.1 keV, and the harmonic mean tempera-
i,av e,av

3 ’

ture T of eq. (2.6) becomes T = 1.6 keV. For these parameter values

the above formulas, corrected for Ti # Te, give

TESW = 4.5 sec (or larger),
TENC = 2.0 sec,
TEDP = 0.14 sec.

T .
For TEhC and TEDP the corrections for Ti # Te include those caused
3

by the modified expression for the energy density, viz. E =% N (Ti + Te),
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while this correction drops out in the case of TESW owing to the
convective and ambipolar character of this transport mechanism,

It is seen that the anomalous trapped-particle energy transport

is smaller than the neoclassical energy transport. Therefore it

is clear that, according to the theory, anomalous trapped-particle

transport was undetectable in the PLT heating experiment.
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Table TI. Machine parameters for ASDEX.
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Note: The quantities agy and anp are designated as
"AVER. MINOR RADIUS-SW (CM)"
and

"AVER. MINOR RADIUS-P (CM)"

in Tables I to VI.




Table I

PARAMETERS FOR A S D E X

HORIZ. MINOR RADIUS (CM) = 4.80E+81

VERTIC. MINOR RADIUS (CM) = 4.80E+81

AVER. MINOR RADIUS-SW(CM) = 4.80E+91

AVER. MINOR RADIUS-P(CM) = 4.98E+81

Q SCALE RQ (CM) a 3.28E+81

MAJOR RADIUS (CM) = 1.54E+82

ASPECT RATIO R/AH = 3.85E+80

SAFETY FACTOR Q = 2.90E+88 AT HALF AVERAGE MINOR RADIUS
SAFETY FACTOR QA = 3.90E+00 AT AVERAGE MINOR RADIUS
DELTA-NOUGHT = 3.60E-981

TOROID. B FIELD (GAUSS) = 2. UGE+04

ION MASS (GRAMM) = 3.35E-24

ALPHA = MCRIT/MMARG = 4.GAE+88
.ATOMIC MEIGHT = 2.00E+98

RATIO NYI/NYE = 1.176-02

EFFECTIVE Z = 1.68E+04

Table IT

PARAMETERS FOR I N T O R

HORIZ. MINOR RADIUS (CM) = 1.25E+82

VERTIC. MINOR RADIUS (CM) = 1.80E+82

AVER. MINOR RADIUS-SW(CM) = 1.36E+82

AVER. MINOR RADIUS-P(CM) = 1.41E+92

Q SCALE RQ (CM) = 1.99E+92

MAJOR RADIUS (CM) % 4.80E+g2

ASPECT RATIO R/AH = 4.GOE+08

SAFETY FACTOR Q = 2.80E+80 AT HALF AVERAGE MINOR RADIUS
SAFETY FACTOR QA = 3.90E+88 * AT AVERAGE MINOR RADIUS
DELTA-NOUGHT = 3.54E-081

TOROID. B FIELD (GAUSS) = 5.80E+04

ION MASS (GRAMM) % 3.35E-24

ALPHA = MCRIT/MMARG = 4.00E+HS

ATOMIC WEIGHT = 2.00E+00

RATIO NYI/NYE s 1.176-62

EFFECTIVE Z = 1.80E+80



Table III

PARAMETERS FOR J E T

HORIZ. MINOR RADIUS (CM) = 1.25E+62

VERTIC. MINOR RADIUS (CM) = 2. 1PE+82

AVER. MINOR RADIUS-SW(CM) = 1.44E+02

AVER. MINOR RADIUS-P{(CM) = 1.52E+82

Q SCALE RQ (CM) = 1.15E+82

MAJOR RADLUS (CM) = 2.96E+82

ASPECT RATIO R/AH = 2.37E+88

SAFETY FACTOR Q - 2.00E+8Y AT HALF AVERAGE MINOR RADIUS
SAFETY FACTOR QA = 3.95E+ﬁﬂ AT AVERAGE MIMOR RADIUS
DELTA-NOUGHT = 4.64E-01

TOROID. B FIELD (GAUSS) = 3.40E+54

10N MASS (GRAMM) = 3.35E-24

ALPHA = MCRIT/MMARG = 4 . G0E+DH

ATOMIC WEIGHT = 2.96L+00

RATIO NYI/NYE = 1.17E-82

EFFECTIVE Z = 1. 90E+44

Table IV

PARAMETERS FOR P L T

HORIZ. MINOR RADIUS (CM) = 4.O0E+01

VERTIC. MINOR RADIUS (CM) = 4. 9BE+D1

AVER. MINOR RADIUS-SW(CM) = 4 . FPE+G1

AVER. MINOR RADIUS-P(CM) = A FOE+T1

Q@ SCALE RQ (CM) = 3.20E+01

MAJOR RADIUS (CM) = 1.39E+02

ASPECT RATIO R/AH = 3.25E+09

SAFETY FACTOR Q@ = 2.0FE+00 AT HALF AVERAGE MINOR RADIUS
SAFETY FACTOR QA = 3.00E+08 AT AVERAGE MINOR RADIUS
DELTA=NOUGHT = 3.92E-01

TOROID. B FIELD (GAUSS) = - 3.20E+04

ION MASS (GRAMM) = 3.35E-24

ALPHA = MCRIT/MMARG = 4.00E+09

ATOMIC WEIGHT = 2 .BOE+00

RATIO NYI/NYE = 1.17E-92

EFEECTIVE. Z = 1.80E+00
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Table V
PARAMETERS FOR T F T R
HORIZ. MINOR RADIUS (CM) = 8.58E+71
VERTIC. MINOR RADIUS (CM) = 8.50E+91
AVER. MINOR RADIUS-SW(CM) = 8.50E+41
AVER. MINCR RADIUS-P(CHM) = 8.50E+01
Q SCALE RQ (CM) = 6.80E+g1
MAJOR RADIUS (CM) = 2.48E+92
ASPECT RATIO R/AH = 2.92E+99
SAFETY FACTOR Q = 2.90E+90 AT HALF AVERAGE MINOR RADIUS
SAFETY FACTOR QA = 3. 90E+59 AT AVERAGE MINOR RADIUS
DELTA-NOUGHT = 4.14E-91
TOROID. B FIELD (GAUSS) = 5.60E+04
ION MASS (GRAMM) = 3.35E-24
ALPHA = MCRIT/MMARG = 4.00E+00
ATOMIC WEIGHT = 2.00E+08
RATIO NYI/NYE = 1.17E-82
EFFECTIVE Z — 1.99E+80
Table VI
PARAMETERS FOR -.Z E P H Y R
HORIZ. MINOR RADIUS (CM) = 4.79E+91
VERTIC. MINOR RADIUS (CM) = 4.79E+81
AVER. MINOR RADIUS-SW{CM) = 4.70E+91
AVER. MINOR RADIUS-P(CM) = 4.70E+81
Q SCALE RQ (CM) = 3.76E+91
MAJOR RADIUS (CM) = 1.26E+82
ASPECT RATIO R/AH = 2.68E+99
SAFETY FACTOR Q = 2.90E+90 AT HALF AVERAGE MINOR RADIUS
SAFETY FACTOR QA = 3.90E+30 AT AVERAGE MINOR RADIUS
DELTA-NOUGHT = 4.32E-91
TOROID. B FIELD (GAUSS) = 9.79E+g04
ION MASS (GRAMM) = 3.35E-24
ALPHA = MCRIT/MMARG = 4.BBE+0T
ATOMIC WEIGHT = 2.90E+09
RATIO NYI/NYE = 1.17E-92

EFFECTIVE Z = 1.98E+949
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