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The tearing mode stability of the radial profiles of current density

resulting from the skin effect accompanying AC modulation is calcula-

ted using a computer code.




1. Introduction

On the Pulsator tokamak at Garching an experiment was performed in which

an AC component was superposed on the plasma current [14,153. To inter-

pret and plan these experiments, a computer program to calculate the current
distributions accompanying the AC modulation taking into account the skin
effect was developed. The experiments showed that AC modulation of high
amplitude impairs the plasma stability and can lead to disruption. Since
tearing modes are believed to be responsible for the disruptive instability,

calculations on the stability of these modes were performed.

This report presents a detailed description of the computer program
and its results. Section 2 deals with the skin effect; Section 3 is a dis-
cussion of the stability of tearing modes. The heating effects associated
with AC modulation are discussed in Section 4. Sections 5-8 document the

computer program.




2. Radial Current Profile

Figure 1a shows a schematic drawing of the essential features

of the experimental configuration. The ohmic heating transformer
incorporates some supplementary windings in addition to the

standard windings. These windings are powered by an AC-generator

which is switched on at time £ during a tokamak discharge. As shown
in Fig. 1b, the plasma current, Ip, and the loop voltage, VPL’ con-
sist approximately of a stationary component originating from the
standard power supply and, for t 2 tT’ of an AC component. In the cal-
culations it is assumed that the AC component of the plasma loop vol-
tage is periodic. The plasma current is calculated from the plasma

loop voltage, V Immediately after the AC is switched on, the plas-

PL’

ma goes through a transient state which lasts for a few cycles; after-

wards, the AC component of the plasma current is also periodic.

The penetration of the alternating current into the plasma co-

lumn is calculated under the following simplifying assumptions:
1. The toroidal plasma is treated like a cylinder.

2. The displacement current is neglected because of the low

frequency of the AC component.

3. Because of the strong toroidal magnetic field, motions of the
plasma are neglected so that Ohm's law has the simplified form

j =0 E 5 (2:1)

where jz and Ez denote the z components of the current density



and the electric field, the z direction being that of the plasma axis.

o is the electric conductivity.

4. Since only relatively low frequencies are applied in
the experiment, the real DC component of the so-called AC
conductivity [jél can be used and the imaginary conductivity
terms are neglected. By restricting ourselve§ to the DC compo-
nent we neglect certain time dependences, such as the heating
effect connected with the AC modulation. This is justified by
the fact that such a heating effect has not been experimentally

observed, probably because of insufficient modulation amplitude.
It is thus assumed that
P E ; 1
g 1is real and time independent. (2.2a)

For the radial dependence of the conductivity we use tpe dnsatz

o=0 [0-ve] , (2.2b)

o]

~

where r = r/a with a the limiter radius. The parameter V allows us to
vary the conductivity at the plasma boundary. The conductivity on axis,

T, and the profile number, P, are fitted to conductivity profiles de-

1Comparison with the transport code of Diichs and McKenney show that

the assumption 2.2a is, at least theoretically, not well justified.




duced from Thomson acattering measurements. The parameters S V and P
have to satisfy additional constraints so that the DC-component of the
plasma current, IPLO’ equals the experimental value and that the safe-
ty factor, q, on axis is of order unity. The DC component, Eo’ of the

electric field does not depend on r; consequently, the plasma direct

current 1is

a

IPLO = ZFEO g dr r o . (2.4)

The DC component, Eo’ corresponds to the DC component of the plasma

loop voltage

Vv =2rRE , (2.5)
[e) (o]

where R is the major torus radius. Denoting the DC component of the

current density by jo(r) it follows that

: i "2
i =i @0 - vF (2.6)
with
UO
Jo(o) Yo 2mR ’ (2.7

Substituting Eq. (2.2b)in Eq. (2.4) yields

I
3 (0) = (B+1)V . Pgo (2.8)

ma




if the condition

P+1

(1 V) << 1 (2.9a)

is satisfied. The parameters V and P consequently appear in the
combination (P+1)« V [ﬁor example, in Eq. (2.19i]. It is therefore

useful to define the quantity, Q,
Q = (P+1)V = 1 . (2.9b)

The other constraint is that the safety factor, q, on axis is approxi-
mately one. From the definition of q the current density on axis can

be shown to be

2B

; _ tor
i (0) = Ta(0) (2.10)

where R is the major radius of the plasma and o the permeability

of the vacuum. Inserting this expression into Eq. (2.7), one 921§

4“Bt0r
= e . 211
V.o, T4 (z=0) ( )
0
Conditions such as q(r=0) Z 1 thus fix jO and hence the product,
Vo .
oo

Making use of the simplifying assumptions (1 to 4), a simple para-
bolic differential equation for the electric field component, Ez,

can be derived from Maxwell's equations:

13 B
B [r — Ez ] =y 0 E (2.12)




with boundary conditions

\Y
_ _ PL
Ez (r=a) = T (2.13)
and
3
— E (r=0) =0 . (2.14)
or z

Condition (2.14) assures that the electric field in the plasma center

at r=0 is continuous. The initial condition at time t = tl is

(2.15)

where VO is the DC component of the plasma loop voltage VPL (see Fig.
1b). The parabolic differential equation (2.12 - 2.15) was solved by

a numerical method which is described in detail in Section 5.

We now discuss some typical current profiles which were calculated
for Pulsator discharges. As will be seen shortly, they can be scaled
easily to machines of arbitrary size. With sinusoidal time dependence
of the loop voltage, the current density, j(r,t), will also become

sinusoidal after a transitional time period of a few cycles; i.e.

j(r,e) = j () + j (r) sin [wt + ¢(x)] , (2.16)

where the DC component, j , originates from the standard power suppl
p L P pply

and the AC component, jl’ from the AC generator and where ¢(r) denotes



the phase with respect to the sinusoidal part of the loop voltage.
Some typical examples for the variation of the amplitude of the
current density with radius are shown in Fig. 2. We see that the AC
current is induced predominantly in the outer layers of the plasma
because of the skin effect. On the other hand, only very little
current can flow directly at the plasma boundary because the tempera-
ture there is low and the resistivity is high. The AC-current den-
sity consequently, if w is sufficiently high, see (2.20), has a maxi-
mum at a position, L In order to estimate the position, Byt of
the current-density maximum for tokamaks of arbitrary size with wide-
ly differing conductivity profiles, we have derived an approximation
formula for L obtained from a few dozen examples of our skin effect
model

¢ = 1 ; (2.19)

max 0.175 "

(1+0.135 Qz) + 2.6 Q\

In Eq. (2.19), ook is normalized on the plasma radius and depends

on two dimensionless parameters, namely on Q, which was previously

PN

discussed in Eq. (2.9b), and on the normalized skin depth, A,

S — (2.18)

afuooom .

Equation (2.19) is valid in the range

?

D:01 & X 5 0.2/VF (2.20)

A

—
A

Q £ 10 (2.21)



For A £ 0.005 the . S calculat?d according to Eq. (2.19) is
approximately by 5%£fmall. For A = 0 one should get Tk 1,

but this limiting case is not correctly reproduced by Eq. (2.19).
The RHS of the interval (2.20) describes the case that j1 is only
very flightly larger in the vicinity of L than it is for small r.
When A is further increased, the maximum vanishes and j1 shows si-
milar qualitative behaviour to the DC profile, jo. For V = 1 the in-
accuracy of the approximation formula is about 0.01 to 0.02. For

V = 0.7 the roax calculated accor?ing to Eq. (2.19) is already
approximately 0.03 too small for X = 0.025. This effect is caused

by the plasma boundary layer, described by V, which was neglected
when formulating Eq. (2.19). As soon as i becomes larger than the
RHS of Eq. (2.20), the AC profile, j1, becomes more and more like the

DC profile, jo’ and the subsidiary maximum at - vanishes.

The penetration of the alternating current into the plasma depends
strongly on the conductivity at the boundary, i.e., in our model on
the parameter, V, from Eq. (2.2). Examples of this are shown in Fig. 4.
It is found that the AC profile, j1, varies more strongly with V than
the DC profile, jo. It is unfortunate that the conductivity at the
boundary is very poorly known experimentally. This causes considerab-
le difficulty in comparing our calculated results with experimental

results.

So far only the amplitude of j1 of the AC current density has been
discussed. Because of the phase factor, ¢(r), appearing in Eq. (2.16),
the actual time development of the current density profile is slightly
more complicated. In Fig. 3 we show the motion of a current density
profile during one cycle of the AC modulation using the same conducti-
vity profile as in Fig. 2. The solid line is the DC profile, jo(r),
which represents the current density profile up to the time t = €y-

The transient process is not shown in Fig. 3; only the motion after

the transition period as described by Eq. (2.16). The motion has a
certain vague similarity with the motion of a rope which is tied at the
top left and which is under tension and made to oscillate at the bottom

right. The waves generated travel from the bottom right to the top left,



their amplitude becomes smaller, till it vanishes at the top left.
The wavelength of the oscillation is of the order of the skin depth,
_ . _
A 1/V0u0w, at the position, rmaX
The results shown in Figs. 2 to 8 were calculated to match experi-
mental data from the Pulsator experiment, where the minor radius a
was 0.11 cm, the central temperature was 0.6 keV, the central conduc-
tivity,oo, was 1.4-107 Q_1 m_1, and the modulation frequency, w, in

the range 100 Hz < w < 2000 Hz. Because of the dimensionless formula-

tion of the equations, the figures can be easily scaled to other radii.

Consider, e.g., the case w = 1000 Hz in Fig. 2. For a device with
a=1mand Te(O) = 6AkeV, the curve would be exactly the same for
w = 0.4 Hz, (scaling X = 1/a/E;E;57. This frequency seems to be very
small in comparison with discharge duration and the AC affects only

the outermost layer of the plasma.
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3. Investigation of Tearing Instabilities

The previous section demonstrated that the radial current density
profile can be strongly varied by AC modulation (see, for example, Fig.
Since the stability of tearing modes (e.g., Ref. [2:1) is strongly de-
pendent on the shape of the current density profile, AC modulation can
be used as a powerful tool for the comparison of theoretical predic-—
tions of tearing mode theory and experimental observations. This pro-
vided the motivation for investigating the AC modulated current densi-

ty profiles for tearing instability.

The tearing instability develops preferentially at a plasma radius,

ros where the safety factor, q, is rational;

q(rs) = {% with m = 2 or 3 3.1

1 or 2

=]
1]

Here m and n are the integer mode numbers of a Fourier expansion in
the poloidal and toroidal angles, 6 and ¢. In typical tokamak dis-

charges

q(r=0) - 1 s

q(r=a) - 2.3 to 8 . (3.3)

In order to estimate the stability behaviour, we used a routine,
written by Lackner and based on the works of Furth, Rutherford, and

Selberg [2 | and of White, Monticello, Rosenbluth, and Waddell [3 ].

3) .
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This program calculates for a given current density profile, jz(r),
the instability parameters, A', o and w, the significance of which

is explained as follows:

1) A' is the jump of the logarithmic derivative of the eigen-—
function of the mode at the resonant gq-surface and determines the linear
growth rate, y. The relations between A' and y was first described by
Furth, Killeen, and Rosenbluth [j:]. A nice representation is given in
Batemans monograph [%:] which gives [Eq. (10.2.20i]

0.2

0.8 0.6 0.4 -
n (kB,) P 5 (3.4)

vy = 0.55 A"
where n is the resistivity, p the plasma density, and B the magnetic

field strength.

A' also determines the marginal instability. According to
Furth, Rutherford, Selberg [2:1, for a cylindrical zeropressure plasma,

the instability criterion is
A' >0 : (345)

Glasser, Johnson, and Greene [}:I have also taken the pressure and
toroidal effects into account. Instead of Eq. (3.5), they obtain the

criterion for marginal instability

1
S T (3.6)

In typical tokamak discharges one obtains a small improvement of

the stability, i.e.,



12

crit - 1 to 3 . (3.7)

2) r is the radius of resonant q surface.

3) w is the (full) width of the saturated magnetic island
associated with the tearing mode; the island width normalized to the

plasma radius is defined as W, where
w=w/a . (3.7a)

The island width, w, depends on the nonlinear saturation amplitude

of the tearing mode. According to White, Monticello, et al. [3:1,
island formation leads to flattening of the current profile in the
vicinity of the resonant q surface. The island continues to grow until
one has A' = 0 for the flattened current profile. The nonlinear satura-
tion width of the island can be estimated according to Jaenicke, Wobig,
and Callen [@,1@1 in a very rough approximation by calculating the

value w for which

3%'[¢1(rs+g> - ¥y (rs— g)] =0, (3.8)

where w! (r) is the radial part of the linear eigenfunction of the

mode expressed in terms of the helical flux,
Y = wo(r)'+ ¢1(r) cos(mé + n¢) . (3.9)

According to the present view a magnetic island grows until its width
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attains the value, w. If it then overlaps an adjacent island,

there is ergodization of the magnetic field lines near the islands.
This leads to disruption of the magnetic confinement of the plas-
ma [§,7:]. Overlapping of the m = 2, n = 1 mode with the m = 3,

n = 2 mode appears to be particularly dangerous.

We now discuss some typical results of these calculations. First,
we investigate the stability of the DC profile. For typical Pulsator
current profiles the m = 2, n = 1 mode is marginally unstable while

the higher m modes are stable. For example, for the profile

i = 7402 (1-0.716 £ 10 (3.10)

values of aA' listed in Table I are obtained.

TABLE I
m n ah’
2 1 4.3
3 2 - 1.5
3 1 - 4.5
4 1 - 7.4
4 2 - 80
4 3 - 8.4
5 1 - 9.1
5 2 -11.0
5 3 =13.0
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If AC modulation is applied, the DC current density as well as
d/dr jz at the resonance surface, and hence A', will vary periodi-

cally. According to the instability criterion, A' > Ac the modes

ric"
therefore become unstable with increasing AC amplitude in the sequence
given in Table I. Figure 5 shows an example of a sinusoidal AC modula-
tion. This figure was obtained with the ordinary differential equation
(7.2) (see Sec. 7 on the GOEL program). Using the partial differential
equation (2.12) to (2.15) and plotting A' for the 7th cycle, one obtains
Al yalues approximately 207 lower than the corresponding A' values of
Fig. 5, indicating that the relaxed state has not yet been completely

attained after 7 cycles. Unlike Fig. 5, Figs. 6,7 and 8 were calcula-

ted according to Eq. (2.12) to Eq. (2.15).

For low amplitudes the modulation of A' is sinusoidal (e.g., the curve
AT = 5 kA in Fig. 5). For high amplitudes, on the other hand, A' is not
sinusoidal (e.g., AL = 20 kA in Fig. 5). This non-sinusoidal modulation
of A' is due in part to the strong radial motion of the resonant sur-—
face. As a consequence, the mean value <A'>, i.e., A' averaged over a
cycle of the AC modulation, increases strongly with the AC voltage, in-—
dicating that the plasma is destabilized. This behaviour was found typi-

cal for all sinusoidal AC modulations.

Figure 6 shows examples in which the frequency was varied. For higher

frequencies and comparable current modulation the mode 3/1 becomes un-
stable (see Fig. 6b). At even higher frequency, the 4/1 mode is desta-
bilized, so that AC heating of the plasma boundary layers is likely to

be difficult.
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The physical interpretation of the quantity, A', and its mean value,

<A'>, should now be further discussed. As shown previously, A'> Acrit

corresponds to instability [éee Eq. (3.6i], and A' determines the linear
growth rate [éee Eq. (3.451. It is also known [jil that the range of
validity of the linear theory is restricted to very low amplitudes. For

somewhat higher amplitudes the modes grow according to Rutherford's for-

mula Dlﬂ

— = = = —1" A' (w=0) . (3.12)
i )

Even this reduced growth rate, ti’ is, in most cases, much smaller than

the period,t c? of the AC modulation:

A

t. << t . (3.13)

In the case of Fig. 5a, for example, one has

Z 2m _
tA = 2.5 ms,
2
ti = O.6Uuon w/A' = 0.1 to 0.2 ms,
7 =1 =1y
where o0 = 0.2 x 10 (ohm m , at the resonance surface,

u = b 1077 wsalalh,
an'= 14 (for AT = 10 kA),

2 =0.11Tm s




Consequently, as soon as a mode has become unstable, the saturation
amplitude is very quickly attained - if condition (3.13) is satisfied -,

and the magnetic islands develop almost immediately to their full width.

It is therefore of interest to discuss the behaviour of the island width
w. First, there is no direct connection between w and A'. If A' is nega-
tive, the plasma is stable with w = 0, but as soon as A' becomes positive
a magnetic island of finite width, w, forms. In our calculations, how-
ever, we have found both large w together with small A' and, conversely,
small w with large A'. It therefore seems advisable to discuss the be-

haviour of w from examples.

Figure 7 shows the position, ?s’ of the resonant surface and the curves,
?S + w/2 plotted versus "time", t, for typical Pulsator conditions. With-
out AC modulation the mode m/n = 2/1 is unstable at all times and an
island with normalized width, W = 0.2, forms. The island width becomes
slightly modulated by a small AC current (AL = 3.5 kA, Fig. 7a). For
larger AC modulation (AL = 5.2 kA, Fig. 7b) A' becomes negative for a
short time so that the island vanishes. At other time phases the 3/2 mode
also becomes unstable. With even larger AC modulation (AI = 10 kA, Fig. 7c)
the islands of the 2/1 and 3/2 modes overlap. This overlapping is caused,
among other things, by the fact that the resonant surfaces approach each
other closely during the time phase in which the two modes are unstable
and simultaneously have large islands. Our model thus predicts that at
certain time phases stabilization of the 2/1 mode will occur and that at

other time phases the 2/1 and 3/2 modes overlap. It should be possible
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to verify these predictions experimentally because the Mirnov oscilla-
tions should vanish during the stabilized phase and disruptions should

occur during the overlapping phase.

In summary, it can be stated that AC modulation varies periodically

the current profile, and hence the stability of the plasma periodically
improves and deteriorates. The stability depends on a series of factors
e.g., the motion of the resonant surfaces, the steepness of the current
density profile and many others. With sinusoidal modulation these fac-

tors generally tend to cause a deterioration of the stability proper-

ties. It was hoped, however, that the most unfavourable effects will be
minimized by appropriate non-sinusoidal modulation. We therefore investi-
gated numerous non-sinusoidal modulations. We can summarize the most im-—
portant results: with carefully tailored sawtooth modulation of the current
(see Fig. 8a) overlapping of the magnetic islands of various modes did
occur at much higher amplitudes, AI, than for comparable sinusoidal modu-
lation. To obtain this result, we introduced short voltage pulses at regu-
lar time intervals, 2m/w, for the AC component of the plasma loop vol-
tage,

Between two voltage pulses we kept V L constant. These voltage

VPL' P
spikes (Fig. 8a, curve VPL) lead to a sawtooth-like current modulation

(Fig. 8a, curve I__). In Fig. 8 the amplitude of the voltage pulses is

PL
chosen such that the amplitude, AI, of the current modulation is the same

as that in Figs. 6a and 7c for sinusoidal modulation. Comparison of the

two cases shows that:

1) The mean value <A'> is about 6.2 in both cases, irrespective of the
shape of the current modulation. 2) With sinusoidal AC modulation (Fig. 7c)
overlapping of the magnetic islands occurs; with the sawtooth modulation

of the current chosen in Fig. 8 there is no overlapping.
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There is no "genuine" stabilization involved in this case since <A'>
is roughly as large as in the comparable sinusoidal case, but overlap-
ping is prevented because of the larger separation of the resonant sur-

faces during the unstable phase compared with the sinusoidal case.

The opposite case that <A'> is reduced can also be obtained by applying
negative voltage pulses and an inverted sawtooth modulation of the current
[151. In this case, however, overlapping occurs for much smaller ampli-

tudes than for sinusoidal modulation.

While we could improve the stability properties compared to sinusoidal
modulation, we have found no case where the stability was improved over
the DC case, considering both the <A'> criterion and the overlapping

criterion.
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4, Heating Power

Finally, we want to discuss the heating effects associated with AC-
modulation. The primary motivation for this investigation has been to
check, whether the absence of heating effects in the Pulsator experi-
ment is consistent with the prediction of our model. Due to the skin
effect the AC will preferentially heat the outside of the plasma column.
The AC heating competes with the DC-input energy which is transported
through the outside region. We therefore took as a criterion that the
AC heating power has to be comparable with a reasonable fraction of the

DC power input in order to have a noticeable effect.

First, we study how the heating power depends on the parameters. In our
model the total heating power, averaged over a cycle, is

y 2% 2 : 2
<H> = - 3[ d(wt) 47 R gf' dr roE_ . (4.1)

With sinusoidal modulation one has

E =E + E, cos(wt+d) , (4.2)
z o 1

where E1 and ¢ depend on r. The DC component, Eo’ depends neither on

space nor time. We can therefore divide the heating power into a DC

component, Ho’ and an AC component, H1:

<w=H +H , (4.3)

where

a 2

H, = ZTTR{ dr roE, (4.4)
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- X
H4 N 2K R a° Ef';.(a) A (4.6)
x = 1.213 + 0.34 4nQ (4.7)

The two parameters, i and Q, have already been introduced in Egqs. (2.9b)
and (2.18); they are the "essential" parameters of the problem. The

approximation formula (4.6) was obtained from a several examples, the
inaccuracy being approximately 10%. Equations (4.2 to 4.7) are only

valid in the relaxed state. It should be mentioned that this state 1is
reached often only after many cycles and that the heating power, H1,
depends very sensitively on how exactly the relaxed state 1s attained.

In the example in Fig. 7b, H, in the 7th period is about 9 kW, but in

1
the 37th period is about 5 kW. The latter value corresponds very well

to the relaxed state.

The amplitude of the AC modulation and consequently also the AC-heating
power is limited by the development of instabilities, which can lead to
disruptions. In our model this is equivalent to the overlapping of two
islands of different helicities. We therefore have investigated at what
AC amplitudes the islands come into contact with each other and what

heating power corresponds to these AC amplitudes. In the example shown
in Fig. 7b, the DC-power input is 120 kW, while the AC power is 5 kW.

Moreover, Fig. 7b shows that the 3/2 and 2/1 islands are so close that
the AC-power input is at its upper limit. This and similar calculations

showed that for sinusoidal AC modulation the maximum ratio H1/HD is

only a few percent. This result is in good agreement with the experiment.

We mention that for higher frequencies a larger value for the ration
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H1/H0 can be obtained without overlap. For instance, for the same

parameters as in Fig. 7b, but with w/27 = 104 Hz, we obtain H

1~ HO.
In this case the heating power input is limited because the 3/1 and
the 4/1 mode overlap. At the high frequencies, however, it is only

the extreme outer plasma boundary layer that is heated by the AC-mo-

dification and the energy confinement in this layer is very short.

Finally, we obtained considerably larger values of H1 with sawtooth
modulation. This is due to the prevention of overlapping as discussed
in Sec. 3. In the example shown in Fig. 8, overlap does not happen
until H1/H0 > 20%, i.e., more than twice the value of a comparable
sinusoidal modulation (Fig. 7b). But even in this more favorable case,

the heating effects probably would be only marginally observable in our

experiment.

Before we proceed with a detailed description of the computer programs,
we want to summarize the main conclusion of our computation regarding

the physics of the AC-modulation.

(a) Through AC modulation the current density profile in tokamak
plasmas can be quite significantly altered, which in turn significantly
modifies the stability of tearing modes. One of the surprising features

Tetative
of the experiments [j4,1§1 has been the fact that very large AC amplitu-
des could be applied without disrupting the plasma. The computations
showed that although the instability parameter, A', may become very large,
(A" 10—15))0verlap of islands does not necessarily occur. The AC ampli-

tudes which are needed to produce overlap are - according to our compu-

tations - comparable to the experimentally observed amplitudes.
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(b) Overlap should occur when the saturation width, w, of the island
becomes very large and when the distance between resonant surfaces be-
comes small. Both factors seem to be of equal importance. By suitable
shaping of the applied AC-voltage, e.g., by applying a sawtooth shaped
current modulation rather than sinusoidal one, we were able to move

resonance surface apart during the unstable period of the AC modulation.

This method can reduce some of the adverse effects of sinusoidal AC-mo-
dulation. However, we were not able to obtain better stability than with

the DC-current profile.

(¢) The calculations predict that disruptions caused by changes in the
current density profile during AC occur before significant heating is pro-
duced by the AC-modulation. The best heating efficiency was obtained by
sawtooth modulation, and the AC power input was about 207 of the DC power

input.
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FIG. 1a

Scheme of experimental arrangement

standard ., .}
power s ‘.{./
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FIG. 1b

Plasma current IPL and loop voltage VPL

versus time t




FIG. 2
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FIG.3
Current Density Distribution during AC-
Modulation
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FIG. 4

Current densities j0 (= DC) and i, (= AC) versus f =r/a, for

16 x 100 [1. - 1. #2138 [ohm m]™!
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oy = 1.4 x 10’ [1.-0.2 #21%3*2 [ohm m]™' (dashed)
VO = 2.2 Volt

Vo = 50. Volt

%; = 300 sec_]

Ip. = 55 kA

Note: V =V_ + V, cos wt.

PL 0 C

6
5+40 ¢

b
3+40 A
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FIG. 5
1 w -1
AL’ versus pt — = f = 400 sec
o 6 .2.5.76
for IPL = 55.kA Jo(r) =7 x 100 (1.+0.716 1t7)
\ a) m=2 )
2.A m=1 ¥ b n=3
A n=2
Al = 20
Al=4p

[A mhz]

—401
|
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~20 &
Lo, FIG. 6
. AA' versus wt
ad for T
A °F pro
l calculated from
' 2/1 7th cycle
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e R O 3/1 1 %? = 400, sec :
AT = 10.kA
-20.1
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40.1
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3/11Jf(/ T = 4000.sec
0.5 P N e, AL = 8.kA
No—— o
\
\,13/1
-20.

= 55.kA and jo(r) from FIG.5

eq.(2.12 for the

(vgl. FIG.5)



FIG. 7
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- - - W
r, L + und ¥ -~ = versus wt
s s s 2

for three values of the current modulation AI.

N =)

radius of the resonant q surface,

(2}
1}

full width of the magnetic island,

=
I

and W are normalized to the plasma radius.

)

s
The other parameters are the same as in FIG. 6a.

1.
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| T — fir m/n = 3/1
T e C s & B
L —4_ | % o

: \‘\s
- m/n = 3/2
o FIG.7a AI = 3.5 kA
12T wt = 14w
1.
/\/m/n = 3/1
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:‘—:—\7"4__&"‘-\-_
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FIG.7b AI = 5.2 kA

O
o 12« wt — 187
1.
P R m/n = 3/1
. y 5 —
\ ~ n/n = 2/1
7 --.._..L‘-\
beed  ———%SSzaodi n/n = 3/2
FIG.7c AT = 10.xA -
O

1207 wt = b



FIG. 8

Sawtooth modulation of the plasma current.

All parameters are the same as those in FIGS. 6a and 7ec.
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16T

Fig. 8a

plasma current I

PL

loop voltage VPL

versus wt.

and

The amplitude of the

current modulation is

AT = 10. kA,
FIG. 8b

Tsr Ty 2
versus wt.

TR
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APPENDIX: Computer programs

5. GEOPAR program

The figures shown in sec. 3 are calculated with the GEOPAR program.
This program is now described in detail to allow the reader to re-
produce these figures or to produce similar figures with other para-

meters. The program has the following objectives:
1) input and preparation of necessary parameters;

2) Calculation of

radial mesh points,

conductivity,

initial conditions for the field component Ez’
shape factor COSOMZ determining modulation,
current density profile,

heating power,

instability parameters (from FURTH subroutine),

Ez at equidistant time intervals (from PARCYL subroutine)

3) drawing of figures in the ZEICH subroutine; for this purpose the
quantities of interest are stored in the two-dimensional array Z

at the end of the SIGFRI subroutine.

We start with the integer parameters:
M(J) and N(J) are the mode parameters, i.e. the wave numbers of a Fourier
expansion of the helical flux in the poloidal angle and

toroidal angle; see table below in the section of SIGFRI;

NPR(J) the times at which current profiles and instability para-
meters should be calculated, in units of the time step

size DT defined below.



LMA

NP

NT

n

]
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Such a parameter array is necessary because,

on the one hand, DT has to be fairly small for numerical
calculation of EZ, and,

on the other, current profiles and instability para-

meters are only needed after relatively large time intervals;

number of radial mesh points;
number of AC cycles;

number of time intervals per cycle.

The real parameters are now given in alphabetic order:

A = radius for which the profile function for the conductivity
vanishes (in metres); (S$ee F16.9) ;
AL = limiter radius = a (in metres)
the connection with parameter V from eq.(2.2) is explained below;
BTOR = toroidal field in tesla (I tesla = 104 gauss);
FR = AC frequency in s_l =2
2m
P = profile number from eq. (2.2)
RG = major radius in metres;
SIGO = Go from eq. (2.2);
VC = AC voltage in volts;
VG = DC voltage in volts;
RSOND = distance of sond from the plasma axis, this parameter is
not used in this paper.
Other parameters
DR = space step = AL / (LMA -1);
DT = time step = 1 /(FR NT) = 2n/(w NT)[s];
MO =

u from eq. (2.40)= 4n - 10/ in units [22] .
o Am~
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time independent component of the safety factor q.

For q the following equations are valid:

r B 2m B 2

tor tor T
q = % ’ (5‘1)
R BPol Mo R I(r)
2w Btor
where QF g is the space and time independent
Be component of ¢.
and H
I(r) =2n fdr' r' j (¢") (5.2)
o

I(r=a) is thus equal to the plasma current IPL'

[iTJZ =V from eq. (2.2).

0 AL A

illustrates the

significance of AL and A and V.
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2) Ccosomz

The plasma loop voltage is periodic for t 3_t1. We write in the form

VPL = VG + VC COSOMZ.

This equation is also valid for Ez(a) because of eq. (2.13). With

sinusoidal AC modulation one has according to eq. (2.16):
COSOMZ = cos wt;

hence the name COSOMZ. The AC voltage does not, however, have to be
sinusoidal; it may also be sawtooth-like or otherwise. The FORM sub-
routine calculates COSOMZ for one cycle, i.e. for J =1 to J = NT.
Meanwhile there are many such FORM subroutines which are stored in

various AMOS segments, e.g. sinusoidal modulation in FORM6;
sawtooth  modulation in FORM2;

etc.

3) SIGFRI

The SIGFRI subroutine calculates for a given field Ez(r):
the current density profile jZ(r)
the heating power [ dr r Ez(r) jz(r) 4ﬂ2R/1000 [kW]

and, by means of CALL FURTH, the instability parameters

= K

DL(K) Atd

RQ(K) = radius of the resonant Q surface, divided by a
and DE(K) = half island width =% .
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Here the index K gives the number of pairs of mode parameters m, n which

have to be taken into account. In the curves shown in this report these

are:
K m n
1 3 1
2 3 2
3 2 1

SIGFRI is called at two points:
1) as soon as the initial values for Ez are vailable;

2) in the DO-7 loop after CALL PARCYL for the values of Ez calculated
by PARCYL; but, of course, only for those times NPR(LS) for which
the current density and instability parameters are to be calculated;

hence the inquiry in statement ISN 0046 in the main program.

We require various radial mesh point distributions because:

In the FURTH subroutine

the index L = 1 has to be assigned the value T = 0 and

the index L = LMA has to be assigned the value T = 1;

the plasma radius thus has to be normalized to 1.

In the PARCYL subroutine

the value r = 0 has to be in the centre between L = 1 and L = 2

the value r = a has to be in the centre between L

LMA and LMA-1;

R(L = 1) is thus negative.

The parameter JWRITE regulates the printout of the results:
with JWRITE = O nothing is printed out,

with JWRITE > 2 ZEIT, current profile, q etc. are printed out.
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After calculation of the current profile CALL FURTH is given for cal-
culating the tearing instability parameters; the quantities of inter-

est are stored in array Z.

6, Ez R IR

T

F ,
Re ™m0 Ry R Rm Ry

V/

"l.

FIG. 10 For SIGFRI subroutine, DO-5 loop

Figure 10 shows the positions of the R mesh points which are needed
for PARCYL, with R] negative. The hatched surface illustrates the cal-
culation of the current, which with equidistant RL is as follows:

R

M
I(RM) = 27 i dr r o(r) Ez(r)
L
N -
iy IR = 27 DRL}'J=2 RL' SIG. , EZL"

6. PARCYL subroutine

The name stands for PARabolic partial differential equation with
CYLindrical symmetry. The PARCYL subroutine calculates
Ez at time t + DT

from Ez at time t.
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We now describe the numerical method by which this is done.

Given is the parabolic partial differential equation

l_a [r E.E =S EE
r or aT ot
with the
G i oF
boundary conditions == 0 for r =0,
F =G for r = a.

G = G(t) and S = S(r,t) are given functions.
Required F = F(r,t).

In order to solve the equation numerically we approximate the given
differential equation by a difference equation. For this purpose we

introduce equidistant time mesh points and space mesh points r. ; the

I’
rg need not be equidistant. The point ry = 0 has to be left out be-

| : ; ; ;
cause of the factor ¥ in the given differential equation. Let

Fs

F(rJ,t)

d F
an I

F(rJ,t+DT).

The FJ are known, either as initial values or from the previous time
A - .

step; theFﬁ are to be calculated from the FJ. The difference equation

can be divided into recursion formulae, which are solved successively

from the boundary conditions.

First we present the discretization scheme and then the formulation

and rearrangement of the difference equation.

D - i . H :
1scretization scheme ?_9J+1/2 i

d .
)’-- J'--\\/-ﬁJ+|---\
€ —— =} % —o—o J
1 2 J-=1 J=-1/2 J J+1/2 J+1 N N4
! ¢ ! ' '
4o o & - - i
FIG.11

r] 0 r2 rJ_1 rJ rJ+1 a

Distribution of the radial mesh points.
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Figure 11 shows the distribution of the radial mesh points. It must
hold that = -r

1 2
and 2a = Tael + Ty

The other mesh points can

3F/3r, we require the auxiliary quantities
T+1/2 =g (5 + Fye1)
By = B3 " Tqny o
e dye1 = Ty T T

Formulation of difference equation

be arbitrarily chosen. To approximate

. oF | -
We approximate ¢ PP 55 [FJ FJ] ,
| .
S by 5 * [sJ + sJ] i
9 R I oF B BF)
ar [x or by dJ+1/2 (z r ar] [ Br] 2
r+1/2 r+l1/2
e 2y by T2 3 _F ok -F ]
9T 4172 2474 J+1 J J+1 5
9F i o 0 A -’
_ LS O _ -
5 [r 571 Y —3 (Fy_) ~Fp+Fpy ~F5l
r-1/2 J

There is thus a similarity to, for example, the implicit scheme given

by RICHIMYER /11/. Inserting these approximations in the partial

differential equation yields
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By Brpgy * By By 3 BTy = By
where AJ = rJ+1/%/[dJ+l(SJ+SJ) Ky dJ+l/2] >
Cr = Taipgfldy Gp*Sp 15451
BJ:—AJ—CJ"RT
RT=]/DT
and DJ = AJ(FJ - FJ+]) + CJ(FJ - FJ—I) - RTFJ .

These equations are further rearranged to give the recursion formulae

-~ -~

F_ = HJ F + U

J J+1 J
with U, = @, -U,_, ¢/, +c i H )
and Hy = - A, JB, +c H_ ).
From the boundary condition F, = F2
it follows that = ]
and = 0.

This allows all UJ and HJ to be calculated in succession. From

the boundary condition F(r = a) = G

. | - -

it follows that 5 (FN + FN+]) G
& 2G-1

and F SR .
N+1 1 + HN

This also allows the FJ to be calculated in succession. This

algorithm was provided by }. DUECHS.
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C GOELER®S PHASENBEZIENUNG, SEGMENT G 0 EP AR

KEAL®4 10 , JZ(202) 4 LAMBDA , MO

DIMENSION COSOMZ(637), S(57T)y HPRITT)

COMMON /SIF/ EZ(57), R(57), RDL202), SIG{57)s Z{LiTy77)
1 4A,AL, BTOR,DR,DT, FR,0M,P,QF, PG,RSONG, SIGC, VERS, VC.VG, ZEIT
2 y MI(4), NI(4), LMA, NPy NT

COMMON /FUR/ DE(5) , DL(5) ; RQ{(5) , SHEARIS;

READ 180y (MI{J);d=1,33) 4 (NI(J)sJ=1,3)

PRINT S1

READ 180, ( NPRUJ), J=1,2T7)

PRINT 180, ( NPR(J), J=1,2T7)

10 READ 312, LMA, NP, NT, A,AL, BTORjs FRyP,RGy RSONLCy SI1GO, VC, VG
L1 = LMA + 1
MO0 = 1le25664E-6
SIGO = SIGO * 1.E7
OM = 6.2832 * FR
UMFANG = 602832 * KG
QF = 602832 = BTOR / (MO *RG)
DR = AL / (LMA - l.)
DY = 6.2832 /( 0OMx NT)
VERS = (AL/A)=%=*?2
EC = VC / UMFANG
EG = VG / UMFANG
DD 2 L=1,L1
R(L) = DR={ L - 1.5)
RD{L) = R(L) / AL
BASIS = la— VERS* RD(L)*%*2
SIGIL) = 0.
IF ( EASIS. LEe leE=6) GO 10 1
SIGIL) = SIGO = BASIS%x%p
1 S(L) = MO = SIG(L)
2 EZ(L) = EG
CALL FORM ( COSOMZ 4 NT )
PRINT 92
PRINT 110y, (COSOMZ(J)s J=14NT)
ZEIT = 0.
EL = 0.
LS = 1

CALL SIGFRI ( JZIy Q; LS)

Do 7 JP=1,NP
DO 7 JT=1,NT

ZEIT = ZEIT + DT

ED = EG + EC* COSCMZI(JT)

CALL PAPZYL ( EZy, Sy DR, EL, ED, RT, LMA)
J = JT + {(JP-1)=NT

IF INPR(LS)e HNEs J) Go 10 7

LS = LS + 1
CALL SIGFRI ( JZ , Q 4 LS)

7 EL = ED
LAMEDA = 1./( AL® SQRT( MO *=SIGO =FR * 6.28322))

PRINT S8

PRINT S5




ISN
ISK
ISN
ISN

ISN
ISN
ISN
ISK
ISN
ISN
ISN
ISN
ISN
ISKN
ISh
ISN
ISN
ISN
ISKN
ISN
ISN
ISN

ISH

ISN

ISN
ISKN

ISN
ISK

ISN
ISN
ISN
ISN
ISN
ISN

0054
CC55
CC56
0C57

cos8
0cs59
0060
0061
00¢2
00¢3
CC64
00¢s
Co6&6
0cetT
0068
0C6S
Cc7o
0071
CC?2
cor2
0074
cc1s

CO07¢

CC77

CCc78
0C7s

ocac
0081

ocs2
0G83
0084
0CES
ccso
CCET

PRINT 313,
PRINT 101,
PRINT G3
PRINT G4, [
1 y
DO B L=
8 PRINT 107,
DM
HH
SH
DO 9 L
SHM
DM
9 HM
HM
DM
SM
PRINT 103,
CALL ZEICH
GO TO 10
51 FORMATI(/10H
G2 FORMATI(/10H
93 FORMAT(/123H
1 RADIUS DE
2551))
94 FORMATI/9H

(N T [ | Y T L B [

—
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LMA, NP, NT, As,AL, BTOR, FR,P,RGs A30'Dy SIGO,
VERS , DT , LAMBDA

UI0J)y NI(JY, J=1,3) 4 (MI(J}s NIGJi, J=1,3)
MICJ)y -NICJ), J=1,3) 5 (MI{J)y NIQJ)s J=1,3)
1,LS :

( Z{K,L) 4 K=1,16)

O

0.

0.
84L5

SM & (Z(14,L) + Z(l4,L=1)) * (Z{1,L) -2
DM + (20 4,L) & Z0 4,L-1)) = (Z{1,L)

HM + (Z015,L) + Z(15,L-1)) * (Z(l,L) = Z
HM % 0.0765775

DM * 0.0755775

SM * 0,0795775

DM, SM, HM

Zs Te LS

NPR)
COSOMZ)

D

E LS
R Q-FLAECHE DB/B (%) (KA) (KW)

VCy+ VG

I NS E L BREITE

(GAU

OMT15,11,15,11,15,11,19,11,16,11,16,11,19,11,15,1

11,154 11419,11,15511415,11427H IR HEIZ BTHETA)
95 FORMATI(/102H LMAX NP NT A AL BTOR FR
1 p RG P.SOND SIGO vC VG }
98 FORMAT (1H1l)
101 FORMAT(/12H VERS=4yFT7e2512H DT=41PE9.24,12H LAYBDA
1=, 0PF 7.4
103 FORMAT(/46H VALUES AVERAGED OVER ONE PERIOD DM=g F4. L,y
147X, ZF8.1)
107 FORMAT( F10,3  3F6el 5 F1l0e3y 2FTe 3y FlCe2y 2Fbe2y Fl0.3, 2F7.3
. 1 s 4FB8.2)
110 FORMAT( 10Fl2.4)
111 FORMAT( Fl2.3, 1Pl1E10.2)
18C FORMAT( 1814)
312 FORMAT{ 314 , 10F6.2)
313 FCRMATI( 110, 216, TF8e2:s 1PE9s2y OFP2F8.2)
END
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ISN 0002 SUBROUTINE SIGFRI ( JZ, Q, LS)

1SN 0003 REAL* 4 IR , JZ(202)y JIH

ISN CCC4 DIMENSIDN RFI(2C2)

1SN 0005 COMMION /JFUR/ DE(5) , DL(5) , RQ(5) o SHEARI(5)

ISN 0006 COMMON /SIF/ EZI(5T)y R(5T7), RD(202), SIG(5T), Z(17,77})
1 ;A;ALy, BTOR,DR,DTy, FR;OM,PsQFy RGyRSONDy SIGO, YERS, VC,VG, ZEIT
2 g MI(4)y NI(4)ey LMAy NPy NT '

ISN CCC7 JHRITE = 0

ISN 00C8 OMT = OM = ZEIT

ISN CCCS IF (JWRITEe LE. 1) GO 70 1

ISN 0011 PRINT 98

ISN 0012 PRINT 101, LSy ZEIT, OMT

ISN CCl3 PRINT 92

1SN COl4 PRINT 313, LMAy NPy, NT, A,AL, BTDRy FRePsRG, RSOND, SIGO, VC,y, VG

ISN 0015 PRINT 94

ISN CClé PRINT 1lll, VERS

1SN 0017 PRINT 93

ISN 0018 -1 SJ = 0O

ISN CC1l9 HEIZ = Q.

ISN CD20 DO 5 L=1,LMA

1SN CC21 RM = 0.5« ( R(L) + R(L+11})

ISN 0022 RFIL) = 0.5% { RDIL) + RDI(L+1))

ISN 0023 SIGM = 0e5% (SIGI(L) + SIGIL+1)})

ISN 0024 EZM = 05%« ( EZ(L) + EZ(L+1l)})

ISN 0025 JZ({L) = SIGHM * EIM

1SN 002¢ SEP = Qe

ISN C027 IF (Le LEa 1) GD TO 4

ISN ©C29 SER = SIG(L) *= EZ(L) = R(L)

ISN 0030 4 Sd = SJ + SER

ISN 0021 HEI1Z = HEIZ 4« SERx EZ(L)

ISN 0032 IR = 6.2832 * DR % S§J

ISN C033 Q = QF = RM*x2 / ABS( IR 4 leE-T7)

ISN 0034 IF ( JWRITE. LE. 1) GO TO 5

ISN CC36 PRINT 111, RFI{L)y RM vy EZ(L)y JZI(L)y IRy Q

ISN 0C37 € CONTINUE

ISKN 0038 HEIZ = HEIZ * DR * 0.039478 * RG

ISN CC39 CALL FURTH( RFy JZy LMA y Q) —ley 100, Dey MI, NI, 3}

ISN 0040 RSP = AL / RSOND

ISN-0041 FAKTDR = 1,25E+6 *RSOND =BTOR /(AL #*RG *IR}

ISN 0042 Do 7 K=2 ¢4

ISN 0043 Kl =K + 3

ISN CC44 K2 = K + 6

ISN 0045 K3 =K + 9

ISN G046 M= HI{K-1]

ISN CO047 Z(K1l,LS) = DL(K-1)

ISN CC48 Z(K2,LS) = RQ(K=-1)

ISN 0049 Z(K34LS) = SHEAR(K-1) * RQ(K=1) * DL(K=1)*=%2 * A|*%2 & FAKTOR
1 * M ® RSPpx%M = 100, )

ISN 0050 1 Z{KeLS) = DE(K-1)

ISN QODE1 Z{14LS) = OMT

ISN 00E2 Z014415) = IR * 1.E-3

ISN 0053 Z(15,LS) = HEIZ

ISN CC54 Z(16,LS) 2.E-3 * IR / RSOMND
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ISN CO055 I(17,4,LS) = 3.14
ISN 0056 RETURN ‘
ISN 0057 92 FORMAT(/102H LHMAX NP NT A AL BTOR .FR
I} P RG RSOND SIGO vC YGi
ISN 0058 93 FORMAT(/60H RD RM £l JZ IR
1 Q)
ISN 0G59 94 FORMAT(/10H VERS )
S8 FORMATI( 1HL)
%gg gggg 101 FORMAT(/9H LS=,12,410H ZEIT=41PE10.3,10H OMT=,0PF7.3)
ISN 0062 111 FORMAT( Fl2.3, 1P11E10.2)
ISN 0063 313 FORMAT( 110, 216y TF8.2y 1PE9.1l, OP2FB.2}
ISN 0064 END
ISN C002 SUBROUTINE PARCYL ( Fy Sy DRy Gy GD, RT, N)
1SN 0003 DIMENSION FU57),; FDU57)y S(5T)}, SDI(57)
1 » ALS5T) 4 BU57)y CU(57) 4 DUS7)y HUS5T)y U(ST)
ISN 0004 FIN+L) = 2.%G = F(N)
ISN 0005 DD 1 J=1,N
ISN 0006 DRS = DR#**2 * (J = 1,5) = (S(J) + S{J))
ISN COO07 AlJ) = (J - 1l.) / DRS ;
ISN 0CO08 CtJ) = (J - 2.) / DRS
ISN CCCS ; - BUJ) = = AlJ) = C(J)} = RT
ISN €710 FM = F(1)
ISN 0011 IF { Jo LE. 2) GO 70O 1
ISN CC1l2 FH = F(J-1)
ISN 0014 1 DUJ) = A(J)={ F(J} =F(J+1)) + C{JI*={ FiJi =FM) = F(J)%RT
ISN 0015 H(1l) = 1.
ISN 0016 utL) = Q.
ISN 0017 po 2 J=24N
ISN 0C1l8 BCH = B(J) + ClJ) =H{J-1)
ISN 0019 UtJ) = ID(J) = ClJy=yutJ=-1)) / 8BCH
ISKN 0020 2 H(J) = - AtJ) / BCH
ISN 0021 FDIN+1) = (2e%=GD = U(N)}) / (leo+ HINI})
ISN 0022 po 3 J=1,N
ISN 0023 K=HN+1-1J
ISN 0024 3 FDIK) = HIK) ®=FD(K+1) + UI(K)
ISN 0025 DD 5 J=1,N
ISN 002¢ L F(J) = FD(J)
ISN 0027 RETURN

ISh 0028 END
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0co02

0003

C004
0005
0006
ccer
cces

ccos

0010
cCci11l
col12
0013
CCl4
0015
CClée
0017
cols
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SUBROLTINE FURTHIRI ;AJ,NPINyQB,BW,NP,JOT AD,; MI (NI «LiHN ]
TEARING MOCE STABILITY IN STRAIGHT CYLINDER
FCLLOKWING GLASSER, FURTH,; RUTHERFORD
STORED IN KAL:FURTHs FURTH; FILE SHARED BY ALL AMOS USERS

MEANING OF INPUT PARAMETERS

|
I
f
|
|
|
|

RADIAL COORDIMATE NOP.MALIZED BY PLASMA RADIUS A

C

c

C

Cc

c

C

c

C RI eees RADIAL COORDINATE CF PCINTS IN WHICH PLASMA

c CURRENT DENSITY IS GIVEN

c AJ eeee VALUES OF CURRENT DENSITY IN POINS RI (IN ARBI-
C TRARY UNITS

c NP IN eees MUMBER OF POINTS OF RI,AJ

c mkkkkkximk R (1) MUST BE O« RINPIN) MUST BE lo**«e¥xxxx

c QB eses Q@ DOF PLASMA CURRENTS AT PLASMA BOUNDARY

c BH eees RADIUS OF CONDUCTING WALL (SPECIFY A NEGAT. VAL-
c UE IF NO CONDUCTING WALL PRESENT)

C NP esse MR OF GRID POINTS USED FOR COMPUTING MARGINAL

C MHD MODE IN BOTH INTERVAL (04R SINGULAR) AND IN
o (R SINSULAR, 1)

c JOTAO esee JOTA OF EXTERNAL WIKNDINGS

Cc MI NI eees VECTORS OF THE (M,N) VALUES FOR THE MODES TO BE
c EXAMINED

Cc NMN eess NUMBER OF (MyN) PAIRS TO BE EXAMINED

C

— —— —— —  ——— — — — — . T ———————  ——— — . -

REAL*4 RI(202), AJ(202),AJ2(202),DU1(202),DU2(202)+Q(202),Q2(202),
X AL {8028),R0202),Y(202),YSING(202),YTOT (2021},
X RL(202),RR(202),YDL(202),YDR(202]
REAL*4 JOTAQD
DIMENSION XP{21), YP(21),XZ(2),YZ(2) ,XX(2},YX(2), TEXT(5)
CCMMON /FUR/ DE(5) s BR(5) y RQ(S5) o SHEARI(S)
INTEGER*4 MI(4),'11(4),I0UTP(4])
DATA ERRDOR/1l. E-C5/

C i e e i e o
RHSIRD) = =(l AKS = G = (RD-RS))}/(RD=-RS}
X + ALL = AKS* ( AKSP+A2ZMP1/RD-G*(RD-RS} 1))
X 4+ (RD-RS)=ALL x ( AKS* AKSP® ( A2MP L /RD-o 5%G*( RD-RS)))
X + 1.5%=AKS*AKSP + A2MPL/RD®AKS
X 4+ o5%(RD-RS)*AZ2MP1/RD*AKS=AKSP)
C s — ——— - S — . — . - -
c ____________________________ ——————— . — —— —— > —— T - —
C SPLINING OF CURRENT PROFILE
(e o e o e e e e . e 6 e e B e B e o e e e . e e e o e e
DD 1 K=1,5
DEI(K) = Q.
BRIK) = 0.
RCIK) = 0O
1 SHEAR(K) = Q.
AJ2(1l}) = 0.

D2 = RI(NPIN) — RI(NPIN-2])

D1 = RI(NPIN) = RI(NPIN-1)

AJ2(NPIN) ={AJ(NPIN=2}*D1*%2 —AJ(NPIN-1)*D2%%x2
X +AJINPIN)*(D2¥*2-D1%%2] )




ISN

ISN
ISN
ISN
ISN
ISN
ISKN
ISN
ISN

ISN
ISKN
ISN
ISN
ISN
ISN
ISKN

ISN
ISN
ISN
ISN
ISN
ISA
ISN
ISN
ISN

ISN
"ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISKN
ISN
ISN
ISN
ISK
ISN
ISN
ISKN

ISN

cC1l9

oczo
coz1l
0022
coz22
0024
0025
Cc2é6
0027

0028
coz29
0030
0021
€c22
c033
0034

0035
€036
0037
cc38
0039
0040
0041
0042
CC43

C044
CC45

0046
€048
0C49
CC50
Co51
0053
CC54
0055
CC56
00517
CGc58
CC55S
0061l
00&3

0064

e e e

bt

X /(D2¢*24D1-D1#%2%D2)
CALL CUBIC3(HPIN,"1,AJ5A402,0U1,0U2)

C CCMPUTATICN DF Q —=PRNFILE AND RESCALING TOF J

C

111

112

Qll) = 0.

DD 111 1 = 2,NPIN

DX = RI(1) =RI(I-1)

A (AJ2(1)=-AJ2(I-1))/(6+%DX)

B «S*¥AJY211-1)

c (AJ(I)=-AJ(1I-1))/DX — DX/6a * (AJ2(I) + 2.*AJ2(1-1))
D AJ(I-1)

Qi1 = Qt1-1)

X+ ((((02%A+DX + 0o25%(A*RI{I-1}+8) )*DX

+ (B&RIII-1)+C}/3.) #DX
+ 0.5 *(C*RI(I-1)+D)}*DX

+ D*RI(I-1))*DX

nmnwnn

> < X

CONTINUE

COEF = le/(602831853%Q(NPIN))
DO 112 1 = lyNPIN

AJ(T) = AJUT)*COEF

AJ2(TI} = AJ2(1)=*CQOEF

Qil) QB/13.1415926FAJ(1))
Q(l1) QiL)y 71(1, +O(11*JOTAD}

non

C
C===

113

—— ez - -— - ——— — ———————

COEF = QB*QINPIN)

DO 113 1T = 2,NPI}

Q(I) = COEF=RI(I)*%2/Q(I)

Q(I) = Q(I)/(1.+4Q(1}*J0TAD)
CONTINUE

Q2(1) = 0.

Q2(HPIN) = 2.%=QB

QBB = QB/(le.+ QB8<JOTAQ)

CALL CUEIC3(NPIN,RI,Q,Q2,0Ul,DU2)

- e

st s i e s e o e i
C CHOICE OF Hy;N - MODE AND LOCATION DF RESONANT SURFACE

e e e e s e

IMN = 0

IMN = TMN + 1

(5 s e - R — -

221
222

202

IF(IMNeGTsNMN)IRETURN

M = MI[IMN)

N = NI(IMN)

DLL=Q.

IF (BWeLT<0.) GO TO 221

GAM = Me(lo +BW=(2%M) )/ (lo—BH*x(2%M))
GO TO 222

GAM = =M

CCNTINUE

A2MPLl = 2=M+]

QRES = FLOAT(M) / FLOAT(N)

IF (FeLTeaN=Q (1)) GO TO 201
IF (MaGT. N=QBB) GO TO 500

RRES = (QRES-Q(1))/(Q(NPIN)} -~ Qf1))

s e s e . T ——— - —————— . - ——— ——— -

CALL ODINT (R1I,Q,Q2,MPIN,RRES,;QR,QDR,IFL2G




ISN
ISKN
ISN
ISh
ISN
ISKN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISK
ISKN
ISN
1SN

ISN
ISN
ISN
ISKN
ISN
ISN
ISK
ISN

ISN
ISKN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISKN
ISK
ISA
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN

ISN
ISK
ISN
ISN

0065
Cloé
0ceB
CC70
CC71
0072

CC4
CC75
0076
co77
0078
6C79
0080
ccsl
ctez
0082
Cce4

0c8s
ocee
ocav
cos8
CcC8S
Co0s0
Co091
ccs2

0093
CCS4
0C9c:E
Ccsé
00s7
0098
ccas
0100
0101
0102
0103
0104
0105
0lCcé
01C7
0108
0109

0110
0111
0112

0113
0114
0115
0l1¢
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RNEW = FRES # {QRES-QR)/QDR
IF{RNEWeGTale ) RIUEW = o5%(1.+RRES)
IF (RNEW.LTe0.) RNEW = o5%RRES
DEL = RHNHEW - RRES

RRES = RNEZW

IF (AES(DEL).GT .CRROR) GO 7O 202

- -

——————— -

c o i el mar B ———— - - -
C SOLUTIGN FDR THE REGIDN R < RS
C S i e s e s e gl ks - R
€02 RS = RRES
DR = RS/(!HP+.5)
R{1l) = .5%DR
DO 211 1 = 24NP
211 R(I) = R(I-1) +OR
CALL CDINTY (R1,48),AJ2,NPINsRS,y ARy ADR,IFLAG]
CALL CLINT (RI,Q Q2 ,NPIN;RS;QR;QDR,;IFLAG)
SHEA = QDR / QRax2
AKS= —=56.2B31853 = QPR=ADR/ (QB*RS=N®=QDR) *M
AKSP = AKS - A2MP1/RS
R(NP+1) = RS
c________ __________________________________________________________
C SET-UP OF CDEFFICIENT MATRIX ACCORDING TO 18 OCT/4 - 1976
c— e R ———
DL = 2. *R(1)
CALL CCINT (RI;AJ,AJ2,NPINyJR{1),AR{ADR,IFLAG)
CALL CDINT (RI¢+Q Q2 yNPINJR({(L)sQRyQDRyIFLAG}
G = 62831853 =* QR=ADR/ (R(1)=QB*(M-N=QR }} =M
ALL = ALOG (RS=R{1l))
All2) = =1le —AZMP1l - G*DL**2
Al(3) = 1. + A2MP1
All4) = DL*=2%RHS(R(1}) — DL*(le—A2MP1}*AKS*{ALOG(RS) + le
X =AKSP ®= RS ¥ (ALOG(RS) + .5))
DO 301 I = 24NP
NO = 4*%(1-1)
DR = R{I+1)-R(1I)
DL = R{I}) = R{1I-})
CALL CDINT (RI,AJ AJ2:NPIN,R({I);AR,ADR, IFLAG)
CALL. GDINT (RI,Q +sQ2 yNPINsR{I}yQRsQCRsIFLAG)
G = 602831853 * QR*ADR/ (R(I1)=QB*{M-N=QR })1*M
ALL = ALODGIRS=RI(I))}
A1(NO+1l) = (2o = A2MP1/R(1)=DR)=DR
Al({NO+2) =(-2. + A2MP1/R{I)=(DR-DL) ~ G®=DR=0OL}*(DR+DL)
A1(ND42) = (2. + A2MPL1/R(I)*DL)=DL
Al1(NO+4) = DR=DL*(DR+DL)*RHSI(R(I))
301 CONTINUE
CALL LGLSS(ALsY4HP=1,0.56)
DO 302 I = 1,4NP
ALL = ALDG(RS=R(I))
YSING(I) = lo+AKS*(R{I)-RS)*ALL
X + oS¥AKS=AKSP =(R{I)-RS)=%2%xALL
YTOT(I) = (RUI)/RS)==M *(Y(I) + YSING(I)]}
202 CGCKNTINUE
311 ¥S1 = (YINP=1) = 4.%Y(NP)) /{2.*¥({RINP) = R{NP-1}))
c ______ p——

NPP1 NP+1

DELL DR

DO 321 1 = 1,NP
RL{I) = R(])

——— i ———— -



ISN
ISKN
ISN
ISN

ISN
ISA

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISA
ISN
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ISN
1SN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISh
ISN
ISKh

ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN

o117y
clls
Cl1s
cl20

0121
0122

o123
0124
012%
012¢
0127
o128
0129
0130
0121
0132
0133
0134
0135
0136
0137
0138

.013s%

0140
0141
0142
0143
0144
0145
0146
0147
0148

0149
€150
C151
012
0153

0154
€155
C156
0157
0158

0159
Cle0
olél
€162
0163
0l64
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321 Y(1) = YTOTII)
RLINP<+1) = RS
Y{NP+1) = 1.
CALL DET3(DRsY,YDLsNPP1,IER)

C STATEMENTS TO ADD IF DPSI/DR / PSI USED

Cc DO 325 1 = 14NPPL

C 325 YOL{I) = YDL{TI)/Y(I)

C —_ — e e e i i i e B
YD1 =Ce
Y0oD = 1l

[ — o e goe oot e s e s A Yo 4

C SOLUTION FDOK REGION R > RS

c ______________________________
NR = NP + 1
DR = (1.-RS}/ (NR-.5)

NRP1 = HR + 1
R{1) = RS
DD 401 I = 2,NRP1
401 RI{I) = R({I-1) + DR
DO 402 I = 24NR
= 4%(1-2)
DR = R{I+1)-R(I)
= R(I) - R(I-1)
CALL CDINT (RI;AJAJ2,NPIN,R{I)},AR,ADR, IFLAG)
CALL ODINT (RI QG 4Q2 ,NPIN,R(I),QR,QDR,IFLAG])
G = 6.2831853 * QR*¥ADR/ (R(UI)*QB*{M-N*QR )}*HM
ALL = ALOGI(R(I)=RS)

A1(NO+1) = (2. = AZ2MPL/RII}*DRI¥DR
AL(NO4#2) =(-2. + A2MP1/R(I)*(DR-DL) - G=DOR*DL)=(DR+DL])
ALINO+3) = (2. + A2MPL/R(I)*DL)=DL
AL{NO+4) = DR*DL*(DR+DL)*RHS(R(I))
402 CONTINUE
Alll) = Oa
NO = 4%(NR-1)
AL1({NO41) = —(1le+a5*DR* (GAM=-M])
Al(ND+2) = le=o 5%¥DR*[GAM-M)
ALINO+3) = 0.
ALL = ALOG (l.-RS)
AL(ND+4) = -DR* (AKS*{ALL+1.)+AKS*AKSP*(1.~RSI*(ALL+.5)

"X = (GAM=M)*{lo+AKS*(1 ,~RS)*ALL + 5%AKS*AKSP*({1l.-RS)=*2*ALL))
CALL LGLSS(ALsYHR-1,0646)
DO 404 I = 2,KR
J=1-1
ALL = ALOGIR(I)=RS)
YSING(J) = 1, +AKS*(R(I)-RS}*ALL
X + o5#AKS*AKSP ®(R(])-RS)*%x2%ALL
YTOT(J) = (ROI}/RS)*«H =(Y(J} + YSING(J]})
404 CONTINLUE
411 YS2 = (44%Y(1l} = Y(2))/ (2.=(RI2]}=R{1})])
N9 = NR = 1
SHEAR({IHN) = YTOT(N9) *= SHEA

RR{1) = RS
YSINGI1) = 1.
DELR = DR

DO 421 1 = 2,NPPL
RRII} = RI(T)
421 YSINGI(I) = YTOT(I-1)
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ISK
ISN
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ISKN

ISN

ISN
ISN
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ISA
ISN
ISK
ISN
ISN
ISN
ISN
ISN
ISN
ISN

0165

0166

0167
€169
0170
Ci72
Cl173
Cl74
0175
(176
C177
CL78
€180
Clsl
c1s2
0183
Cla4
01E5
cl86
€187

clss
6150
o191
Clg2
0163
0194
0195
0156

0i98

c1s9
c20c
0202
0203
0205
0206
€207
0208
02Cc9
0210
0211
D212
0213

C

aNeNaNaNaNe

C
c
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CALL CET3(CR,YSING,YDR,NPP1,1ER)
STATEMENTS TO ADD IF DPSI/DR / PSI USED
DI 425 1 = 1,APP1
425 YDR(I) = YDR(I)/YSING(I)

—— e — i ——— L . e e S - - i - —

DELS = YS2 - ¥S1

IFIDELS «eLTo0.) GO TO 210

DEL = DELL

IF(DELR.LT.DELL} DEL = DELR

DLL = DEL
REL = RS-DLL
RER = RS+DLL
CALL ALI(REL,RL,;YDL,YDEL,NPP1,IER])
CALL ALI(RERgRR,YDR,YDER,NPPL,IER)
DELSL = YNER - YDEL

IF({DELSL.GT.0} GO TO 461

GO TO 210

461 CONTINUE

CLL

DLL + DEL
REL RS-DLL
RER RS+DLL ’
CALL ALI(REL,RL,YDL,YDEL,NPPL,IER)
CALL ALI(RERy;RR,YDR,YDER,NPP1l,IER)
DELSL = YDER - YDEL
X + M*AKS/P.S
Xe{ ({RS+DLL)/RS) *=(M=1)*(DLL*ALOG(DLL)* 0, 5=AKSP*DLL**2« ALOG(DLL))
X +{(RS=DLL)/RS)** {{4=1 ) > (DLL*ALOG(DLL )=0e 5=AKSP*DLL **2%xALOG(CLL) )
X + AKS
X { {{RS+DLL)/RSY%*M =[ ALOGIDLL J+1o+40o5%AKSP*(2,=DLL#ALOG(DLL)+DLL))
X=({RS—DLL)/RS)I==i{ *(ALOG!OLL) +1o-0e5%AKSP=(2,xDLL=ALOGIDLL)+DLLI))
IF(ABS(DELSL) «GE.(100.,*ERROR®DELS 1} GO TO 472
462 CCHTINUE
GO TO 210
472 IF (DELSL) 473,452:474
473 DLL = DLL - DEL
DEL = 0.5=DEL
GO TO 461
474 ITF{{RELaGTeRL[2))eANDe (RERsLTeRRINP=1}}} GO TO 461

W nu

c._..... ________________________________ = ————— . ——
GO TO 210
i, DO e S A — I
SCLUTION IF Q RES IN VACUUM
c__ _____________________________________ - -—
500 NR = NP

IF (JOTAD*QRES.GE.ls) GO TO 505
RS = SCRT(QRES/OB/(1.-JOTAD=QRES))
IF ((BheGTeDe) « ANDe (RSGT.BW)) GO TOD 201
GAM = 2,%MaRS==(2%M)/(]l.—RS==(2*M))
DR = 1./NR
R{1) = <5*DR
NRPL = NP+l
DO 501 1 = 2,NRP1
01 RIUI) = plI-1} #+CR
CALL ODINT (RIsAJ,AJ2,NPIN,R(1),AR4ADR,IFLAG)
CALL CLINT (RI»GQ ,Q2 sNPIN,R{1),QR:+QDRy IFLAG)
G = 6.2831853 * QR*ADR*M/ (R{1)«QB=(M-H¥CR))
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e e
1SN 0002 SUBROUTINE LGLSS(A, X, NEPS,NOUT)
E LOESUNG EINES LINEAREN GLS A*X=D ,A:TRIDIAGONALMATRIX
C  AUF A WERDEN DIE KOEFFIZIENTEN JEDER GLEICHUNG
€ ALI)®X({I=1)+B{I I=X{I)+CUI)AX(I+1)=D(1)
C  FINTEREINANDSR GESPEICHERT.
C DIE SPEICHERBELEGUHG SIEHT ALSO SO AUS:
c 1. ZEILE VON At *;A(1)1A(2)1e0c0ccccsnsadlN)
C 2 s A* B(0)sB(1)4B(2)secesssenveBlN}
C 3. ' 80 AT CL0),CUL)4C(2),00aCiN=1), *
C 4, e (K] A: D(0)sD(1)yD(2)yevecacaasD(N]
C A WIRD ZERSTOERT
C X ENTHAELT DIE BERZCHNETE LOESUMNG
C  EPS: 0J-SCHRANKE
C NOUT: ALSGABEKANAL
c : .
E FEHERRURG DAS DURCHGEFUEHRTE VERFAHREN IST IN RICHTMYER HORTON :
¢ "+ DIFFCRENCE METHODS FOR INITIAL VALUE PROBLEMS®
TE 199 FF BESCHRIEBEN .
g Sfé SBIGEN BEZEICHNUNGEN ENTSPRECHEN IN RICHTMYER MORTON:
C A(d) : =C L1
ISN 0214 DL = 2.*R(1) : i
ISN 0215 AL(2) = -1,-A2MP] - G#DL%%2
ISN €216 A1(3) = l.+A2NP]
ISN 0217 Al(4) = 0.
ISN 0218 DD 502 I = 2,NP
ISN 0219 NO = 4*(]-1})
1ISN 0220 DR = R({I+1)=R(I)
‘ISN 0z21 DL = R(I) - R(I-1)
I'1sn 0222 CALL ODINT (RI,AJ,AJ2,NPIN,R(T),AR,ADR, IFLAG)
ISN 0223 - CALL CDINT (RI4Q ,Q2 yNPIN,R(T),QR,Q0R,1FLAG)
ISN 0224 G = 642831853 * QR*ADR*M/ (R(I )*QB*({M=N*QR) )
1 ISN 0225 AL(NO#1) = (2. - A2MP1/R(I)*DRJ=DR
1 ISN 0226 AL(NO+2) =(-2. + A2MPL/R(I)*(DK-DL) ~ G*DP*DL)*(DR+DL)
[ ISN 0227 AL(ND+3) = (2. + A2MPL/R(I)*DL)*DL
1 1SN 0228 502 Al(NO+4) = Q.
1 ISN 0z25 NO = 4% NP
ISN 0230 . ALIND+1) = =[1.+s S*DR*GAM)
{Isu 0231 ALINO+2) = 1.-,5%DR&GAM
ISN 0232 Al1IND+3) = 0.
}zsn 0233 AL(NO+4) = -DR*GAM/RS*=M
ISN 0234 CALL LGLSS{AL ¥ 11P ;0. 46)
T1sn 0235 DO 504 I = ],NR
ISA 0236 YSING(I) = O,
ISN 0237 YTOTUI) = R(I)*kpMxy(])
ISN 0238 504 CONTINUE
§ISN 0239 511 DD = (RS/BH) = (2%M)
ISN 0240 IF (BkelT.0.) DD = O,
}ISN 0242 DT = RS=k(2eM)
JISN 0243 DELS = M/RS =((DD+1)/(0D=1) - ({Y(NR) + Y(NR+1}}*RS**M - 2.%DT)
X / {1e=-DT) + le)
l1sN 0244 505 CONT INUE
ISN 0245 210 CONTIAUE
1ISN 0246 DE(IMN)} = DELS
ISN 0247 BROIMN) = DLL
"ISN C24€ RQIIMN} = RS
ISN 0249 81 FORMAT(/40H IHN DELS DLL RS)
1SN 0250 82 FORMAT( 110, 5F10.3)
ISN 0251 GO TO 201

ISN 0252 END
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ISA
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0002
coo3

C004
C005
0007
cces
GCOosS
colL1l
CCl2
0012
0014
c015
0016
CC17
o018
CC1s9
0C2cC
o021
coz2

0002

CCC3
0004
CCC5
coce
0007
cccs
coo09
0010
0011
Co13
COl4
CC15
0016
cC17
cols
CCl9
CC20
coz21
0022
ccz3
0024
co2s
0026
0027
cozs
cozs
€c30
cc2i1
0oz2
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SUBROUTINE ODINTIX,F;FDDyNPXPFPFDZ, IFLAG)
DIMENSION X(1),¥(1),FDD{1)
[ — e > e e o ———————
C GIVEN A FUNCTIDY F AND ITS SECOND DERIVATIVE FDD IN
C KNP PDINTS X, COMPUTSS THE FUNCTICH AHD ITS FIRST
C CERIVATIVE IN XP
S o S N R S - _—
IFLAG = 2
IF{(XPalTeXl{1))eDRalXPoGTaXINP)]Y RETURN
IFLAG = 1
DD 101 1 2y NP
IF (XP-GTX(I)) GD TO 101
DX = X(I) - X(I-1)
& (FCD(I) = FLO(I-1)) / (6.%DX)
B 0.5 =FDD(I-1)
C (FII)=F(I-1))/DX — DX/6.*(FDD(I) + 2.,*%FDD(1I-1))
D Fii-1)
XX = XP =X(I-1)
FP = ((A&XX+B)=XX4C)}*XX + D
FDP =(3a=A%XX + 2,%Bl*XX + C
RETURN
101 CONTINUE
RETURN
END

LU L

SUBROUTINE CUBIC3(N:XsYeY2sF¢G)
c KUBISCHER SPLINE MIT ¥' AM RANDNVORGEGEBEN
C He SPAETHsPG. 46

DIMENSION X(1),Y(L),Y2{1),F(L),G(1)

N1l = N-1
Jl =1

H1l = Ce
Rl = Yz(1)
G(1l) = O
Fll) = 0.

DO 3 K=14N

IF {Ke LE., N1) GO TO 1

H2 = Qe

R2 = Y2(N)

GO 10 2

K+1

X{J2) = X(K)

(YiJ2) = Y(K})/H2

2 Z = 1lo/(2.%(H1+KH2) = H1=G(J1)]
Z%H2
2%(6e=(R2=-R1}=H1*F(J1)})}

i
N
nwn

X
-
naun

DT X ILN
v N

I

R1
CONTINUE
Y2(N )} = F (N}
DO 4 J1 =1,HM1
K=HNK-= J1
Y2({K) = F(K) = GUK)*Y2(K+1)
4 CONTINUE
RETURN
END

[3Y]
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ISN
ISK

ISN
ISN
ISN
ISKA
ISK

ISN
ISN

ISN
ISKN
ISN

ISN
ISKN
ISN
ISN
ISN
ISN
ISN

ISN
ISA
ISN
ISN
ISA
ISN
ISKN

Coo2
0003
0004
0005

Co06
cco7
0008
Cco9

oClc
0011
ccl2
CCl3

0014
cels
cole
0017
cCls

CCls
cc20

0021
€022
0023

ccoe
0003
CCOo4
coos
CCC7
cocs
0010

0011l
0012
co12
CO1L4
0015
CClé
0017

gl gl OO ao

aNq]

aNaNe)

101
111
201
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SUBROUTINE DET3(14,Y,Z,NDIM, IER)

DIMENSIDN Yi(1),2(1)

TEST OF DIMENSION
IF(NDIM=-3)4,1,1

TEST OF STEPSIZE
IF(HY2,5,2

PREPARE DI FFERENTIATION LOOP
HH=+5/H
YY=Y(NDIM=2)}
B=Y(2}+Y(2)
B=Hi*x (B+B=Y (3)-Y(1l)=Y(1)-Y (1))

START DIFFERENTIATION LOOP
DO 3 1=3,NDIM
A=8
B=HH*(Y(I)=-Y(I-2))
Z(I-2)=A
END OF DIFFERENTIATION LOOP

NORMAL EXIT
TER=0
A=Y {NDIH=-1)+Y (NCIM-1)
ZINDIN)=HH*(Y (NDIM)+Y (NDIM)+Y [(NDIM)}=A-A+YY}
Z(NDIM-1)=B
RE TURN

ERROR EXIT IN CASE NDIM IS LESS THAN 3
TER=-1
RETURN

ERROR EXIT IN CASE OF ZERO STEPSIZE
TER=1
RETURN
END

SUBROUTINE ALI (X,XARR,YARR,Y,NP;IER]}

DIMENSTION XARRI[1),YARR(1)

IER = 1

IF [(XalTeXARRI{1))aDRa (Xe GTaXARRINP)}) GC 7O 201
DO 101 I = 24NP

IF (XARP(T)eLTeX) GO TO 101

Y = YARR{I-1) + (YARR(I) - YARR(I-1)} * (X- XARR(I-1l)) /
X [ XARR(I) =XARR(I-1))

GO TO 111

CONT INUE

RETURN

IER = -1

Y = —=1.F65

RETURN

END




1SN
ISN
ISN
ISN
ISN
ISK
ISh
ISN
ISN
ISh
ISN
ISN
ISKN
ISh
ISN
ISh
ISN
ISK
ISN
ISN
ISN
ISN
ISh
ISN
ISA
ISK
ISN
ISN
ISKh
1SN
ISN
ISN
ISH
ISN
TSN
ISN
ISKN
ISKN
ISA
1SN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISA
ISN
ISN
ISh
ISN
ISN
ISH
ISK
ISN
ISN
ISKN
ISN
ISN

cCoz2
c003
Co04
0005
CCOo6
oCcCc7
cocs
CCCs
col10
0011
0o12
0013
0014
0015
0016
co17
co18
CCl9
cczac
00z1
0022
0023
0024
€025
0026
0027
cozs
0C29
cc30
0C31
0032
CCc3z2
0034
0035
Co3e¢
c037
0oz2sg
0039
€040
€041
0042
0043
0044
0045
C046
0047
C048
cC49
ces50
0051
ootz
0053
004
0055
056
Cos7
coss
CC59
0ce6C
0061
0Cé62

W

SUBROLTINE
DIMENSICN

CALL
CALL

CALL

DD 1

CALL
CALL
CALL

CALL
CALL
Do 3
DO 2

CALL
CALL
CALL

XMI
Y HA
YHMI
YHA
X(1)
Yi{ll
xX(2)
Y2}
X(3)
Y(3)
X(4)
Yi4)
X(51}
Y51
FRAME
FLOTL
X(1)
X(2)
Y(1)
Y(2)
PLOTL
JMA
J
L
X(J)
Yi(dJd)
Y2(J)
Y3(J)
Y&4i{J)
FLOTLS
PLDTLS
FLOTL
YMI
YMA
X(1)
Yi1)
Xt(2)
Yi{2)
X(3)
Y(3)
X(4)
Y(4)
X(5])
Y(5)
FRAME
FLOTL

X(J)
Y1itJ)
Y2(4)
Y304}
PLDOTL
PLDTLS
PLDTLS

CONTINUE
RETURN

END
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IEICH ( Z o L1 , L2 )
X(TT)y Y(T7)y YLUTT)e Y2(TT) s Y2(TTVy Y4(TT)y Z(17477)
Z(1,L1) '

XMI + 4. 8%( I(1,L2) - Z(1,L1))

- 10-

+ B80.

XM1

YMI |
XMI

20- |
2(1sL2)
20.
211,L2)
YMI

L T £ | 1 O TS [ A [

XMI 4 YMI 4, XMA 4 YMA )
Xy Yy 5)

(1,L2)
L

'Y’Z, '
2-11 +1

JMA

-1 + 11

[
NNNGs MFXOONX

T T T T [ | I 1 T 1 A | T O | I T (I I |

{ Xy Y1, JMA)
( Xy Y2, JMA)
[ Xy Y3, JMA)

0.

3.

XMI

> <
X
—

L | | I T (L L B
e
]

( XMI 5 YMI , XMA 4 YMA )
{ Xy Yy 5)

= Z(1.sL)

= ZtKrL)

= Z{KyL) = Z(K=3,L)
= Z'K;L, + Z(K"BvL)
{ Xy Y1, JMA)

( Xy Y2y JMA)

( Xy Y3, JMA)
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7. GOEL program

This program calculates the field and current density profiles for the
relaxed state with sinusoidal AC modulation. This program was used to
calculate Figs. 2, 3 and 4, in which AC and DC components are compared.
In the GOEL program it is assumed that the current density and field
components consist of a time independent "DC component'" and an "AC
component" with sinusoidal time dependence (see eqs. (2.16) and
(7.1)). The parabolic partial differential equation (2.12) then yields
a system of two coupled ordinary differential equations (7.2) with
boundary conditions for r = 0 (eq. (7.3)) and r = a (eq. (7.4)). The
variables have the same meaning as in the GOEPAR program. Instead of
the plasma conductivity profile number P the plasma direct current

IGA is read in and the profile number P is then calculated from it.

We now describe the method of numerical solution employed in the

GOELER and SUCCES subroutines.
Insertion of the equation analogous to eq. (2.16)
Ez(r,t) = Eo + Ec(r) cos wt + Es(r) sin wt (75 1)

in the parabolic partial differential equation (2.12) yields the

system

1 d d

T dr [x dr Ec:I b Es Atie)
1 d d _

r ar [T 3z B;] = PE, Pk

with boundary conditions
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d _
dr EC)r=O =8 (7.3a)
d _
I Es)rz =0 (7.3b)
Ec)r=a - Ea = VPL/ZTTR (7.4a)
=0 ¢
where ES)r=a y (7.4b)
b = Ho g w (7.5)

Here b depends via o on r.

The equations are solved numerically, by reducing the boundary
value problem ((7.2) to (7.4)) to an initial value problem in which

boundary condition (7.4) is replaced by

Boleo =% > (7.6a)

I
92}

Es)r=0 = So i vehi

The designation "initial value problem" for eq. (7.2, 7.3 and 7.6) comes
from the analogy with the initial value problem of mechanics, where

the location and velocity of a mass point at time t = 0 are given.

We thus have to look for the "initial values" CO and SO.

Because the differential equation (7.2) to be solved is linear and
homogeneous, the boundary values on the right are linear and homo-

geneous functions of C0 and SO:

]
=
(e}
+
.
)

Elres 11 0 i2 99 (7.7a)

Es)r=a

1
>
o
+
o
[¥5]

(7.7b).
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For CO = | one has EC}r=a = All (7.8a)
SO =0 ES}r=a = A2] (7.8b)
for CO = 0 one has Ec)r=a = A12 (7.9a)
Sg = | EJpea = A2 (7.9b)

The SUCCES subroutine sclves the initial value problem. First we
use SUCCES to calculate All and A21 according to eq. (7.8), then to
calculate A12 und A22 according to eq. (7.9). We then put the boundary
conditions (7.4) in the left-hand side of eq. (7.7) and solve
eq. (7.7) for CO and SO' The third call of SUCCES then yields EC and
Es(r).

8. SUCCES subroutine

The SUCCES subroutine solves the initial value problem, i.e. egs.

(7.2, 7.3 and 7.6) from Sec. 7. The arguments have the following

meanings:
CA = EC/r=0 = 1nitial value for EC
SA = ES/r=O = 1initial value for ES
ECL = Ec/r=a = right-hand boundary value of EC
ESL = Es/r=a = right-hand boundary value of Es.

ECL and ESL are to be calculated by SUCCES routine.

The r mesh points are located so that R(1) = O.
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For small r we use the ansatz

- 2 - 4

= 8.1a

Eq CA+CZr +C, T ( )
- 2 - 4

- 8.1b

Eg =85, +5, " + 8, T ( )

-~ - -

and determine the coefficients 02 C4 82 and SA from the differential

equation (7.2).

For r > R(3) we use a difference scheme:
Let C(K) = EC(RK);

one then has

; Cre17C . Cx~Cx-1
Y T+ - w1 - T
1 a [ d K+ Ty, 17Tk K-v2 T Ty 4
rar LT dr el R )
r=R(K) = * Tt T TR

b E_(R(K)) =b S, , (%.2)
s

X

where Sk = ES(r=R(K)) 5

r.. = R(K)

K

1
and TR, T E(R(K) + R(K+1)) 4

We solve the difference equation (8.2) for CK+]’ and also the ana-
logous difference equation describing ES for §

Aand
and ES are known for K K = 1, either from the previous step or

. The values of E
K+1 e

from eq. (8.1) for small r.

List of input parameters

We now review the parameters used for calculating the curves in Figs.
2 to 8. This is necessary if these curves are to be reproduced with

the programs presented in this report. The respective figure captions
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are not sufficient. It is very difficult, for example,with the current

modulation AI given in Fig. 3 to arrive at the AC voltage V

c

parameter in producing Fig. 3.

1) Econetant paramcters

Limiter radius
Toroidal field

Plasma direct current IGA

lajor radius

Conductivity (r=0) SI1GO

DC voltage

AL = 0.11 metre
BTOR = 2.8 tesla
= 55.k4
RG@ = 0.7 metre
= 1.44 ‘IO';j ohm™ m
VG = 2.2 Velt

2) Paremeters which vary from curve to curve

FIG) A FR nt Ve program
2 0.13 100 29 GOEL
300 é0. :
_ 1000 434,
3 0.13 400 O. 18 GoelL
157
3.14
3 k.71
b 0.11 300 50. GoeL
0.13
0.25
5 0.13 400 4.5 GoEL
9. {GOEPAR
18.
6 0.13 400 S GOEPAR
Looo 36.
7 0.13 400 3. GOEPAR
L.5
9.
8 0.13 400, 2.8 GUEPAR

Remarks:

used as a

In program GOEPAR we have used P as an input parameter instead cf

IGA = .
A IPLO (see eq

that P = 5.76,

(2.8)). From IGA = 55 and A = .13 it follows




ISN
ISN
ISN
1SN
ISA
ISh
ISN
ISh
ISN
ISN
ISAN
ISN
ISN
ISN
ISN
ISA
ISN
ISN
ISN
ISN
ISh
ISN
ISN
ISh
ISAh
ISk
ISN
ISN
ISA
ISN
ISA
ISN
ISN
ISN
ISKN
ISN
ISN
ISN
ISN
1SN
ISN
ISN
ISN
ISN
ISh
ISN
ISN

ISN

ISN
I[SN
ISN
ISk
ISN

0002
0003
0004
0005
0006
oca7
goos
0ao0s9
001C
0011
ool2
0013
0014
0015
0016
ooL7
0o18
0019
0020
0021
Qo022
0023
0024
0025
002¢
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
003s
0040
0041
0042
0043
0044
0045
0046
0C47
0048

Q049

0050
0051
0052
0053
0054

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISAN
ISN
ISk
ISN
ISN
ISN
ISN
ISN
ISKN
ISN
ISAh
ISN
ISN
ISN
ISN
ISN

Qoo02
0003
0004
0005
0006
0007
0008
000S
0010
0011
oQl2
0013
0Cl4
0015
oolLé
oaLv
ools
0aQLs
0020
0021
0022
0023
0024
0025
0026

C WECHSELSTRCMPROFILE,

REAL*4

COMMON /GOE/
COMMON /SuC/

PRINT
PRINT
READ

PRINT

10 S8

92
112,
113,
LMAX
Ll
MO
IGA
SIGO
oM
COSOMT
SINOMT
BA
LAMBDA
v
EO
EG
p

Do 1

—

LT O (T T T | T (T L 1

RIL)

RQ

1 B(L)
CALL SUCCES

CALL SUCCES
DET =
co =
S0 =
CALL SULCCES
PRINT 91
PRINT 113,
PRINT 93
JO =
Do 3 L=
RQ =
SIG =
J1 =
JG =
JZ =
NG =
Nl =
3 PRINT 110,
GO 1O 10

91 FORMAT(/31H

92 FORMAT(/110H
L 1GA

93 FORMAT(/T7LH
1 NG

98 FORMAT( 1H1)

110 FORMAT ( F12

112 FORMAT ( L2F
L13 FORMAT ( Fl2

END
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ALTERNATING CURRENT , SEGMENT G CEL
1GA, JO, Jl, JGy JZ, LAMBDA , M0, N1, NG
R(51) 3 BA s P 4 V , LMAX
B(51) » EC(51) , ES(51})

A, ALy, BTCR, CRy FR, ICA, OMT, RG, SIGO, VC, VG
Ay ALy BTCRy LRy FRy IGA, CMT, RGy SIGO, VCy, VG
1.2 + 1./CR

LMAX -1

le256¢€4E—-¢€

IGA * 1.E3

SIGO* 1.E7

£.2832 * FR

CCS( CHT)

SINI CMT)

MO * SIGO * OM * AL#%2

SGRT (1. /7 BA )

(AL/A) *%2

VC / (6.2832 #RG)

VG / (6.2832 *RG)

12,1416 * SIGC # EG * AL%%*2 / (V* [GA) - 1.

1 +LMAX
DR* (L-1)
R(L)*%2
BA* (l.-
{ 1. » 0o 4 ALl , AZLl )
({ 0. » la » Al2 5, A22 )
All #A22 A2l *Al2
EQ # A22 / DET
- EQ =*= A21 / CET
{ CC 4 SO 4 A3 , A4 )

V3RC) %P

LAFBDA 4 P o V

SIGO *EG

lsL1

R(L)*#*2

SIGO* (l.— V*RQ)#*3p

SIG* SCRT( ES(L)*#2 + EC(L)*%*2 )

SIG* EG

SIG*(EG + ES(L) #SINCMT + EC(L) #CCSOMT)
JG / Ja

J1 /7 Jo
RIL) o SIG 4+ JLs Nly JCy NGy J2Z
LANBDA P v)
A AL BTCR DR
OHMT RG SIGO vC VG)
R SIG J1i N1l

Jz)
.3 +» LP2E1C.2y OPF8.3, 1PEL2.2, OPF8.3, 1PEL2.2)
6.3)
<3y L1FL0.3)

SUBROUTINE SUCCES ( CA, SA, ECL, ESL)

COMMCN /GOE/ RI{51) ¢ BA 5 P 5 V 5 LMAX
COMMOKN /SuC/ B(51) , EC(51) + ES(51)
EC(1) = CA
ES(l) = SA
LM = LMAX - 1
c2 = 0.25 4+ BA* SA
§2 = - 0.25 * BA* CA
Ca = 0.0625 * BA¥(S2 —P*5A)
S4 = - 0.0625 % BA#(C2 -P*CA)
R2 = R{2)*%2
ECI2) = CA + R2#%( C2 + C4*R2)
ES(2) = SA + R2%( 52 + S4%R2)
oo 3 K=2,LM
QP = ( RIK+#1) + R(K)) / ( R{K#l) - RIK))
QM = ( R(K-1) + R(K)) / ( RIK-1) - RI(K))
QMQP = QM / QP
T = RIK) # ( RIK+1l) - RiK=1)) =* B(K) / QP
ECL =EC(K) + (EC(K=1) -EC(K)) * QMGP + T*ES(K)
ESL =ES{K) + (ES(K=1) —ES(K)) * QMCP = T#EC(K)
EC(K+l) = ECL
ES(K+1) = ESL
3 CONTINUE
RETURN
END

FR

JG
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