MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK

GARCHING BEI MÜNCHEN

Model Calculations of the

Tearing Instability Associated with

AC-Modulation of the Plasma-Current in Tokamaks

- F. Pohl
- S. von Goeler*
- W. Engelhardt
- K. Lackner
- M. Murmann

IPP 6/198

June 1980

IPP III/60

*On leave from Plasma Physics Laboratory of University of Princeton 1st September, 1978 to 31st August, 1979

Die nachstehende Arbeit wurde im Rahmen des Vertrages zwischen dem Max-Planck-Institut für Plasmaphysik und der Europäischen Atomgemeinschaft über die Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgeführt.

IPP 6/198	F. Pohl	Model Calculations of the Tearing	
IPP III/60	S. von Goeler W. Engelhardt	Instability Associated with AC-Modulation	
	K. Lackner M. Murmann	of the Plasma-Current in Tokamaks	

June 1980 (in English)

Abstract

The tearing mode stability of the radial profiles of current density resulting from the skin effect accompanying AC modulation is calculated using a computer code.

1. Introduction

On the Pulsator tokamak at Garching an experiment was performed in which an AC component was superposed on the plasma current [14,15]. To interpret and plan these experiments, a computer program to calculate the current distributions accompanying the AC modulation taking into account the skin effect was developed. The experiments showed that AC modulation of high amplitude impairs the plasma stability and can lead to disruption. Since tearing modes are believed to be responsible for the disruptive instability, calculations on the stability of these modes were performed.

This report presents a detailed description of the computer program and its results. Section 2 deals with the skin effect; Section 3 is a discussion of the stability of tearing modes. The heating effects associated with AC modulation are discussed in Section 4. Sections 5-8 document the computer program.

2. Radial Current Profile

Figure 1a shows a schematic drawing of the essential features of the experimental configuration. The ohmic heating transformer incorporates some supplementary windings in addition to the standard windings. These windings are powered by an AC-generator which is switched on at time \mathbf{t}_1 during a tokamak discharge. As shown in Fig. 1b, the plasma current, \mathbf{I}_p , and the loop voltage, \mathbf{V}_{PL} , consist approximately of a stationary component originating from the standard power supply and, for $\mathbf{t} \geq \mathbf{t}_1$, of an AC component. In the calculations it is assumed that the AC component of the plasma loop voltage is periodic. The plasma current is calculated from the plasma loop voltage, \mathbf{V}_{PL} . Immediately after the AC is switched on, the plasma goes through a transient state which lasts for a few cycles; afterwards, the AC component of the plasma current is also periodic.

The penetration of the alternating current into the plasma column is calculated under the following simplifying assumptions:

- 1. The toroidal plasma is treated like a cylinder.
- The displacement current is neglected because of the low frequency of the AC component.
- Because of the strong toroidal magnetic field, motions of the plasma are neglected so that Ohm's law has the simplified form

$$j_{z} = \sigma E_{z} , \qquad (2.1)$$

where j_z and E_z denote the z components of the current density

and the electric field, the z direction being that of the plasma axis. σ is the electric conductivity.

4. Since only relatively low frequencies are applied in the experiment, the real DC component of the so-called AC conductivity 12 can be used and the imaginary conductivity terms are neglected. By restricting ourselves to the DC component we neglect certain time dependences, such as the heating effect connected with the AC modulation. This is justified by the fact that such a heating effect has not been experimentally observed, probably because of insufficient modulation amplitude.

It is thus assumed that

$$\sigma$$
 is real and time independent. (2.2a)

For the radial dependence of the conductivity we use the ansatz

$$\sigma = \sigma_0 \left[1 - v \hat{r}^2 \right]^P , \qquad (2.2b)$$

where $\hat{r}=r/a$ with a the limiter radius. The parameter V allows us to vary the conductivity at the plasma boundary. The conductivity on axis, σ_0 , and the profile number, P, are fitted to conductivity profiles de-

¹Comparison with the transport code of Düchs and McKenney show that the assumption 2.2a is, at least theoretically, not well justified.

duced from Thomson acattering measurements. The parameters $\sigma_{_{0}}$, V and P have to satisfy additional constraints so that the DC-component of the plasma current, I_{PLO} , equals the experimental value and that the safety factor, q, on axis is of order unity. The DC component, $E_{_{0}}$, of the electric field does not depend on r; consequently, the plasma direct current is

$$I_{PLO} = 2\pi E_{o} \int_{0}^{\pi} dr r \sigma . \qquad (2.4)$$

The DC component, $\mathbf{E}_{\mathbf{O}}$, corresponds to the DC component of the plasma loop voltage

$$V_{0} = 2\pi R E_{0}$$
, (2.5)

where R is the major torus radius. Denoting the DC component of the current density by $j_0(r)$ it follows that

$$j_o(r) = j_o(0)(1 - vr^2)^P$$
 (2.6)

with

$$j_{o}(0) = V_{o} \frac{\sigma_{o}}{2\pi R}$$
 (2.7)

Substituting Eq. (2.2b) in Eq. (2.4) yields

$$j_0(0) = (P+1)V \cdot \frac{I_{PLO}}{\pi a^2}$$
 (2.8)

if the condition

$$(1 - V)^{P+1} \ll 1$$
 (2.9a)

is satisfied. The parameters V and P consequently appear in the combination $(P+1) \cdot V$ for example, in Eq. (2.19). It is therefore useful to define the quantity, Q,

$$Q = (P+1)V - 1$$
 (2.9b)

The other constraint is that the safety factor, q, on axis is approximately one. From the definition of q the current density on axis can be shown to be

$$j_{o}(0) = \frac{2B_{tor}}{\mu_{o}q(r=0) R}$$
 (2.10)

where R is the major radius of the plasma and μ_0 the permeability of the vacuum. Inserting this expression into Eq. (2.7), one gets

$$V_{o}\sigma_{o} = \frac{4\pi B_{tor}}{\mu_{o}q(r=0)}$$
 (2.11)

Conditions such as $q(r{=}0)$ $\tilde{~}$ 1 thus fix j_{0} and hence the product, $v_{0}\sigma_{0}$.

Making use of the simplifying assumptions (1 to 4), a simple parabolic differential equation for the electric field component, $\mathbf{E}_{\mathbf{Z}}$, can be derived from Maxwell's equations:

$$\frac{1}{1} \frac{\partial}{\partial r} \left[r \frac{\partial}{\partial r} \quad E_z \right] = \mu_0 \sigma \frac{\partial}{\partial t} \quad E_z$$
 (2.12)

with boundary conditions

$$E_{z} (r=a) = \frac{V_{PL}}{2\pi R}$$
 (2.13)

and

$$\frac{\partial}{\partial r} E_z(r=0) = 0 . \qquad (2.14)$$

Condition (2.14) assures that the electric field in the plasma center at r=0 is continuous. The initial condition at time $t=t_1$ is

$$E_{z}(r) = \frac{\mathring{\nabla}}{2\pi R} , \qquad (2.15)$$

where $V_{\rm O}$ is the DC component of the plasma loop voltage $V_{\rm PL}$ (see Fig. 1b). The parabolic differential equation (2.12 - 2.15) was solved by a numerical method which is described in detail in Section 5.

We now discuss some typical current profiles which were calculated for Pulsator discharges. As will be seen shortly, they can be scaled easily to machines of arbitrary size. With sinusoidal time dependence of the loop voltage, the current density, j(r,t), will also become sinusoidal after a transitional time period of a few cycles; i.e.

$$j(r,t) = j_0(r) + j_1(r) \sin [\omega t + \phi(r)]$$
, (2.16)

where the DC component, j_0 , originates from the standard power supply and the AC component, j_1 , from the AC generator and where $\phi(r)$ denotes

the phase with respect to the sinusoidal part of the loop voltage. Some typical examples for the variation of the amplitude of the current density with radius are shown in Fig. 2. We see that the AC current is induced predominantly in the outer layers of the plasma because of the skin effect. On the other hand, only very little current can flow directly at the plasma boundary because the temperature there is low and the resistivity is high. The AC-current density consequently, if ω is sufficiently high, see (2.20), has a maximum at a position, r_{max} . In order to estimate the position, r_{max} , of the current-density maximum for tokamaks of arbitrary size with widely differing conductivity profiles, we have derived an approximation formula for r_{max} obtained from a few dozen examples of our skin effect model

$$\hat{r}_{\text{max}} = \frac{1}{(1+0.135 \text{ Q}^2)} \cdot \frac{1}{+2.6 \text{ Q}\lambda} \cdot (2.19)$$

In Eq. (2.19), r_{max} is normalized on the plasma radius and depends on two dimensionless parameters, namely on Q, which was previously discussed in Eq. (2.9b), and on the normalized skin depth, $\hat{\lambda}$,

$$\hat{\lambda} = \frac{1}{a\sqrt{\mu_0 \sigma_0 \omega}} \tag{2.18}$$

Equation (2.19) is valid in the range

$$0.01 \le \hat{\lambda} \le 0.2/\sqrt{P}$$
 , (2.20)

$$1 \le Q \le 10$$
 (2.21)

For $\hat{\lambda} \leq 0.005$ the r_{max} calculated according to Eq. (2.19) is approximately by $5\%_{\Lambda} {\rm small}$. For $\hat{\lambda} = 0$ one should get $r_{max} = 1$, but this limiting case is not correctly reproduced by Eq. (2.19). The RHS of the interval (2.20) describes the case that j_1 is only very slightly larger in the vicinity of r_{max} than it is for small r. When $\hat{\lambda}$ is further increased, the maximum vanishes and j_1 shows similar qualitative behaviour to the DC profile, j_0 . For V = 1 the inaccuracy of the approximation formula is about 0.01 to 0.02. For V = 0.7 the r_{max} calculated according to Eq. (2.19) is already approximately 0.03 too small for $\hat{\lambda} = 0.025$. This effect is caused by the plasma boundary layer, described by V, which was neglected when formulating Eq. (2.19). As soon as $\hat{\lambda}$ becomes larger than the RHS of Eq. (2.20), the AC profile, j_1 , becomes more and more like the DC profile, j_0 , and the subsidiary maximum at r_{max} vanishes.

The penetration of the alternating current into the plasma depends strongly on the conductivity at the boundary, i.e., in our model on the parameter, V, from Eq. (2.2). Examples of this are shown in Fig. 4. It is found that the AC profile, \mathbf{j}_1 , varies more strongly with V than the DC profile, \mathbf{j}_0 . It is unfortunate that the conductivity at the boundary is very poorly known experimentally. This causes considerable difficulty in comparing our calculated results with experimental results.

So far only the amplitude of j_1 of the AC current density has been discussed. Because of the phase factor, $\phi(r)$, appearing in Eq. (2.16), the actual time development of the current density profile is slightly more complicated. In Fig. 3 we show the motion of a current density profile during one cycle of the AC modulation using the same conductivity profile as in Fig. 2. The solid line is the DC profile, $j_0(r)$, which represents the current density profile up to the time $t=t_1$. The transient process is not shown in Fig. 3; only the motion after the transition period as described by Eq. (2.16). The motion has a certain vague similarity with the motion of a rope which is tied at the top left and which is under tension and made to oscillate at the bottom right. The waves generated travel from the bottom right to the top left,

their amplitude becomes smaller, till it vanishes at the top left. The wavelength of the oscillation is of the order of the skin depth, $\lambda = 1/\sqrt{\sigma\mu_0\omega}, \text{ at the position, } r_{max}.$

The results shown in Figs. 2 to 8 were calculated to match experimental data from the Pulsator experiment, where the minor radius a was 0.11 cm, the central temperature was 0.6 keV, the central conductivity, σ_0 , was $1.4\cdot 10^7~\Omega^{-1}~m^{-1}$, and the modulation frequency, ω , in the range 100 Hz < ω < 2000 Hz. Because of the dimensionless formulation of the equations, the figures can be easily scaled to other radii. Consider, e.g., the case ω = 1000 Hz in Fig. 2. For a device with a = 1 m and T_e(0) = 6 keV, the curve would be exactly the same for ω = 0.4 Hz, (scaling $\hat{\lambda}$ = $1/a\sqrt{\mu_0\sigma_0\omega}$). This frequency seems to be very small in comparison with discharge duration and the AC affects only the outermost layer of the plasma.

3. Investigation of Tearing Instabilities

The previous section demonstrated that the radial current density profile can be strongly varied by AC modulation (see, for example, Fig. 3). Since the stability of tearing modes (e.g., Ref. [2]) is strongly dependent on the shape of the current density profile, AC modulation can be used as a powerful tool for the comparison of theoretical predictions of tearing mode theory and experimental observations. This provided the motivation for investigating the AC modulated current density profiles for tearing instability.

The tearing instability develops preferentially at a plasma radius, r_c, where the safety factor, q, is rational;

$$q(r_S) = \frac{m}{n} \quad \text{with } m = 2 \text{ or } 3$$

$$n = 1 \text{ or } 2 . \tag{3.1}$$

Here m and n are the integer mode numbers of a Fourier expansion in the poloidal and toroidal angles, θ and ϕ . In typical tokamak discharges

$$q(r=0) = 1$$
 , $q(r=a) = 2.3 \text{ to } 8$. (3.3)

In order to estimate the stability behaviour, we used a routine, written by Lackner and based on the works of Furth, Rutherford, and Selberg [2] and of White, Monticello, Rosenbluth, and Waddell [3].

This program calculates for a given current density profile, $j_z(r)$, the instability parameters, Δ' , r_s , and w, the significance of which is explained as follows:

1) Δ' is the jump of the logarithmic derivative of the eigenfunction of the mode at the resonant q-surface and determines the linear growth rate, γ . The relations between Δ' and γ was first described by Furth, Killeen, and Rosenbluth $\boxed{1}$. A nice representation is given in Batemans monograph $\boxed{4}$ which gives \boxed{Eq} . (10.2.20)

$$\gamma = 0.55 \, \Delta^{0.8} \, \eta^{0.6} \, (kB_{\star})^{0.4} \, \rho^{-0.2}$$
 , (3.4)

where η is the resistivity, ρ the plasma density, and B the magnetic field strength.

 Δ ' also determines the marginal instability. According to Furth, Rutherford, Selberg $\left[2\right]$, for a cylindrical zeropressure plasma, the instability criterion is

$$\Delta' > 0 \qquad . \tag{3.5}$$

Glasser, Johnson, and Greene 5 have also taken the pressure and toroidal effects into account. Instead of Eq. (3.5), they obtain the criterion for marginal instability

$$\Delta' > \Delta_{\text{crit}}$$
 (3.6)

In typical tokamak discharges one obtains a small improvement of the stability, i.e.,

$$\Delta \Delta_{crit} \approx 1 \text{ to } 3$$
 . (3.7)

- 2) r is the radius of resonant q surface.
- 3) w is the (full) width of the saturated magnetic island associated with the tearing mode; the island width normalized to the plasma radius is defined as $\hat{\mathbf{w}}$, where

$$\hat{\mathbf{w}} = \mathbf{w}/\mathbf{a} \quad . \tag{3.7a}$$

The island width, w, depends on the nonlinear saturation amplitude of the tearing mode. According to White, Monticello, et al. $\boxed{3}$, island formation leads to flattening of the current profile in the vicinity of the resonant q surface. The island continues to grow until one has $\Delta' = 0$ for the flattened current profile. The nonlinear saturation width of the island can be estimated according to Jaenicke, Wobig, and Callen $\boxed{9,16}$ in a very rough approximation by calculating the value w for which

$$\frac{\partial}{\partial r} \left[\psi_1 \left(r_s + \frac{w}{2} \right) - \psi_1 \left(r_s - \frac{w}{2} \right) \right] = 0 \quad , \tag{3.8}$$

where ψ_1 (r) is the radial part of the linear eigenfunction of the mode expressed in terms of the helical flux,

$$\psi = \psi_0(r) + \psi_1(r) \cos(m\theta + n\phi) . \qquad (3.9)$$

According to the present view a magnetic island grows until its width

attains the value, w. If it then overlaps an adjacent island, there is ergodization of the magnetic field lines near the islands. This leads to disruption of the magnetic confinement of the plasma $\begin{bmatrix} \bar{6} \\ \bar{7} \end{bmatrix}$. Overlapping of the m = 2, n = 1 mode with the m = 3, n = 2 mode appears to be particularly dangerous.

We now discuss some typical results of these calculations. First, we investigate the stability of the DC profile. For typical Pulsator current profiles the m=2, n=1 mode is marginally unstable while the higher m modes are stable. For example, for the profile

$$j_0 = 7.10^6 (1-0.716 \hat{r}^2)^{5.76}$$
 (3.10)

values of ad' listed in Table I are obtained.

TABLE I

m	n	a∆'
2	1	4.3
3	2	- 1.5
3	1	- 4.5
4	1	- 7.4
4	2	- 8.0
4	3	- 8.4
5	1	- 9.1
5	2	-11.0
5	3	-13.0
5	4	-16.0
3 4 4 4 5 5	1 1 2 3 1 2 3	- 4.5 - 7.4 - 8.0 - 8.4 - 9.1 -11.0 -13.0

If AC modulation is applied, the DC current density as well as d/dr j_z at the resonance surface, and hence Δ' , will vary periodically. According to the instability criterion, $\Delta' > \Delta_{\rm crit}$, the modes therefore become unstable with increasing AC amplitude in the sequence given in Table I. Figure 5 shows an example of a sinusoidal AC modulation. This figure was obtained with the ordinary differential equation (7.2) (see Sec. 7 on the GOEL program). Using the partial differential equation (2.12) to (2.15) and plotting Δ' for the 7th cycle, one obtains Δ' values approximately 20% lower than the corresponding Δ' values of Fig. 5, indicating that the relaxed state has not yet been completely attained after 7 cycles. Unlike Fig. 5, Figs. 6,7 and 8 were calculated according to Eq. (2.12) to Eq. (2.15).

For low amplitudes the modulation of Δ' is sinusoidal (e.g., the curve $\Delta I = 5$ kA in Fig. 5). For high amplitudes, on the other hand, Δ' is not sinusoidal (e.g., $\Delta I = 20$ kA in Fig. 5). This non-sinusoidal modulation of Δ' is due in part to the strong radial motion of the resonant surface. As a consequence, the mean value $\langle \Delta' \rangle$, i.e., Δ' averaged over a cycle of the AC modulation, increases strongly with the AC voltage, indicating that the plasma is destabilized. This behaviour was found typical for all sinusoidal AC modulations.

Figure 6 shows examples in which the frequency was varied. For higher frequencies and comparable current modulation the mode 3/1 becomes unstable (see Fig. 6b). At even higher frequency, the 4/1 mode is destabilized, so that AC heating of the plasma boundary layers is likely to be difficult.

The physical interpretation of the quantity, Δ' , and its mean value, $<\Delta'>$, should now be further discussed. As shown previously, $\Delta'>\Delta_{\rm crit}$ corresponds to instability [see Eq. (3.6)], and Δ' determines the linear growth rate [see Eq. (3.4)]. It is also known [13] that the range of validity of the linear theory is restricted to very low amplitudes. For somewhat higher amplitudes the modes grow according to Rutherford's formula [13]

$$\frac{d\tilde{w}}{dt} = \frac{\hat{w}}{t_i} = \frac{1.66}{\sigma \mu_0 a^2} \Delta^{\dagger} \quad (w=0) \quad . \tag{3.12}$$

Even this reduced growth rate, t_i , is, in most cases, much smaller than the period, t_{AC} , of the AC modulation:

$$t_{i} \ll t_{AC}$$
 (3.13)

In the case of Fig. 5a, for example, one has

$$t_A = \frac{2\pi}{\omega} = 2.5 \text{ ms},$$

$$t_i = 0.6\sigma\mu_0 a^2 w/\Delta' = 0.1 \text{ to } 0.2 \text{ ms},$$

where $\sigma = 0.2 \times 10^7$ (ohm⁻¹ m⁻¹) at the resonance surface,

$$\mu_{o} = 4\pi \cdot 10^{-7}$$
 (V s A⁻¹ m⁻¹),

$$\Delta \Delta' = 14$$
 (for $\Delta I = 10 \text{ kA}$),

$$a = 0.11 \text{ m}$$

 $\hat{w} = 0.1$

Consequently, as soon as a mode has become unstable, the saturation amplitude is very quickly attained - if condition (3.13) is satisfied -, and the magnetic islands develop almost immediately to their full width.

It is therefore of interest to discuss the behaviour of the island width w. First, there is no direct connection between w and Δ' . If Δ' is negative, the plasma is stable with w=0, but as soon as Δ' becomes positive a magnetic island of finite width, w, forms. In our calculations, however, we have found both large w together with small Δ' and, conversely, small w with large Δ' . It therefore seems advisable to discuss the behaviour of w from examples.

Figure 7 shows the position, $\hat{\mathbf{r}}_s$, of the resonant surface and the curves, $\hat{\mathbf{r}}_s + \text{w/2}$ plotted versus "time", t, for typical Pulsator conditions. Without AC modulation the mode m/n = 2/1 is unstable at all times and an island with normalized width, $\hat{\mathbf{w}} \approx 0.2$, forms. The island width becomes slightly modulated by a small AC current ($\Delta I = 3.5 \text{ kA}$, Fig. 7a). For larger AC modulation ($\Delta I = 5.2 \text{ kA}$, Fig. 7b) Δ' becomes negative for a short time so that the island vanishes. At other time phases the 3/2 mode also becomes unstable. With even larger AC modulation ($\Delta I = 10 \text{ kA}$, Fig. 7c) the islands of the 2/1 and 3/2 modes overlap. This overlapping is caused, among other things, by the fact that the resonant surfaces approach each other closely during the time phase in which the two modes are unstable and simultaneously have large islands. Our model thus predicts that at certain time phases stabilization of the 2/1 mode will occur and that at other time phases the 2/1 and 3/2 modes overlap. It should be possible

to verify these predictions experimentally because the Mirnov oscillations should vanish during the stabilized phase and disruptions should occur during the overlapping phase.

In summary, it can be stated that AC modulation varies periodically the current profile, and hence the stability of the plasma periodically improves and deteriorates. The stability depends on a series of factors e.g., the motion of the resonant surfaces, the steepness of the current density profile and many others. With sinusoidal modulation these factors generally tend to cause a deterioration of the stability properties. It was hoped, however, that the most unfavourable effects will be minimized by appropriate non-sinusoidal modulation. We therefore investigated numerous non-sinusoidal modulations. We can summarize the most important results: with carefully tailored sawtooth modulation of the current (see Fig. 8a) overlapping of the magnetic islands of various modes did occur at much higher amplitudes, AI, than for comparable sinusoidal modulation. To obtain this result, we introduced short voltage pulses at regular time intervals, $2\pi/\omega$, for the AC component of the plasma loop voltage, V_{PL} . Between two voltage pulses we kept V_{PL} constant. These voltage spikes (Fig. 8a, curve $V_{\rm PL}$) lead to a sawtooth-like current modulation (Fig. 8a, curve $I_{p_{\overline{1}}}$). In Fig. 8 the amplitude of the voltage pulses is chosen such that the amplitude, ΔI , of the current modulation is the same as that in Figs. 6a and 7c for sinusoidal modulation. Comparison of the two cases shows that:

1) The mean value <a'> is about 6.2 in both cases, irrespective of the shape of the current modulation. 2) With sinusoidal AC modulation (Fig. 7c) overlapping of the magnetic islands occurs; with the sawtooth modulation of the current chosen in Fig. 8 there is no overlapping.

There is no "genuine" stabilization involved in this case since <a'>
is roughly as large as in the comparable sinusoidal case, but overlapping is prevented because of the larger separation of the resonant surfaces during the unstable phase compared with the sinusoidal case.

The opposite case that <a'> is reduced can also be obtained by applying negative voltage pulses and an inverted sawtooth modulation of the current [15]. In this case, however, overlapping occurs for much smaller amplitudes than for sinusoidal modulation.

While we could improve the stability properties compared to sinusoidal modulation, we have found no case where the stability was improved over the DC case, considering both the $<\Delta$ '> criterion and the overlapping criterion.

4. Heating Power

Finally, we want to discuss the heating effects associated with AC-modulation. The primary motivation for this investigation has been to check, whether the absence of heating effects in the Pulsator experiment is consistent with the prediction of our model. Due to the skin effect the AC will preferentially heat the outside of the plasma column. The AC heating competes with the DC-input energy which is transported through the outside region. We therefore took as a criterion that the AC heating power has to be comparable with a reasonable fraction of the DC power input in order to have a noticeable effect.

First, we study how the heating power depends on the parameters. In our model the total heating power, averaged over a cycle, is

$$= \frac{1}{2\pi} \int_{0}^{2\pi} d(\omega t) 4\pi^{2} R \int_{0}^{a} dr \ r\sigma E_{z}^{2}$$
 (4.1)

With sinusoidal modulation one has

$$E_{z} = E_{0} + E_{1} \cos(\omega t + \phi) , \qquad (4.2)$$

where E_1 and ϕ depend on r. The DC component, E_0 , depends neither on space nor time. We can therefore divide the heating power into a DC component, H_0 , and an AC component, H_1 :

$$\langle H \rangle = H_0 + H_1 \quad , \tag{4.3}$$

where

$$H_1 = 2\pi R \int_0^a dr \ r\sigma E_1$$
 (4.4)

$$H_{1} \approx 2\pi R a^{2} E_{1}^{2}(a) \hat{\lambda}^{x}$$
(4.6)

$$x = 1.213 + 0.34 \ln Q$$
 (4.7)

The two parameters, $\hat{\lambda}$ and Q, have already been introduced in Eqs. (2.9b) and (2.18); they are the "essential" parameters of the problem. The approximation formula (4.6) was obtained from a several examples, the inaccuracy being approximately 10%. Equations (4.2 to 4.7) are only valid in the relaxed state. It should be mentioned that this state is reached often only after many cycles and that the heating power, H_1 , depends very sensitively on how exactly the relaxed state is attained. In the example in Fig. 7b, H_1 in the 7th period is about 9 kW, but in the 37th period is about 5 kW. The latter value corresponds very well to the relaxed state.

The amplitude of the AC modulation and consequently also the AC-heating power is limited by the development of instabilities, which can lead to disruptions. In our model this is equivalent to the overlapping of two islands of different helicities. We therefore have investigated at what AC amplitudes the islands come into contact with each other and what heating power corresponds to these AC amplitudes. In the example shown in Fig. 7b, the DC-power input is 120 kW, while the AC power is 5 kW. Moreover, Fig. 7b shows that the 3/2 and 2/1 islands are so close that the AC-power input is at its upper limit. This and similar calculations showed that for sinusoidal AC modulation the maximum ratio H_1/H_0 is only a few percent. This result is in good agreement with the experiment.

We mention that for higher frequencies a larger value for the ration

 H_1/H_0 can be obtained without overlap. For instance, for the same parameters as in Fig. 7b, but with $\omega/2\pi=10^4$ Hz, we obtain $H_1 \stackrel{?}{\sim} H_0$. In this case the heating power input is limited because the 3/1 and the 4/1 mode overlap. At the high frequencies, however, it is only the extreme outer plasma boundary layer that is heated by the AC-modification and the energy confinement in this layer is very short.

Finally, we obtained considerably larger values of $\rm H_1$ with sawtooth modulation. This is due to the prevention of overlapping as discussed in Sec. 3. In the example shown in Fig. 8, overlap does not happen until $\rm H_1/\rm H_0 \gtrsim 20\%$, i.e., more than twice the value of a comparable sinusoidal modulation (Fig. 7b). But even in this more favorable case, the heating effects probably would be only marginally observable in our experiment.

Before we proceed with a detailed description of the computer programs, we want to summarize the main conclusion of our computation regarding the physics of the AC-modulation.

(a) Through AC modulation the current density profile in tokamak plasmas can be quite significantly altered, which in turn significantly modifies the stability of tearing modes. One of the surprising features of the experiments [14,15] has been the fact that very large AC amplitudes could be applied without disrupting the plasma. The computations showed that although the instability parameter, Δ' , may become very large, $(\Delta'^{\sim} 10-15)$, overlap of islands does not necessarily occur. The AC amplitudes which are needed to produce overlap are - according to our computations - comparable to the experimentally observed amplitudes.

(b) Overlap should occur when the saturation width, w, of the island becomes very large and when the distance between resonant surfaces becomes small. Both factors seem to be of equal importance. By suitable shaping of the applied AC-voltage, e.g., by applying a sawtooth shaped current modulation rather than sinusoidal one, we were able to move resonance surface apart during the unstable period of the AC modulation.

This method can reduce some of the adverse effects of sinusoidal AC-modulation. However, we were not able to obtain better stability than with the DC-current profile.

(c) The calculations predict that disruptions caused by changes in the current density profile during AC occur before significant heating is produced by the AC-modulation. The best heating efficiency was obtained by sawtooth modulation, and the AC power input was about 20% of the DC power input.

FIG. 1a

Scheme of experimental arrangement

FIG. 1b $\label{eq:plasma} \text{Plasma current I}_{\text{PL}} \text{ and loop voltage V}_{\text{PL}}$ versus time t

FIG. 2

Current Densities, j_ (= DC) and j_ (= AC) normalized on 1, versus $\mathbf{\hat{r}}$ = r/a, for

$$\sigma = 1.4 \times 10^7 [1 - 0.716 \,\hat{r}^2]^{5.76} [Ohm m]^{-1}$$

$$\frac{\omega}{2\pi} = 100 \;; \; 300 \;; \; 1000 \; \sec^{-1}$$

F1G.3

Current Density Distribution during ACModulation

FIG. 4

Current densities j_0 (= DC) and j_1 (= AC) versus $\hat{r} = r/a$, for $\sigma_1 = 1.4 \times 10^7 [1. - 1. \hat{r}^2]^{3.85} [\text{Ohm m}]^{-1}$ $\sigma_2 = 1.4 \times 10^7 [1. -0.716 \hat{r}^2]^{5.76} [\text{Ohm m}]^{-1}$ ($\hat{r} \ge 0.7$) $\sigma_3 = 1.4 \times 10^7 [1. -0.2 \hat{r}^2]^{23.2} [\text{Ohm m}]^{-1}$ (dashed) $V_0 = 2.2 \text{ Volt}$ $V_C = 50. \text{ Volt}$ $\frac{\omega}{2\pi} = 300 \text{ sec}^{-1}$ $I_{PL} = 55 \text{ kA}$

Note: $V_{PL} = V_O + V_C \cos \omega t$.

FIG. 5

 $\Delta \Delta'$ versus ωt for $I_{PL} = 55.kA$

$$\frac{\omega}{2\pi}$$
 = f = 400 sec⁻¹
 $j_0(r) = 7 \times 10^6 (1.+0.716 \hat{r}^2)^{5.76} [A m^{-2}]$

FIG. 6

aΔ' versus ωt

for I_{PLO} = 55.kA and $j_{o}(r)$ from FIG.5 calculated from eq.(2.12 for the 7th cycle

FIG.6a

$$\frac{\omega}{2\pi} = 400.\text{sec}^{-1} \text{ (vgl. FIG.5)}$$

$$\Delta I = 10.\text{kA}$$

FIG.6b

$$\frac{\omega}{2\pi} = 4000 \cdot \text{sec}^{-1}$$

$$\Delta I = 8 \cdot \text{kA}$$

FIG. 7

 $\boldsymbol{\hat{r}}_{s}$, $\boldsymbol{\hat{r}}_{s}$ + $\frac{\boldsymbol{\hat{w}}}{2}$ und $\boldsymbol{\hat{r}}_{s}$ - $\frac{\boldsymbol{\hat{w}}}{2}$ versus ωt for three values of the current modulation ΔI .

 \hat{r}_s = radius of the resonant q surface,

 \hat{w} = full width of the magnetic island,

 $\boldsymbol{\hat{r}}_{_{S}}$ and $\boldsymbol{\hat{w}}$ are normalized to the plasma radius.

The other parameters are the same as in FIG. 6a.

FIG. 8

Sawtooth modulation of the plasma current.

All parameters are the same as those in FIGS. 6a and 7c.

Fig. 8a plasma current I_{PL} and loop voltage V_{PL} versus ωt . The amplitude of the current modulation is ΔI = 10. kA.

FIG. 8b $\hat{\mathbf{r}}_{s}, \hat{\mathbf{r}}_{s} = \frac{\hat{\mathbf{w}}}{2} \text{ und } \hat{\mathbf{r}}_{s} - \frac{\hat{\mathbf{w}}}{2}$ versus $\omega \mathbf{t}$.

APPENDIX: Computer programs

5. GEOPAR program

The figures shown in sec. 3 are calculated with the GEOPAR program. This program is now described in detail to allow the reader to reproduce these figures or to produce similar figures with other parameters. The program has the following objectives:

- 1) input and preparation of necessary parameters;
- 2) Calculation of

radial mesh points, conductivity, initial conditions for the field component $\mathbf{E}_{\mathbf{z}}$, shape factor COSOMZ determining modulation, current density profile, heating power, instability parameters (from FURTH subroutine), $\mathbf{E}_{\mathbf{z}}$ at equidistant time intervals (from PARCYL subroutine)

3) drawing of figures in the ZEICH subroutine; for this purpose the quantities of interest are stored in the two-dimensional array Z at the end of the SIGFRI subroutine.

1) Meaning of input parameters

We start with the integer parameters:

- M(J) and N(J) are the mode parameters, i.e. the wave numbers of a Fourier expansion of the helical flux in the poloidal angle and toroidal angle; see table below in the section of SIGFRI;
- NPR(J) the times at which current profiles and instability parameters should be calculated, in units of the time step size DT defined below.

Such a parameter array is necessary because, on the one hand, DT has to be fairly small for numerical calculation of $\mathbf{E}_{\mathbf{z}}$, and, on the other, current profiles and instability parameters are only needed after relatively large time intervals;

LMA = number of radial mesh points;

NP = number of AC cycles;

NT = number of time intervals per cycle.

The real parameters are now given in alphabetic order:

A = radius for which the profile function for the conductivity
vanishes (in metres); (see F16.9);

AL = limiter radius = a (in metres)

the connection with parameter V from eq.(2.2) is explained below;

BTOR = toroidal field in tesla (1 tesla = 10^4 gauss);

FR = AC frequency in $s^{-1} = \frac{\omega}{2\pi}$

P = profile number from eq. (2.2)

RG = major radius in metres;

SIGO = σ_0 from eq. (2.2);

 V_C = AC voltage in volts;

 V_G = DC voltage in volts;

 $R_{
m SOND}$ = distance of sond from the plasma axis, this parameter is not used in this paper.

Other parameters

DR = space step = AL / (LMA -1); DT = time step = 1 /(FR NT) = $2\pi/(\omega \text{ NT})[s]$; MO = μ_O from eq. (2.10) = $4\pi \cdot 10^{-7}$ in units $[\frac{Vs}{Am}]$; QF = time independent component of the safety factor q.

For q the following equations are valid:

$$q = \frac{r B_{tor}}{R B_{pol}} = \frac{2\pi B_{tor}}{\mu_o R} \frac{r^2}{I(r)}, \qquad (5.1)$$

where $Q_F = \frac{2\pi \ B_{tor}}{\mu_O \ R}$ is the space and time independent component of q.

and
$$I(r) = 2\pi \int_{0}^{r} dr' r' j_{z}(r')$$
 (5.2)

I(r=a) is thus equal to the plasma current $I_{\rm PL}$.

VERS =
$$\left[\frac{A_{L}}{A}\right]^{2}$$
 = V from eq. (2.2).

FIG. 9

illustrates the

significance of AL and A and V.

2) COSOMZ

The plasma loop voltage is periodic for $t \ge t_1$. We write in the form

$$V_{PL} = V_{G} + V_{C} COSOMZ.$$

This equation is also valid for $E_z(a)$ because of eq. (2.13). With sinusoidal AC modulation one has according to eq. (2.16):

hence the name COSOMZ. The AC voltage does not, however, have to be sinusoidal; it may also be sawtooth-like or otherwise. The FORM subroutine calculates COSOMZ for one cycle, i.e. for J = 1 to J = NT.

Meanwhile there are many such FORM subroutines which are stored in various AMOS segments, e.g. sinusoidal modulation in FORM6; sawtooth modulation in FORM2; etc.

3) SIGFRI

The SIGFRI subroutine calculates for a given field $E_z(r)$: the current density profile $j_Z(r)$ the heating power \int dr r $E_Z(r)$ $j_Z(r)$ $4\pi^2R/1000$ [kW] and, by means of CALL FURTH, the instability parameters

$$D_{T}(K) = \Delta^{\dagger}a,$$

RQ(K) = radius of the resonant Q surface, divided by a and DE(K) = half island width = $\frac{\hat{w}}{2}$.

Here the index K gives the number of pairs of mode parameters m, n which have to be taken into account. In the curves shown in this report these are:

K	m	n
1	3	1
2	3	2
3	2	1

SIGFRI is called at two points:

- 1) as soon as the initial values for E_{2} are vailable;
- 2) in the DO-7 loop after CALL PARCYL for the values of E_Z calculated by PARCYL; but, of course, only for those times NPR(LS) for which the current density and instability parameters are to be calculated; hence the inquiry in statement ISN 0046 in the main program.

We require various radial mesh point distributions because: In the FURTH subroutine

the index L=1 has to be assigned the value $\hat{r}=0$ and the index L=LMA has to be assigned the value $\hat{r}=1$; the plasma radius thus has to be normalized to 1.

In the PARCYL subroutine

the value r=0 has to be in the centre between L=1 and L=2 the value r=a has to be in the centre between L=LMA and LMA-1; R(L=1) is thus negative.

The parameter JWRITE regulates the printout of the results: with JWRITE = 0 nothing is printed out, with JWRITE \geq 2 ZEIT, current profile, q etc. are printed out.

After calculation of the current profile CALL FURTH is given for calculating the tearing instability parameters; the quantities of interest are stored in array Z.

FIG. 10 For SIGFRI subroutine, DO-5 loop

Figure 10 shows the positions of the R mesh points which are needed for PARCYL, with R_1 negative. The hatched surface illustrates the calculation of the current, which with equidistant R_{T_1} is as follows:

$$I(R_{M}) = 2\pi \int_{0}^{R_{M}} dr \ r \ \sigma(r) \ E_{Z}(r)$$

$$\approx I_{R} = 2\pi DR \sum_{L'=2}^{L} R_{L'} SIG_{L'} EZ_{L'}.$$

6. PARCYL subroutine

The name stands for PARabolic partial differential equation with CYLindrical symmetry. The PARCYL subroutine calculates

$$\mathbf{E}_{\mathbf{Z}}$$
 at time t + DT from $\mathbf{E}_{\mathbf{Z}}$ at time t.

We now describe the numerical method by which this is done.

Given is the parabolic partial differential equation

$$\frac{1}{r} \frac{\partial}{\partial r} \left[r \frac{\partial F}{\partial r} \right] = S \frac{\partial F}{\partial t}$$

with the

boundary conditions
$$\frac{\partial F}{\partial r} = 0$$
 for $r = 0$, $F = G$ for $r = a$.

G = G(t) and S = S(r,t) are given functions.

Required F = F(r,t).

In order to solve the equation numerically we approximate the given differential equation by a difference equation. For this purpose we introduce equidistant time mesh points and space mesh points r_J ; the r_J need not be equidistant. The point r_J = 0 has to be left out because of the factor $\frac{1}{r}$ in the given differential equation. Let

$$F_{J} = F(r_{J}, t)$$

$$\hat{F}_{J} = F(r_{J}, t+DT).$$

and

The \mathbf{F}_J are known, either as initial values or from the previous time step; the \mathbf{F}_J are to be calculated from the \mathbf{F}_J . The difference equation can be divided into recursion formulae, which are solved successively from the boundary conditions.

First we present the discretization scheme and then the formulation and rearrangement of the difference equation.

Distribution of the radial mesh points.

Figure 11 shows the distribution of the radial mesh points. It must

hold that

$$r_1 = -r_2$$

and

$$2a = r_{N+1} + r_{N}$$
.

The other mesh points can be arbitrarily chosen. To approximate $\partial F/\partial r$, we require the auxiliary quantities

$$r_{J+1/2} = \frac{1}{2} (r_J + r_{J+1}),$$

$$d_J = r_J - r_{J-1},$$

$$d_{J+1} = r_{J+1} - r_J.$$

and

Formulation of difference equation

We approximate $\frac{\partial F}{\partial t}$ by $\frac{1}{DT} \cdot [\hat{F}_J - F_J]$, s by $\frac{1}{2} \cdot [\hat{S}_J + S_J]$, $\frac{\partial}{\partial r} [r \frac{\partial R}{\partial r}] \text{ by } \frac{1}{d_{J+1/2}} \left([r \frac{\partial F}{\partial r}]_{r+1/2} - [r \frac{\partial F}{\partial r}]_{r+1/2} \right),$ $[r \frac{\partial F}{\partial r}] \text{ by } \frac{r_{J+1/2}}{2d_{J+1}} [\hat{F}_{J+1} - \hat{F}_J + F_{J+1} - F_J]$

and
$$- [r \frac{\partial F}{\partial r}]_{r-1/2}^{by} \frac{r_{J-1/2}}{2d_J} [\hat{F}_{J-1} - \hat{F}_J + F_{J-1} - F_J]$$
.

There is thus a similarity to, for example, the implicit scheme given by RICHTMYER /11/. Inserting these approximations in the partial differential equation yields

where
$$A_{J} \hat{F}_{J+1} + B_{J} \hat{F}_{J} + C_{J} \hat{F}_{J-1} = D_{J}$$

$$A_{J} = r_{J+1/2} / [d_{J+1} (\hat{S}_{J} + S_{J}) r_{J} d_{J+1/2}] ,$$

$$C_{J} = r_{J-1/2} / [d_{J} (\hat{S}_{J} + S_{J}) r_{J} d_{J+1/2}] ,$$

$$B_{J} = -A_{J} - C_{J} - R_{T}$$

$$R_{T} = 1/DT$$
and
$$D_{J} = A_{J} (F_{J} - F_{J+1}) + C_{J} (F_{J} - F_{J-1}) - R_{T} F_{J} .$$

These equations are further rearranged to give the recursion formulae

$$\hat{F}_{J} = H_{J} \hat{F}_{J+1} + U_{J}$$
with
$$U_{J} = (D_{J} - U_{J-1} C_{J}) / (B_{J} + C_{J} H_{J-1})$$
and
$$H_{J} = -A_{J} / (B_{J} + C_{J} H_{J-1}).$$

From the boundary condition $F_1 = F_2$ it follows that $H_1 = 1$ and $U_1 = 0$.

This allows all $\mathbf{U}_{\mathbf{J}}$ and $\mathbf{H}_{\mathbf{J}}$ to be calculated in succession. From the boundary condition $\mathbf{F}(\mathbf{r}=\mathbf{a})=\mathbf{G}$

it follows that
$$\frac{1}{2} \; (\hat{F}_N \; + \; \hat{F}_{N+1}) \; = \; \hat{G}$$
 and
$$\hat{F}_{N+1} \; = \; \frac{2 \; \hat{G} \; - \; U_N}{1 \; + \; H_N} \qquad .$$

This also allows the $\mathbf{F}_{\mathbf{J}}$ to be calculated in succession. This algorithm was provided by \mathbf{J} . DUECHS.

```
C GCELER'S PHASENBEZIEINING, SEGMENT G O E P A R
ISN 0002
                   REAL*4 IO , JZ(202) , LAMBDA , MO
ISN 0003
                              COSOMZ(637), S(57), NPR(77)
                   DIMENSION
                   COMMON /SIF/ EZ(57), R(57), RD(202), SIG(57), Z(17,77)
ISN 0004
                  1 ,A,AL, BTOR,DR,DT, FR,OM,P,QF, RG,RSOND, SIGO, VERS, VC,VG, ZEIT
                                          , MI(4), NI(4), LMA, NP, NT
                  2
ISN 0005
                   COMMON /FUR/
                                   DE(5) , DL(5) , RQ(5) , SHEAR(5)
ISN 0006
                   READ 180: (MI(J), J=1, 3), (NI(J), J=1, 3)
ISA CCC7
                   PRINT 91
ISN 2008
                   READ 180,
                                 (NPR(J), J=1,27)
ISN OCO9
                   PRINT 180,
                                (NPR(J), J=1,27)
ISN 0010
                10 READ
                         312, LMA, NP, NT, A, AL, BTDR, FR, P, RG, RS ON C, SIGO, VC, VG
ISN 0011
                            L1 = LMA + 1
ISN 0012
                            M0 = 1.256645-6
ISN 0013
                          SIGO = SIGO * 1.E7
                           OM = 6.2832 * FR
ISK 0014
ISN 0015
                       UMFANG = 6.2332 * RG
ISN 0016
                            QF = 6.2832 * BTOR / (MO *RG)
ISN 0017
                            DR = AL / (LMA - 1.)
ISN CCIE
                            DT = 6.2832 / (OM*NT)
ISN 0019
                         VERS = (AL/A)**2
                           EC = VC / UMFANG
ISN COZO
ISN 0021
                           EG = VG / UMF ANG
ISN 0022
                           RT = 1.0 / DT
ISN 0023
                   DD 2
                            L=1,L1
                         R(L) = DR \times (L - 1.5)
ISN 0024
                         RD(L) = R(L) / AL
ISN 0025
ISN 0026
                         PASIS = 1. - VERS* RD(L)**2
ISN 0027
                       SIG(L) = 0.
ISN CC28
                   IF ( EASIS. LE. 1.E-6)
                                                GO TO 1
                        SIG(L) = SIGO * BASIS**P
ISN 0030
ISN 0031
                          S(L) = MO * SIG(L)
ISN CC32
                 2
                         EZ(L) = EG
                   CALL FORM ( COSOMZ , NT )
ISN 0033
ISA 0034
                    PRINT 92
ISN CC35
                    PRINT 110, (COSOMZ(J), J=1,NT)
ISN 0036
                          ZEIT = 0.
ISN 0037
                            EL = 0.
ISN .0038
                           LS = 1
                   CALL SIGFRI ( JZ, Q, LS)
ISN 0039
ISN CO40
                   DO 7
                            JP=1,NP
                   DO 7
ISN 0041
                             JT=1,NT
ISN 0042
                          ZEIT = ZEIT + DT
                           ED = EG + EC* COSOMZ(JT)
ISN 0043
ISN 0044
                   CALL PAPCYL ( EZ, S, DR, EL, ED, RT, LMA)
ISN 0045
                            J = JT + (JP-1)*NT
ISN 0046
                   IF (NPR(LS). NE. J)
                                              GO TO 7
ISN 0048
                            LS = LS + 1
ISN 0049
                   CALL SIGFRI ( JZ , Q , LS)
ISN 0050
                            EL = ED
ISN 0051
                       LAMBDA = 1./( AL* SQRT( MO *SIGO *FR * 6.2832))
ISN CC52
                   PRINT 98
ISN 0053
                   PRINT 95
```

ISN CCE7

END

```
ISN 0054
                    PRINT 313, LMA, NP, NT, A,AL, BTDR, FR,P,RG, RSOND, SIGO, VC, VG
ISA CC55
                    PRINT
                          101,
                                VERS , DT , LAMBDA
ISN CC56
                    PRINT 93
ISN 0057
                    PRINT 94,
                               (MI(J), NI(J), J=1,3), (MI(J), NI(J), J=1,3)
                              , (MI(J), NI(J), J=1,3) , (MI(J), NI(J), J=1,3)
                   3
ISN C058
                    DO 8
                              L=1,LS
ISN 0059
                  8 PRINT 107.
                                       (Z(K_1L), K=1,16)
ISN 0060
                            DM = 0.
ISN 0061
                            HM = 0.
ISN 0062
                            SM = 0.
ISN 0063
                    DD 9
                              L=8,LS
ISN CC64
                            SM = SM + (Z(14,L) + Z(14,L-1)) * (Z(1,L) - Z(1,L-1))
                                                + Z( 4, L-1))
                                                                * (Z(1,L)
ISN 0065
                            DM = DM + (Z(4,L)
                                                                            -2(1,L-11)
ISN 0066
                  9
                            HM = HM + (Z(15,L)
                                                 + Z(15, L-1))
                                                               * (Z(1,L)
                                                                           - Z(1,L-1))
ISN 0067
                            HM = HM * 0.0795775
ISN 0068
                            DM = DM * 0.0795775
ISN OC65
                            SM = SM * 0.0795775
ISN CC70
                    PRINT 103,
                                DM, SM, HM
ISN 0071
                    CALL ZEICH ( Z ,
                                      7, LS)
ISN CC72
                    GO TO 10
ISN CO73
                 91 FORMAT(/10H
                                       NPR)
ISN 0074
                 92 FORMAT (/10H
                                    COSOMZ)
ISN CC75
                 93 FORMAT (/123H
                                                                    I N S E L BREITE
                                              DELS
                   1
                       RADIUS DER Q-FLAECHE
                                                DB/B
                                                           (2)
                                                                     (KA)
                                                                             (KW)
                                                                                      (GAU
                   25511
ISN 0076
                 94 FORMATI/9H
                                     OMT, I5, I1, I5, I1, I5, I1, I9, I1, I6, I1, I6, I1, I9, I1, I5, I
                                                                 HEIZ BTHETA)
                   11, I5, I1, I9, I1, I5, I1, I5, I1, 27H
                                                           IR
ISN CC77
                 95 FORMAT(/102H
                                       LMAX
                                              NP
                                                      NT
                                                                       AL
                                                                             BTOR
                                                                                       FR
                   1
                         P
                                   RG
                                         P. SOND
                                                 SIGO
                                                            VC
                                                                     VG)
                 98 FORMAT (1H1)
ISN CC78
                101 FORMAT(/12H
ISN OCTS
                                       VERS=,F7.2,12H
                                                                                    LAMBDA
                                                               DT=,1PE9.2,12H
                   1=, OPF 7.4)
ISN 008C
                103 FORMAT (/46H
                                  VALUES AVERAGED OVER ONE PERIOD
                                                                             DM= , F4. 1,
                   147X, 2F8.1)
                107 FORMAT( F10.3 , 3F6.1 , F10.3, 2F7.3, F10.2, 2F6.2, F10.3, 2F7.3
ISA 0081
                   1
                            4F8.21
                110 FORMAT( 10F12.4)
ISN 0082
ISN 0083
               111 FORMAT( F12.3, 1P11E10.2)
               18C FORMAT( 1914)
ISN 0084
               312 FORMAT( 314 , 10F6.2)
313 FORMAT( 110, 216, 7F8.2, 1PE9.2, 0P2F8.2)
ISN OC85
ISN CC86
```

```
ISN 0002
                   SUBROUTINE SIGFRI ( JZ, Q, LS)
ISN 0003
                   REAL*4
                               IR , JZ(202), JZH
ISN CCC4
                   DIMENSION RF(202)
ISN 0005
                   COMMON /FUR/
                                    DE(5) , DL(5) , RQ(5) , SHEAR(5)
ISN 0006
                   COMMON /SIF/ EZ(57), R(57), RD(202), SIG(57), Z(17,77)
                     A,AL, BTOR,DR,DT, FR,OM,P,QF, RG,RSOND, SIGO, VERS, VC,VG, ZEIT
                  2
                                          , MI(4), NI(4), LMA, NP, NT
ISN CCC7
                        JWRITE = 0
ISN 0008
                           OMT = OM * ZEIT
ISN CCC9
                   IF (JWRITE. LE. 1)
                                            GO TO 1
ISN 0011
                   PRINT 98
ISN 0012
                   PRINT 101,
                                 LS, ZEIT, DMT
ISN CC13
                   PRINT 92
15N C014
                              LMA, NP, NT, A,AL, BTDR, FR,P,RG, RSOND, SIGO, VC, VG
                   PRINT 313,
                   PRINT 94
ISN 0015
ISN CC16
                   PRINT 111,
                                 VERS
ISN 0017
                   PRINT 93
ISN 0018
                . 1
                            SJ = 0.
ISN CC19
                          HEIZ = 0.
                             L=1,LMA
ISN 0020
                   DO 5
ISN CC21
                            RM = 0.5* (
                                         R(L) +
                                                  R(1+11)
ISN 0022
                         RF(L) = 0.5 \times (RD(L) + RD(L+1))
ISN 0023
                          SIGM = 0.5* (SIG(L) + SIG(L+1))
ISN 0024
                           EZM = 0.5 ( EZ(L) + EZ(L+1))
ISN 0025
                         JZ(L) = SIGM
                                        * EZM
ISN 0026
                           SER = 0.
                    IF (L. LE. 1)
ISN CO27
                                       GD TO 4
ISN DC29
                           SER = SIG(L) * EZ(L) * R(L)
ISN 0030
                                      + SER
                            LS = LS
                          HEIZ = HEIZ + SER* EZ(L)
ISN 0031
ISN 0032
                            IR = 6.2832 * DR * SJ
                             Q = QF * RM**2 / ABS(IR + 1.E-7)
ISN C033
ISA 0034
                   IF ( JWRITE. LE. 1)
                                            GO TO 5
                   PRINT 111, RF(L), RM
ISN CC36
                                           , EZ(L), JZ(L), IR, Q
ISN OC37
                  5 CONTINUE
ISN 0038
                          HEIZ = HEIZ * DR * 0.039478 * RG
                   CALL FURTH( RF; JZ, LMA, Q, -1., 100, 0., MI, NI, 3)
ISN CC39
                          RSP = AL / RSOND
ISN 0040
ISN .0041
                        FAKTOR = 1.25E+6 *RSOND *BTOR /(AL *RG *IR)
ISN 0042
                   DO 7
                              K=2,4
ISN 0043
                            K1 = K + 3
ISN CC44
                            K2 = K + 6
ISN 0045
                            K3 = K + 9
ISN 0046
                             M = MI(K-1)
ISN 0047
                      Z(K1,LS) = DL(K-1)
ISN CC48
                      Z(K2,LS) = RQ(K-1)
ISN 0049
                     Z(K3_{2}LS) = SHEAR(K-1) * RQ(K-1) * DL(K-1)**2 * AL**2 * FAKTDR
                                 * M * RSP**M
                                               * 100.
ISN 0050
                 7
                      Z(K_2LS) = DE(K-1)
ISN 0051
                       Z(1,LS) = OMT
ISN 0052
                     Z(14,LS) = IR * 1.E-3
ISN 0053
                     Z(15,LS) = HEIZ
ISN 0054
                     Z(16,LS) = 2.E-3 * IR / RSOND
```

```
I(17,LS) = 3.14
ISN CO55
ISN 0056
                   RETURN
                                                                           BTOR
                                                                                    FR
                                                                     AL
                                      LMAX
                92 FORMAT (/102H
                                              NP
                                                    NT
ISN 0057
                                                           VC
                                                                   VG )
                                       RSOND
                                              SIGO
                       P
                                 RG
                  1
                                                                                IR
                                                                      JZ
                                                           EZ
                93 FORMAT(/60H
                                       RD
                                                 RM
ISN 0058
                  1
                      01
ISN 0059
                94 FORMATI/10H
                                     VERS )
                98 FORMAT( 1H1)
ISN OC60
                                                                           OMT=, OP F7.31
                                                   ZEIT=,1PE10.3,10H
                                    LS=,12,10H
ISN 0061
               101 FORMAT (/9H
               111 FORMAT( F12.3, 1P11E10.2)
ISN 0062
               313 FORMAT( 110, 216, 7F8.2, 1PE9.1, 0P2F8.2)
ISN 0063
                   END
ISN 0064
```

```
ISK COO2
                    SUBROUTINE PARCYL ( F, S, DR, G, GD, RT, N)
                    DIMENSION F(57), FD(57), S(57), SD(57), A(57), B(57), C(57), D(57), H(57), U(57)
ISN 0003
                        F(N+1) = 2.*G - F(N)
ISN 0004
ISN 0005
                    DD 1
                              J=1,N
ISN 0006
                            DRS = DR**2 * (J - 1.5) * (S(J) + S(J))
ISA COOT
                           A(J) = (J - 1.) / DRS
ISN 0008
                          C(J) = (J - 2.) / DRS
ISN CCCS
                          B(J) = -A(J) - C(J) - RT
ISN 0010
                             FM = F(1)
ISN 0011
                    IF ( J. LE. 2)
                                         GO TO 1
ISN CC13
                            FH = F(J-1)
ISN 0014
                          D(J) = A(J)*(F(J) -F(J+1)) + C(J)*(F(J) -FM) - F(J)*RT
ISN 0015
                          H(1) = 1.
ISN 0016
                          U(1) = 0.
ISN 0017
                    00 2
                               J=2,N
ISN OC18
                            BCH = B(J) + C(J) *H(J-1)
ISN 0019
                           U(J) = (D(J) - C(J) * U(J-I)) / BCH
ISA 0020
                          H(J) =
                                        - A(J)
                       FD(N+1) = (2.*GD - U(N)) / (1.+ H(N))
ISN 0021
ISN 0022
                    DO 3
                              J=1,N
ISN 0023
                             K = N + 1 - J
ISN 0024
                         FD(K) = H(K) *FD(K+1) + U(K)
ISN 0025
                    DO 5
                              J=1,N
ISN 0026
                  5
                          F(J) = FD(J)
ISN 0027
                    RETURN
ISN 0028
                    END
```

```
ISN 0002
                    SUBROLTINE FURTHIRI, AJ, NPIN, QB, BW, NP, JOT AO, MI, NI, NMN)
                TEARING MODE STABILITY IN STRAIGHT CYLINDER
                FCLLOWING GLASSER, FURTH, RUTHERFORD
                STORED IN KAL: FURTH FURTH; FILE SHARED BY ALL AMOS USERS
             C
             C
                MEANING OF INPUT PARAMETERS
             C
                   RADIAL COORDINATE NORMALIZED BY PLASMA RADIUS A
                                 .... RADIAL COORDINATE OF PCINTS IN WHICH PLASMA
             C
                                      CURRENT DENSITY IS GIVEN
             C
                                 .... VALUES OF CURRENT DENSITY IN POINS RI (IN ARBI-
             C
                       LA
             C
                                      TRARY UNITS
             C
                       NPIN
                                 .... NUMBER OF POINTS OF RI,AJ
                             ****** R(1) MUST BE O. ; R(NPIN) MUST BE 1. *******
             C
                                 .... Q DF PLASMA CURRENTS AT PLASMA BOUNDARY
             C
                       QB
                                 .... RADIUS OF CONDUCTING WALL (SPECIFY A NEGAT. VAL-
             C
                       BW
                                      UE IF NO CONDUCTING WALL PRESENT)
             C
             C
                                 ... NR OF GRID POINTS USED FOR COMPUTING MARGINAL
                       NP
                                      MHD MODE IN BOTH INTERVAL (O,R SINGULAR) AND IN
             C
                                      (R SINSULAR, 1)
             C
                       JOTAO
                                 .... JOTA OF EXTERNAL WINDINGS
                                 .... VECTORS OF THE (M,N) VALUES FOR THE MODES TO BE
             C
                       III, IM
             C
                                      EXAMINED
                                 .... NUMBER OF (M,N) PAIRS TO BE EXAMINED
                       NMN
             C
                   REAL*4 RI(202), AJ(202), AJ2(202), DU1(202), DU2(202), Q(202), Q2(202),
ISN 0003
                   X
                           A1 (808), R(202), Y(202), YSING (202), YTOT (202),
                           RL (202), RF. (202), YDL (202), YDR (202)
                   X
ISN COO4
                    REAL*4 JOTAO
                    DIMENSION XP(21), YP(21), XZ(2), YZ(2), XX(2), YX(2), TEXT(5)
ISN 0005
                                    DE(5) , BR(5) , RQ(5) , SHEAR(5)
ISN 0006
                    COMMON /FUR/
ISN CCC7
                    INTEGER#4 MI(4), 'II(4), IOUTP(4)
ISN OCCB
                    DATA ERROR/1. E-C5/
                     RHS(RD) = -(I AKS - G * (RD-RS))/(RD-RS)
ISN CCO9
                                   *(AKS*(AKSP+AZMP1/RC-G*(RD-RS)))
                     + ALL
                     + (RD-RS)*ALL
                                            *(AKS*AKSP*(A2MP1/RD-.5*G*(RD-RS)))
                     + 1.5*AKS*AKSP + A2MP1/RD*AKS
                      + .5*(RD-RS)*A2MP1/RD*AKS*AKSP)
             C
                 SPLINING OF CURRENT PROFILE
             C
             C
                   ISN 0010
                    DO 1
                              K = 1,5
ISN OC11
                         DE(K) = 0.
ISN 0012
                         BR(K) = 0.
ISN 0013
                         RC(K) = 0.
ISN CC14
                      SHEAR(K) = 0.
                    AJ2(1) = 0.
ISN 0015
                    D2 = RI(NPIN) - RI(NPIN-2)
ISN CC16
ISN 0017
                    D1 = RI(NPIN) - RI(NPIN-1)
                    S**SO*(NPIN) = (AJ(NPIN-2)*DI**2 - AJ(NPIN-1)*D2**2
15% 0018
```

X

+AJ(NPIN)*(D2**2-D1**2))

```
/(D2**2*D1-D1**2*D2)
ISN 0019
                     CALL CUBIC3(NPIN, RI, AJ, AJ2, DU1, DU2)
                          to different enterpole with this gap also days also also have had the different took film that the days also the film that the
              C
                 CCMPUTATION OF Q -PROFILE AND RESCALING OF J
                 ISN 0020
                     Q(1) = 0.
ISN CO21
                     DO 111 I = 2, NPIN
ISN 0022
                     DX = RI(I) - RI(I-1)
ISN CO23
                     A = (AJ2(I)-AJ2(I-1))/(6.*DX)
ISN 0024
                     B = .5*AJ2(I-1)
ISN 0025
                     C = (AJ(I)-AJ(I-1))/DX - DX/6 * (AJ2(I) + 2*AJ2(I-1))
ISN CC26
                     D = AJ(I-1)
ISN 0027
                    Q(I) = Q(I-1)
                    X + ((((0.2*A*DX + 0.25*(A*RI(I-1)+B))*DX
                                      + (B*RI(I-1)+C)/3.)*DX
                                      + 0.5 *(C*RI(I-1)+D))*DX
                    X
                                      + D*RI(I-1))*DX
ISN 0028
               111 CONTINUE
ISN 0029
                    COEF = 1./(6.2831853*Q(NPIN))
                    DO 112 I = 1, NP III
ISN 0030
ISN 0021
                    AJ(I) = AJ(I)*COEF
ISN CC32
               112 AJ2(I) = AJ2(I)*COEF
ISN 0033
                     Q(1) = QB/(3.1415926*AJ(1))
                     Q(1) = Q(1) / (1,+Q(1)*JOTAO)
ISN 0034
ISN 0035
                     COEF = QB*Q(NPIN)
                    DO 113 I = 2, NP II
ISN CO36
ISN 0037
                     Q(I) = CDEF*RI(I)**2/0(I)
ISN CC38
                     Q(I) = Q(I)/(1.+Q(I)*JOTAO)
ISN 0039
               113 CONTINUE
ISN 0040
                    Q2(1) = 0.
ISN 0041
                     Q2(NPIN) = 2. *QB
ISN 0042
                     QBB = QB/(1.+ QB<JOTAO)
ISN CC43
                     CALL CUEIC3(NPIN, RI, Q, Q2, DU1, DU2)
                CHOICE OF M, N - MODE AND LOCATION OF RESONANT SURFACE
ISN CO44
                    IMN = 0
              ISN CC45
               -201 IMN = IMN + 1
ISN 0046
                     IF (IMN. GT. NMN) RETURN
ISN CO48
                     M = MI(IMN)
ISN 0C49
                    N = NI(IMN)
ISN CC50
                    DLL=0.
ISN CO51
                     IF (BW.LT.O.) GO TO 221
ISN 0053
                     GAM = M*(1.+BW**(2*M))/(1.-BW**(2*M))
ISN CC54
                    GO TO 222
ISN 0055
               221 \text{ GAM} = -M
ISN CC56
               222 CCNTINUE
                    A2MP1 = 2*M+1
ISN 0057
ISA CC58
                    QRES = FLOAT(M) / FLOAT(N)
ISN CC55
                    IF (N_{\bullet}LT_{\bullet}N\times Q(1))
                                                          GO TO 201
                    IF (M.GT. N*QBB)
ISN 0061
                                            GD TO 500
ISN 0063
                    RRES = (QRES-Q(1))/(Q(NPIN) - Q(1))
ISN 0064
              202 CALL ODINT (RI, Q, Q2, NPIN, RRES, QR, QDR, IFL AG)
```

```
ISN 0065
                                       RNEW = FRES + (QRES-QR)/QDR
ISN CC66
                                       IF (RNEW. GT. 1.) R'IEW = .5* (1.+RRES)
ISN 0068
                                       IF (RNEW.LT.O.) RNEW = .5*RRES
ISA CC70
                                       DEL = RNEW - RRES
ISN CC71
                                       RRES = RNEW
ISN 0072
                                       IF (ABS(DEL).GT.ERROR) GD TO 202
                                                             C
                              SOLUTION FOR THE REGION R < RS
                           Commence and suppressions are an extraction of the suppression of the 
ISN CC74
                             602 RS = RRES
ISN CC75
                                       DR = RS/(NP+.5)
                                       R(1) = .5*DR
ISN 0076
ISN CO77
                                       DO 211 I = 2, NP
ISN 0078
                                      R(I) = R(I-1) + DR
ISN OC79
                                       CALL CDINT (RI, AJ, AJ2, NPIN, RS, AR, ADR, IFLAG)
ISN 0080
                                       CALL COINT (RI, C, Q2, NPIN, RS, QR, QDR, IFLAG)
ISN CCB1
                                                      SHEA = QDR / QR**2
ISN COEZ
                                         AKS= -6.2831853 * QR*ADR/(QB*RS*N*QDR) *M
ISN 0083
                                       AKSP = AKS - A2MP1/RS
ISN CC84
                                       R(NP+1) = RS
                              SET-UP OF CDEFFICIENT MATRIX ACCORDING TO 18 OCT/4 - 1976
ISN 0085
                                       DL = 2. *R(1)
ISN 0086
                                       CALL COINT (RI, AJ, AJ2, NPIN, R(1), AR, ADR, IFLAG)
ISN OC87
                                       CALL CDINT (RI, Q, QZ, NPIN, R(1), QR, QDR, IFLAG)
ISN CO88
                                       G = 6.2831853 * QR*ADR/(R(1)*QB*(M-N*QR)) *M
ISN CC89
                                       ALL = ALOG (RS-R(1))
ISN CO90
                                       A1(2) = -1. -A2MP1 - G*DL**2
ISA C091
                                       A1(3) = 1. + A2MP1
ISN CC92
                                      A1(4) = DL*2*RHS(R(1)) - DL*(1.-A2MP1)*AKS*(ALDG(RS) + 1.
                                                      -AKSP * RS * (ALOG(RS) + .5))
                                       DO 301 I = 2, NP
ISN 0093
ISN CCS4
                                      NO = 4*(I-1)
ISN 0095
                                      DR = R(I+1)-R(I)
ISN COSE
                                      DL = R(I) - R(I-1)
ISN 0097
                                      CALL ODINT (RI, AJ, AJ2, NPIN, R(I), AR, ADR, IFLAG)
ISN 0098
                                      CALL. GDINT (RI, Q, Q2, NPIN, R(I), QR, QDR, IFLAG)
ISN CC99
                                     G = 6.2831853 \times QR*ADR/(R(I)*QB*(M-N*QR))*M
ISN 0100
                                      ALL = ALDG(RS-R(I))
ISN 0101
                                       A1(NO+1) = (2_{\circ} - A2MP1/R(I)*DR)*DR
ISN 0102
                                       A1(NO+2) = (-2. + A2MP1/R(I)*(DR-DL) - G*DR*DL)*(DR+DL)
ISA 0103
                                       A1(NO+3) = (2. + A2MP1/R(I)*DL)*DL
ISK 0104
                                       A1(NO+4) = DR*DL*(DR+DL)*RHS(R(I))
ISN 0105
                            301 CONTINUE
ISN 0106
                                       CALL LGLSS(A1,Y,NP-1,0.,6)
ISN 0107
                                       DO 302 I = 1, NP
ISN 0108
                                       ALL = ALDG(RS-R(I))
ISN 0109
                                      YSING(I) = 1.+AKS*(R(I)-RS)*ALL
                                     X + .5 *AKS * AKSP * (R(I)-RS) * * 2 * ALL
ISN 0110
                                       YTOT(I) = (R(I)/RS)***M *(Y(I) + YSING(I))
                            302 CONTINUE
ISN 0111
ISN 0112
                            311 YS1 = (Y(NP-1) - 4.*Y(NP))/(2.*(R(NP) - R(NP-1)))
ISN 0113
                                       NPP1 = NP+1
ISA 0114
                                       DELL = DR
ISN 0115
                                      DO 321 I = 1,NP
ISN 0116
                                      RL(I) = R(I)
```

```
ISN 0117
              321 Y(I) = YTOT(I)
ISA 0118
                    RL(NP+1) = RS
ISN C119
                    Y(NP+1) = 1.
                    CALL DET3(DR, Y, YDL, NPP1, IER)
ISN 0120
                      STATEMENTS TO ADD IF DPSI/DR / PSI USED
             C
             C
                      DO 325 I = 1, NPP1
             C 325
                      YDL(I) = YDL(I)/Y(I)
ISN 0121
                    YD1 = C.
ISN 0122
                    YDD = 1.
             C.
                 SOLUTION FOR REGION R > RS
             C
ISN 0123
                    NR = NP + 1
                    DR = (1.-RS)/(NR-.5)
ISN 0124
                    NRP1 = 11R + 1
ISN 0125
ISN 0126
                    R(1) = RS
                    DO 401 I = 2, NR P1
ISN 0127
ISN 0128
               401 R(I) = R(I-1) + DR
                    DO 402 I = 2, NR
ISN 0129
ISA 0130
                    NO = 4*(I-2)
                    DR = R(I+1)-R(I)
ISN 0131
ISA 0132
                    DL = R(I) - R(I-1)
                    CALL CDINT (RI, AJ, AJZ, NPIN, R(I), AR, ADR, IFLAG)
ISN 0133
                    CALL DDINT (RI, G, Q2, NPIN, R(I), QR, QDR, IFLAG)
ISN 0134
                    G = 6.2831853 * QR*ADR/(R(I)*QB*(M-N*QR))*M
ISN 0135
ISN 0136
                    ALL = ALDG(R(I)-RS)
                    A1(NO+1) = (2. - A2MP1/R(I)*DR)*DR
ISN 0137
                    A1(ND+2) = (-2. + A2MP1/R(I)*(DR-DL) - G*DR*DL)*(DR+DL)
ISN 0138
                    A1(NO+3) = (2. + A2MP1/R(I)*DL)*DL
ISN.0135
ISN 0140
                    AI(NO+4) = DR*DL*(DR+DL)*RHS(R(I))
ISN 0141
               402 CONTINUE
ISN 0142
                    A1(1) = 0.
                    NO = 4*(NR-1)
ISN 0143
ISN 0144
                    A1(NO+1) = -(1.+.5*DR*(GAM-M))
ISN 0145
                    A1(NO+2) = 1.-.5*DR*(GAM-M)
ISN 0146
                    AI(NO+3) = 0.
                    ALL = ALOG (1.-RS)
ISN 0147
                    A1(NO+4) = -DR*(AKS*(ALL+1.)+AKS*AKSP*(1.-RS)*(ALL+.5)
ISN 0148
                  ·X - (GAM-M)*(1.+AKS*(1.-RS)*ALL + .5*AKS*AKSP*(1.-RS)**2*ALL))
ISN 0149
                    CALL LGLSS(AL, Y, NR-1, 0.,6)
ISN 0150
                    D0 404 I = 2, NR
                    J = I - 1
ISN C151
                    ALL = ALOG(R(I)-RS)
ISN 0152
                    YSING(J) = 1.+AKS*(R(I)-RS)*ALL
ISN 0153
                   X + .5 * AKS * AKS P * (R(I) - RS) * * 2 * ALL
ISN 0154
                    YTOT(J) = (R(I)/RS)**M *(Y(J) + YSING(J))
ISN C155
               404
                    CONTINUE
               411 YS2 = (4.*Y(1) - Y(2))/(2.*(R(2)-R(1)))
ISN C156
                                        N9 = NR - 1
ISN 0157
                     SHEAR(IMN) = YTOT(N9) * SHEA
ISN 0158
                    RR(1) = RS
ISN 0159
ISN C160
                    YSING(1) = 1.
ISN 0161
                    DELR = DR
                    DO 421 I = 2, NPP1
ISN C162
ISN 0163
                    RR(I) = R(I)
ISN 0164
               421 YSING(I) = YTOT(I-1)
```

```
ISN 0165
                   CALL DET3 (DR, YS ING, YDR, NPP1, IER)
                     STATEMENTS TO ADD IF DPSI/DR / PSI USED
             C
             C
                     DO 425 I = 1, NPP1
             C 425
                     YDR(I) = YDR(I)/YSING(I)
ISN 0166
                   DELS = YS2 - YS1
                   ------
                   IFIDELS
ISN 0167
                               .LT.0.) GO TO 210
ISN C169
                   DEL = DELL
ISN 0170
                   IF (DELR.LT. DELL) DEL = DELR
ISN C172
                   DLL = DEL
ISN C173
                     REL = RS-DLL
ISN C174
                     RER = RS+DLL
                     CALL ALI(REL, RL, YDL, YDEL, NPP1, IER)
ISN 0175
ISN C176
                     CALL ALI(RER, RR, YDR, YDER, NPP1, IER)
ISN 0177
                     DELSL = YDER - YDEL
ISA C178
                   IF (DELSL. GT.O) GO TO 461
ISN C180
                   GO TO 210
ISA C181
              461
                  CONTINUE
ISN C182
                     CLL = DLL + DEL
ISN 0183
                     REL = RS-DLL
ISN C184
                     RER = RS+DLL
                     CALL ALI(REL, RL, YDL, YDEL, NPP1, IER)
ISN 0185
                     CALL ALI(RER, RR, YDR, YDER, NPP1, IER)
ISN C186
                     DELSL = YDER - YDEL
ISN C187
             C
                            + M*AKS/P.S
                  X*(((RS+DLL)/RS) ** (M-1)*(DLL*ALOG(DLL)+0.5*AKSP*DLL**2*ALOG(DLL))
             C
             C
                  X +((RS-DLL)/RS)**(H-1)*(DLL*ALOG(DLL)-0.5*AKSP*DLL**2*ALOG(DLL)))
             C
                            + AKS
             C
                  X*(((RS+DLL)/RS)**M *(ALOG(DLL)+1.+0.5*AKSP*(2.*DLL*ALOG(DLL)+DLL))
                  X-((RS-DLL)/RS)**! *(ALOG(DLL)+1.-0.5*AKSP*(2.*DLL*ALOG(DLL)+DLL)))
                                                         11 GO TO 472
ISN C188
                   IF(ABS(DELSL).GE.(100. *ERROR*DELS
ISA 0190
              462
                  CONTINUE
ISN 0191
                   GO TO 210
              472
                   IF (DELSL) 473,462,474
ISA C192
ISN 0153
                   DLL = DLL - DEL
                   DEL = 0.5*DEL
ISN 0194
ISN 0195
                   GO TO 461
ISN 0196
              474
                  IF((REL.GT.RL(2)).AND.(RER.LT.RR(NP-1))) GO TO 461
ISN 0198
                   GD TO 210
               SCLUTION IF Q RES IN VACUUM
             500 NR = NP
ISN C199
ISN C200
                   IF (JOTAO*QRES.GE.1.) GO TO 505
                   RS = SCRT(QRES/QB/(1.-JOTAD*QRES))
ISN 0202
                   IF ((EH.GT.O.) . AND. (RS.GT.BW)) GO TO 201
ISN 0203
                   GAM = 2.*M*RS**(2*M)/(1.-RS**(2*M))
ISN 0205
                   DR = 1./NR
ISN 0206
                   R(1) = .5*DR
ISN 0207
ISN 0208
                   NRP1 = NP+1
                   DO 501 I = 2, NRP1
ISN 0209
ISN 0210
              501 R(I) = F(I-1) + DR
ISN 0211
                   CALL ODINT (RI, AJ, AJ2, NPIN, R(1), AR, ADR, IFLAG)
ISN 0212
                   CALL EDINT (RI, G, Q2, NPIN, R(1), QR, QDR, IFLAG)
ISN 0213
                   G = 6.2831853 * QR*ADR*M/ (R(1)*QB*(M-N*CR))
```

```
ISN 0002
                   SUBROUTINE LGLSS(A, X, N, EPS, NOUT)
                   C
                 LOES UNG EINES LINEAREN GLS A*X=D ,A:TRIDIAGONALMATRIX
             C
                 AUF A WERDEN DIE KOEFFIZIENTEN JEDER GLEICHUNG
             C
                 A(I)*X(I-1)*B(I)*X(I)*C(I)*X(I+1)*D(I)
             C
                 HINTERE INANDER GESPEICHERT.
             C
                 DIE SPEICHERBFLEGUNG SIEHT ALSO SO AUS:
             C
                     C
                          0 0
                              8 9
                                  A* B(0),B(1),B(2),....B(N)
                     2.
                          6 8
                              8 4
                     3.
                                  A: C(0), C(1), C(2), ..., C(N-1), *
                          9 9 9
             C
                                  A: D(0),D(1),D(2),.....D(N)
                     40
             C
                 A WIRD ZERSTOERT
                 X ENTHAELT DIE BERECHNETE LOESUNG
             C
                 EPS: J-SCHRANKE
             C
                 NOUT: ALSGABEKANAL
             C
                 BEMERKUNG:
             C
                            DAS DURCHGEFUEHRTE VERFAHREN IST IN RICHTMYER MORTON :
             C
                            " DIFFERENCE METHODS FOR INITIAL VALUE PROBLEMS"
             C
                            SEITE 199 FF BESCHRIEBEN
             C
                            DIE OBIGEN BEZEICHNUNGEN ENTSPRECHEN IN RICHTMYER MORTON:
             €.
                                                                        -C(J)
                                  A(J)
 ISN 0214
                     DL = 2.*R(1)
                                                                         R(.1)
 ISN 0215
                     A1(2) = -1.-A2MP1 - G*DL**2
 ISN C216
                     A1(3) = 1.+A2MP1
 ISN 0217
                     A1(4) = 0.
 ISN 0218
                    DO 502 I = 2, NP
 ISN 0219
                    NO = 4*(I-I)
ISN 0220
                    DR = R(I+1)-R(I)
 ISN 0221
                    DL = R(I) - R(I-1)
I:1SN 0222
                    CALL ODINT (RI, AJ, AJ2, NPIN, R(I), AR, ADR, IFLAG)
 ISN 0223
                    CALL CDINT (RI,Q,Q2,NPIN,R(I),QR,QDR,IFLAG)
 ISN 0224
                    G = 6.2831853 * QR*ADR*M/(R(I)*QB*(M-N*QR))
ISN 0225
                    A1(NO+1) = (2. - A2MP1/R(I)*DR)*DR
 ISN 0226
                    A1(NO+2) = (-2. + A2MP1/R(I)*(DR-DL) - G*DR*DL)*(DR+DL)
 ISN 0227
                    A1(NO+3) = (2 + A2MP1/R(I)*DL)*DL
 ISN 0228
                    A1(N0+4) = 0.
               502
 ISN 0229
                    NO = 4* NP
 ISN 0230
                    A1(NO+1) = -(1.+.5*DR*GAM)
I ISN 0231
                    A1(NO+2) = 1. -. 5*DR*GAM
 ISN 0232
                    A1(N0+3) = 0.
I ISN 0233
                    A1(NO+4) = -DR*GAM/RS**M
IISN 0234
                    CALL LGLSS(A1,Y, 11P, 0., 6)
<sup>I</sup>ISN 0235
                    DO 504 I = 1.NR
 ISA 0236
                    YSING(I) = 0
 ISN 0237
                    YTOT(I) = R(I)**M*Y(I)
 ISN 0238
               504
                   CONTINUE
 ISN 0239
                   DD = (RS/BW) **(2*M)
               511
 ISN 0240
                    IF (Bk.LT.O.) DD = 0.
ISN 0242
                    DT = RS ** (2 EM)
 ISN 0243
                    DELS = M/RS = ((DD+1)/(DD-1) - ((Y(NR) + Y(NR+1))*RS**M - 2.*DT)
                   X / (1.-DT) + 1.)
1ISN 0244
               505
                   CONTINUE
               210 CONTINUE
ISN 0245
11SN 0246
                                                      DE(IMN) = DELS
ISN 0247
                                                      BR(IMN) = DLL
ISN C248
                                                      RQ(IMN) = RS
ISN 0249
                 81 FORMAT(/40H
                                      IMN
                                               DELS
                                                          DLL
                                                                     RS1
ISA 0250
                 82 FORMAT( I10, 5F10.3)
ISN 0251
                    GD TO 201
ISN 0252
                    END
```

```
ISN 0002
                   SUBROUTINE ODINT(X, F, FDD, NP, XP, FP, FDP, IFLAG)
ISN 0003
                   DIMENSION X(1), F(1), FDD(1)
             C GIVEN A FUNCTION F AND ITS SECOND DERIVATIVE FDD IN
               AP POINTS X, COMPUTES THE FUNCTION AND ITS FIRST
             C
              DERIVATIVE IN XP
ISN 0004
                  IFLAG = 2
ISN COOS
                  IF ((XP.LT.X(1)).DR.(XP.GT.X(NP))) RETURN
ISN 0007
                  IFLAG = 1
ISN CCC8
                  DO 101 I = 2, NP
ISN CCOS
                  IF (XP.GT.X(I)) GO TO 101
                  DX = X(I) - X(I-I)
ISN 0011
ISN CC12
                   A = (FCD(I) - FCO(I-I)) / (6.*DX)
ISN 0013
                   B = 0.5 *FDD(I-1)
ISN 0014
                  C = (F(I)-F(I-1))/DX - DX/6.*(FDD(I) + 2.*FDD(I-1))
                  D = F(I-1)
ISN 0015
                  XX = XP - X(I-1)
ISN 0016
ISN CC17
                  FP = ((A*XX+B)*XX+C)*XX + D
                  FDP = (3.*A*XX + 2.*B)*XX + C
ISN 0018
ISN CC19
                   RETURN
ISN 0C2C
              101 CONTINUE
ISN 0021
                   RETURN
ISK CO22
                   END
ISN 0002
                   SUBROUTINE CUBIC3(N, X, Y, Y2, F, G)
             C
                 KUBISCHER SPLINE MIT Y' AM RANDNVORGEGEBEN
                 H. SPAETH, PG. 46
                   DIMENSION X(1), Y(1), Y2(1), F(1), G(1)
ISN CCO3
ISN 0004
                   N1 = N-1
ISN CCC5
                   J1 = 1
                   H1 = C.
ISK C006
                   R1 = Y2(1)
ISN 0007
                   G(1) = 0.
ISA CCC8
                   F(1) = 0.
ISN 0009
                  DO 3 K=1,N
ISN 0010
                   IF (K. LE. N1) GO TO 1
ISN 0011
ISN CO13
                   H2 = 0.
                   R2 = Y2(N)
ISN CO14
                   GO TO 2
ISN CC15
                    J2 = K+1
ISN 0016
ISN CO17
                     H2 = X\{J2\} - X\{K\}
                     R2 = (Y(J2) - Y(K))/H2
ISN 0018
                     Z = 1./(2.*(HI+H2) - HI*G(JI))
ISN 0019
              2
                     G(K) = Z*H2
ISN CC20
                     F(K) = Z*(6.*(R2-R1)-H1*F(J1))
ISN CO21
ISN 0022
                      J1 = K
                     H1 = H2
ISN CC23
                     R1 = R2
ISN 0024
                  CONTINUE
ISN 0025
             3
                   Y2(N ) = F (N )
ISN 0026
                   DO 4 J1 = 1, 11
ISN 0027
                     K = N - J1
ISN CO28
                      Y2(K) = F(K) - G(K)*Y2(K+1)
ISN 0029
ISN CO30
                    CONTINUE
ISN CC31
                    RETURN
ISN 0032
                    END
```

```
ISN COO2
                    SUBROUTINE DET3(H, Y, Z, NDIM, IER)
              C
              C
ISN 0003
                    DIMENSION Y(1), Z(1)
              C
              C
                        TEST OF DIMENSION
                    IF(ND IM-3)4,1,1
ISN 0004
              C
              C
                        TEST OF STEPSIZE
ISN 0005
                  1 IF(H)2,5,2
              C
                        PREPARE DIFFERENTIATION LOOP
              C
ISA COO6
                  2 HH=.5/H
                    YY=Y(NDIM-2)
ISN CCO7
ISN 0008
                    B=Y(2)+Y(2)
                    B=H+A (B+B-Y(3)-Y(1)-Y(1)-Y(1))
ISN COO9
              C
                        START DIFFERENTIATION LOOP
              С
ISN OCIC
                    DO 3 1=3, NDIM
ISN 0011
                    A = B
ISN CC12
                    B = HH* (Y(I) - Y(I-2))
                   3 Z(I-2)=A
ISN CC13
              C
                        END OF DIFFERENTIATION LOOP
              C
              C
                        NORMAL EXIT
ISN 0014
                     IER=0
                     A=Y(NDIM-1)+Y(NDIM-1)
ISN CC15
ISN 0016
                     Z(NDIF)=HH*(Y(NDIM)+Y(NDIM)+Y(NDIM)-A-A+YY)
ISK 0017
                     Z(NDIM-1)=B
ISN CC18
                     RETURN
              C
                        ERROR EXIT IN CASE NOIM IS LESS THAN 3
              C
ISN CC15
                   4 IER =- 1
ISN CC20
                     RETURN
              C
                        ERROR EXIT IN CASE OF ZERO STEPSIZE
              C
ISN 0021
                   5 IER=1
ISA CO22
                     RETURN
ISN 0023
                     END
ISN CCO2
                     SUBROUTINE ALI (X, XARR, YARR, Y, NP, IER)
ISN 0003
                     DIMENSION XAPR(1), YARR(1)
ISN OCO4
                     IER = 1
ISN 0005
                     IF ((X.LT.XARR(1)).OR.(X.GT.XARR(NP)))
                                                                 GC TO 201
                     DO 101 I = 2, NP
ISN CCC7
                     IF (XARP(I).LT.X) GO TO 101
ISN COC8
ISN 0010
                     Y = YARR(I-1) + (YARR(I) - YARR(I-1)) * (X- XARR(I-1)) /
                    Х
                                    (XARR(I) - XARR(I-1))
ISN 0011
                     GO TO 111
ISN 0012
                101
                    CONT INUE
 ISN 0013
                     RETURN
                111
 ISN 0014
                201
                     IER = -1
                     Y = -1.F65
ISA 0015
ISN CC16
                     RETURN
ISN 0017
                     END
```

```
SUBROLTINE ZEICH ( Z , L1 , L2 )
DIMENSION X(77), Y(77), Y1(77), Y2(77), Y3(77), Y4(77), Z(17,77)
ISN CCO2
ISN 0003
                             XMI = Z(1, L1)
ISN COO4
                             XMA = XMI + 4.8 = (Z(1,L2) - Z(1,L1))
ISN 0005
                             YMI = - 10.
ISN 0006
ISN 0007
                             YMA = + 80.
ISA COCB
                            X(1) = XMI
ISN CCCS
                            Y(1) = YMI
ISN 0010
                            X(2) = XMI
ISN 0011
                            Y(2) = 20.
ISN 0012
                            X(3) = Z(1, L2)
ISN 0013
                            Y(3) = 20.
ISN 0014
                            X(4) = Z(1, L2)
                            Y(4) = YMI
ISN 0015
ISN 0016
                            X(5) = XMI
                            Y(5) = YMI
ISA CO17
                     CALL FRAME ( XMI , YMI , XMA , YMA )
ISN 0018
                     CALL FLOTL ( X, Y, 5)
ISA CC19
                            X(1) = XMI
ISN CC2C
ISN 0021
                            X(2) = Z(1,L2)
                            Y(1) = 0.
ISN 0022
ISN 0023
                            Y(2) = 0_{\bullet}
                     CALL PLOTL ( X, Y, 2)
ISN 0024
                             JMA = L2 - L1 + 1
ISN CO25
ISN 0026
                     DO 1
                                J=1,JMA
                                L = J - 1 + L1
ISN 0027
ISN CO28
                            X(J) = Z(1,L)
                           Y1(J) = Z(2,L)
ISN OC29
ISA CC30
                           Y2(J) = Z(3,L)
                           Y3(J) = Z(4,L)
ISN 0031
                           Y4(J) = Z(5,L)
ISN 0032
                     CALL FLOTLS( X, Y1, JMA)
CALL PLOTLS( X, Y2, JMA)
CALL PLOTL ( X, Y3, JMA)
ISN CC33
ISN 0034
ISN 0035
                             YMI = 0.
ISN 0036
ISN 0037
                             YMA = 3.
ISN 0038
                            X(1) = XMI
ISN 0039
                            Y(1) = YMI
                            X(2) = XMI
ISA CO40
                            Y(2) = 1.
ISN C041
                            X(3) = Z(1,L2)
ISN 0042
ISN 0043
                            Y(3) = 1.
                            X(4) = Z(1, L2)
ISN 0044
                            Y(4) = YMI
ISN 0045
ISN C046
                            X(5) = XMI
ISN 0047
                            Y(5) = YMI
ISN CO48
                     CALL FRAME ( XMI , YMI , XMA , YMA )
ISN 0049
                     CALL PLOTL ( X, Y, 5)
ISN 0050
                     DO 3
                                K=8,11
ISN 0051
                     DD 2
                                 J=1,JMA
ISN 0052
                                L = J - 1 + L1
                            X(J) = Z(1,L)
ISN 0053
ISN 0054
                           Y1(J) = Z(K, L)
ISN 0055
                           Y2(J) = Z(K,L) - Z(K-3,L)
ISN 0056
                           Y3(J) = Z(K,L) + Z(K-3,L)
                      CALL PLDTL ( X, Y1, JMA)
ISN C057
ISN 0058
                     CALL PLOTLS( X, Y2, JMA)
ISN 0059
                     CALL PLOTLS ( X, Y3, JMA)
ISN OC6C
                   3 CONTINUE
ISN 0061
                     RETURN
ISN 0062
                      END
```

			32			
		(GAJSS)	814E14 687.94 655.80 645.72 645.72 647.02 640.31 651.70 661.92 661.92 727.02 727.02 727.02 727.02 727.02 727.02	39° 8	. 5879 . 9511 . 9511 . 5073	. 951 . 951 . 587
		(KM)	HEIZ 1121 00 1112 00 1110 012 1100 12 1100 12	26.2	130°0 8 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1
VG 2.20		(KA)	55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.672.61	5.9 0.535 0.0537 0.0637 0.0637	929 968 637 062
VC 4.50		(2)	21 0.271 0.540 0.509 0.479 0.477 0.477 0.228 0.228 0.007 0.007 0.008 0.008 0.008 0.008	400000044	4818 9048 9823 6845 1253	904 982 684 125
407		/ B	320000000000000000000000000000000000000		5	
1ND SI		0 8			0.4258 0.9921 0.7290 0.1874	.876 .992 .729
G RSO 0 0.1		-FLAECHE	21 000000000000000000000000000000000000	00000000	R M 6 PHASE) 681 443 980 703	4 8 0 8
R.0.7		S DER Q	000000000000000000000000000000000000000	N W W W W W W W	+ + 00000	0 0 0 0
5°76	00432	RADIU	31 0 . 83 0 . 83 0 . 83 0 . 84 0 . 84	77770000	SEGMENT FLDAT(N 6.3090 0.8090 0.8090 0.8090 0.3090	. 809 . 809 . 309
FR 400.00	AMBCA= 0	ITE	21 0.092 0.112 0.109 0.106 0.106 0.106 0.095 0.016 0.016 0.016 0.016 0.016 0.016 0.016	000000	N 7	1111
BT GR 2.80	5 L	E L BRE	32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(637) (637) (637) (6.283 (6.283 (6.283 (0.989 (0.989 (0.989 (0.989	- 6 8 8
0.11	2.50E-C	NI	# m c c c c c c c c c c c c c c c c c c		ERIOD INE FORM ON COSOMZ ASE = 0. J=1,NT (J) = SIN 0.1874 0.9921 0.8759 0.4258 0.1874	932 932 876 425
A 0.13	DT				CNE P SUBROUT N NE NSI N D A C D S D A C D S D A C D S D A C D S D A	
1 00	. 72	S 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40444044	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	84
NP 7	S == 0	0 E		444400000	AVERA 002 005 005 005 005 008 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	
LHAX 41	VER		CMT 12.5663 112.5663 112.5663 113.5663 113.64131 113.641	300000000000000000000000000000000000000	N 000	2000

7. GOEL program

This program calculates the field and current density profiles for the relaxed state with sinusoidal AC modulation. This program was used to calculate Figs. 2, 3 and 4, in which AC and DC components are compared. In the GOEL program it is assumed that the current density and field components consist of a time independent "DC component" and an "AC component" with sinusoidal time dependence (see eqs. (2.16) and (7.1)). The parabolic partial differential equation (2.12) then yields a system of two coupled ordinary differential equations (7.2) with boundary conditions for r = 0 (eq. (7.3)) and r = a (eq. (7.4)). The variables have the same meaning as in the GOEPAR program. Instead of the plasma conductivity profile number P the plasma direct current IGA is read in and the profile number P is then calculated from it. We now describe the method of numerical solution employed in the GOELER and SUCCES subroutines.

Insertion of the equation analogous to eq. (2.16)

$$E_Z(r,t) = E_O + E_C(r) \cos \omega t + E_S(r) \sin \omega t$$
 (7.1)

in the parabolic partial differential equation (2.12) yields the system

$$\frac{1}{r}\frac{d}{dr}\left[r\frac{d}{dr}E_{c}\right] = bE_{s}$$
 (7.2a)

$$\frac{1}{r} \frac{d}{dr} \left[r \frac{d}{dr} E_s \right] = -bE_c \tag{7.2b}$$

with boundary conditions

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{r}} \, \mathbf{E}_{\mathbf{C}} / \mathbf{r} = 0 \tag{7.3a}$$

$$\frac{\mathrm{d}}{\mathrm{d}r} \, \mathbb{E}_{\mathrm{S}} \Big|_{r=0} = 0 \tag{7.3b}$$

$$E_{c}/r=a = E_{a} = V_{PL/2\pi R}$$
 (7.4a)

where

$$E_{S}/r=a = 0, (7.4b)$$

$$b = \mu_o \sigma \omega \tag{7.5}$$

Here b depends via o on r.

The equations are solved numerically, by reducing the <u>boundary</u> value problem ((7.2) to (7.4)) to an <u>initial</u> value problem in which boundary condition (7.4) is replaced by

$$E_{c}/r=0 = C_{0}$$
 (7.6a)

$$E_{s}/r=0 = S_{0}$$
 (7.6b)

The designation "initial value problem" for eq. (7.2, 7.3 and 7.6) comes from the analogy with the initial value problem of mechanics, where the location and velocity of a mass point at time t = 0 are given.

We thus have to look for the "initial values" $\mathbf{C}_{\mathbf{0}}$ and $\mathbf{S}_{\mathbf{0}}.$

Because the differential equation (7.2) to be solved is linear and homogeneous, the boundary values on the right are linear and homogeneous functions of C_0 and S_0 :

$$E_c/_{r=a} = A_{11} C_0 + A_{12} S_0$$
 (7.7a)

$$E_s$$
) $r=a = A_{21} C_0 + A_{22} S_0$ (7.7b).

For
$$C_0 = 1$$
 one has $E_{C/r=a} = A_{11}$ (7.8a)

$$S_0 = 0$$
 $E_S/_{r=a} = A_{21}$ (7.8b)

for
$$C_0 = 0$$
 one has $E_c|_{r=a} = A_{12}$ (7.9a)

$$S_0 = 1$$
 $E_s/r=a = A_{22}$ (7.9b)

The SUCCES subroutine solves the initial value problem. First we use SUCCES to calculate A_{11} and A_{21} according to eq. (7.8), then to calculate A_{12} und A_{22} according to eq. (7.9). We then put the boundary conditions (7.4) in the left-hand side of eq. (7.7) and solve eq. (7.7) for C_0 and S_0 . The third call of SUCCES then yields E_c and $E_s(r)$.

8. SUCCES subroutine

The SUCCES subroutine solves the initial value problem, i.e. eqs. (7.2, 7.3 and 7.6) from Sec. 7. The arguments have the following meanings:

$$_{A} = E_{C/r=0} = initial value for $E_{C}$$$

$$S_A = E_{S/r=0} = initial value for E_S$$

$$EC_L = E_{c/r=a} = right-hand boundary value of E_{c}$$

$$ES_L = E_{s/r=a} = right-hand boundary value of E_s$$
.

 ${\rm EC}_{\rm L}$ and ${\rm ES}_{\rm L}$ are to be calculated by SUCCES routine.

The r mesh points are located so that R(1) = 0.

For small r we use the ansatz

$$E_{C} = C_{A} + \hat{C}_{2} r^{2} + \hat{C}_{4} r^{4}$$
 (8.1a)

$$E_{S} = S_{A} + \hat{S}_{2} r^{2} + \hat{S}_{4} r^{4}$$
 (8.1b)

and determine the coefficients \hat{c}_2 \hat{c}_4 \hat{s}_2 and \hat{s}_4 from the differential equation (7.2).

For $r \ge R(3)$ we use a difference scheme:

Let
$$C(K) = E_C(R_K)$$
;

one then has

$$\frac{1}{r} \frac{d}{dr} \left[r \frac{d}{dr} E_{c} \right]_{r=R(K)} = \frac{r_{K+1/2} \frac{C_{K+1} - C_{K}}{r_{K+1} - r_{K}} - r_{K-1/2} \frac{C_{K} - C_{K-1}}{r_{K} - r_{K-1}}}{r_{K} (r_{K+1/2} - r_{K-1/2})}$$

$$= b E_{S}(R(K)) = b S_{K}$$
(8.2)

where

$$S_k = E_S(r=R(K))$$
,

$$\mathbf{r}_{K} = R(K)$$
and
$$\mathbf{r}_{K+1/2} = \frac{1}{2}(R(K) + R(K+1))_{\bullet}$$

and

We solve the difference equation (8.2) for $C_{K+1}^{}$, and also the analogous difference equation describing \mathbf{E}_{s} for \mathbf{S}_{K+1} . The values of \mathbf{E}_{c} and E_s are known for K $^{\vee}$ K - 1, either from the previous step or from eq. (8.1) for small r.

List of input parameters

We now review the parameters used for calculating the curves in Figs. 2 to 8. This is necessary if these curves are to be reproduced with the programs presented in this report. The respective figure captions are not sufficient. It is very difficult, for example, with the current modulation ΔI given in Fig. 3 to arrive at the AC voltage V_{C} used as a parameter in producing Fig. 3.

1) Eonstant parameters

Limiter radius

AL = 0.11 metre

Toroidal field

BTOR = 2.8 tesla

Plasma direct current IGA = 55.kA

Major radius

RG = 0.7 metre

Conductivity (r=0) SIGO = $1.44 \times 10^7 \text{ ohm}^{-1} \text{m}^{-1}$

DC voltage

VG = 2.2 Volt

2) Parameters which vary from curve to curve

FIG	A	FR	wt	VC	program
2	0.13	100 300 1000		60 .	GOEL
3	0.13	400	0. 1.57 3.14 4.71	18.	GOEL
4	0.11 0.13 0.25	300		50.	GOEL
5	0.13	400		4.5 9. 18.	GOEL GOEPAR
6	0.13	400 4000		9. 36.	GOEPAR
7	0.13	400		3. 4.5 9.	GOEPAR
8	0.13	400.	e utoministra society, edica fi 400000	2.8	GOEPAR.
	ı				

Remarks:

In program GOEPAR we have used P as an input parameter instead cf IGA = I_{PLO} (see eq. (2.8)). From IGA = 55 and A = .13 it follows that P = 5.76.

```
C WECHSELSTROMPROFILE, ALTERNATING CURRENT , SEGMENT G C E L
                                IGA, JO, J1, JG, JZ, LAMBDA, MO, N1, NG
ISN 0002
                    REAL*4
                    COMMON /GOE/ R(51) , BA , P , V , LMAX COMMON /SUC/ B(51) , EC(51) , ES(51)
ISN 0003
ISN 0004
                  10 PRINT S8
ISN 0005
ISN 0006
                     PRINT 92
                    READ 112,
                                   A, AL, BTCR, CR, FR, IGA, OMT, RG, SIGO, VC, VG
ISN 0007
                                  A, AL, BICR, DR, FR, IGA, CMT, RG, SIGO, VC, VG
                     PRINT 113,
ISN 0008
                           LMAX = 1.2 + 1./CR
ISN 0009
                             L1 = LMAX - 1
ISN 0010
                             MO = 1.25664E-6
ISN 0011
ISN 0012
                            IGA = IGA * 1.E3
                            SIG0 = SIG0* 1.E7
ISN 0013
                              OM = 6.2832 * FR
ISN 0014
ISN 0015
                         COSOMT = CCS( CMT)
                         SINOMT = SIN( CMT)
ISN 0016
                         BA = MO * SIGO * OM * AL**2
LAMBDA = SCRT ( 1 . / BA )
ISN 0017
ISN 0018
                               V = (AL/A)**2
ISN 0019
                              EO = VC / (6.2832 *RG)

EG = VG / (6.2832 *RG)
ISN 0020
ISN 0021
                               P = 3.1416 * SIGO * EG * AL**2 / (V* IGA) - 1.
ISN 0022
                     DO 1
                               L=1 . LMAX
ISN 0023
                            R(L) = DR*(L-1)
ISN 0024
                              RQ = R(L) **2
ISN 0025
                            B(L) = BA* (1.- V*RC)**P
ISN 0026
                     CALL SUCCES ( 1. , 0. , A11 , A21 )
CALL SUCCES ( 0. , 1. , A12 , A22 )
DET = A11 *A22 - A21 *A12
ISN 0027
ISN 0028
ISN 0029
ISN 0030
                              CO = EO * A22 / DET
                              SO = - EO * A21 / CET
ISN 0031
                     CALL SUCCES ( CC , SO , A3 , A4 )
ISN 0032
                     PRINT 91
ISN 0033
                     PRINT 113,
                                  LAMBDA , P , V
ISN 0034
                     PRINT 93
ISN 0035
                              JO = SIGO *EG
ISN 0036
                     DO 3
                                L=1,L1
ISN 0037
                              RQ = R(L)**2
ISN 0038
                             SIG = SIGO* (1.- V*RQ)**P
ISN 0039
ISN 0040
                              J1 = SIG* SGRT(ES(L)**2 + EC(L)**2)
                              JG = SIG* EG
ISN 0041
                              JZ = SIG*(EG + ES(L) *SINCMT + EC(L) *CGSOMT)
ISN 0042
                              NG = JG / JO
ISN 0043
                              N1 = J1 / J0
ISN 0044
                                   R(L) , SIG , Jl, N1, JG, NG, JZ
ISN 0045
                   3 PRINT 110,
                     GO TO 10
ISN 0046
                                                                  VI
ISN 0047
                  91 FORMAT (/31H
                                       LAMBDA
                                                       P
                                                      AL
                                                                BTCR
                                                                             DR
                                                                                        FR
ISN 0048
                  92 FORMAT(/110H
                                           A
                                                        SIGO
                                                                                VG)
                                    OMT
                                                RG
                   1
                        IGA
                                                                         N1
ISN 0049
                  93 FORMAT(/71H
                                            R
                                                     SIG
                                                                 J1
                    1 NG
                                    JZI
                  98 FORMAT( 1H1)
ISN 0050
                 110 FORMAT ( F12.3 , 1P2E1C.2, OPF8.3, 1PE12.2, OPF8.3, 1PE12.2)
112 FORMAT ( 12F6.3)
113 FORMAT ( F12.3, 11F10.3)
ISN 0051
 ISN 0052
ISA 0053
ISN 0054
                     FND
                          SUBROUTINE SUCCES ( CA, SA, ECL, ESL)
     ISN 0002
                          COMMON /GOE/ R(51) , BA , P , V , LMAX
     ISN 0003
                                          8(51) , EC(51) , ES(51)
                          COMMON /SUC/
     ISN 0004
                               EC(1) = CA
     TSN 0005
                               ES(1) = SA
     ISN 0006
                                  LM = LMAX - 1
     ISN 0007
                                                 * BA* SA
                                   C2 = 0.25
                                                * BA+ CA
     ISN 0008
                                   $2 = -0.25
     ISN 0009
                                   C4 = 0.0625 * BA*(S2 - P*SA)
     ISN 0010
                                   S4 = - 0.0625 * BA*(C2 -P*CA)
     ISA 0011
                                   R2 = R(2) **2
     ISN 0012
                               EC(2) = CA + R2*( C2 + C4*R2)
     ISN 0013
                               ES(2) = SA + R2*( S2 + S4*R2)
     ISN 0014
                          DO 3
                                    K=2, LM
     ISN 0015
                                   QP = (R(K+1) + R(K)) / (R(K+1) - R(K))
     ISN 0016
                                   QM = (R(K-1) + R(K)) / (R(K-1) - R(K))
     ISN 0017
                                 QMQP = QM / QP
     ISN 0018
                                    T = R(K) * (R(K+1) - R(K-1)) * B(K) / QP
                                  ISN 0019
     ISN 0020
     ISN 0021
                              EC(K+1) = ECL
     ISN 0022
                              ES(K+1) = ESL
     ISN 0023
                        3 CONTINUE
     ISN 0024
                          RETURN
     ISN 0025
```

END

ISN 0026

VG 2.200																																										
VC 131.300																																										
S IG0 1.400																														6 711	7											
RG 0.700																														L	L											
D.0		32	7. COE+06	6.99E+06	6.93E+06	6.84E+06	6.72E+06	6.56E+C6	6.37E+06	6.15E+06	5. SOE + 06	5.64E+06	5.37E+C6	5.11E+C6	4.88E+06	4.68E+C6	4.47E+C6	4.17E+06	3.72E+C6	3.03E+06	2.CSE+C6	9.40E+05	-2.56E+05	-1.29E+C6	-1.94E+06	-2. C7E+06	-1.61E+06	-6.48E+05	6.29E+05	2.CUE+06	3.235.00	40175400	4 7 2 2 2 4 7 6	4 55 F 6 C 6	4. (4F+06	3 3 8 5 4 7 6	2 47 E + 0 A	1 605404	1 205406	0 00 00 00	4.09C403	70111
1GA 55.000		N.G	1.000																																•							
FR 1000.000		90	ш	.98	. 53E+C	.84E+0	6.72E+06	6.54E+C6	6.38E+06	.16E+0	.52E+0	.66E+0	5.38E+06	.08E+0	4.77E+C6	.45E+C	.13E+0	.80E+0	3.47E+06	.15E+0	. 84E	.54E	.25E	.57E	1.72E+06	.48E	.26E	1.C6E+06	- 79E	.20E	ם ב	200	7000		407	740	200	77.5	04540	74540	775	
DR 0.025		N1	00000	000 0	000-0	00000	00000	0.001	100.0	0.002	0.003	0.005	800-0	0.013	0.021	0.033	0.051	0.075	0.109	0.154	0.213	0.285	0.371	0.468	0.574	0.682	0.786	0.876	156.0	065.0	000-1	116.0	124.0	0.000		•	•		•	12	0.120	2
B TOR 2.800	v 0.716	11	.23E	316	. 10E	.62E	.65E	.45E	.51E	. 27E	.13E	. 54E	. 31E	39€	364°	.32E	.54E	. 26E	.64E	. CBE	49E	366.	. 59E	.23E	. 02E	4.78E+06	.50E	.14E	•63E	. 53E	000	4 1	1040	0 -	777	200	700	200	1000	200	200	2
0.110	P 5.760	-	.40 E+0	.40E+0	.39E+0	.37E+0	.34E+0	.31E+0	.27E+0	.23E+0	.18E+0	.13E+0	.08E+0	. 02 E+0	.54E+C	.90E+U	.25E+0	.60E+0	.95E+0	.31E+0	.68 E+0	.07E+0	.50E+C	.95E+0	. 43E+ C	2.95E+06	.51E+0	.12E+0	.76E+0	. 44E+ C	.16E+U	. 23 E+ U	0+161.	0 + 1 0 0 + 0	0000	1100		14040	041140	74540	07750	• 30 E4 0
A 0.130	AMBDA 0.027	œ	0	.02	0.5	.07	10	.12	15	.17	.20	. 22	.25	.27	.30	.32	35	.37	40	.42	45	. 47	.50	.52	55	0.575	. 60	.62	• 65	9.	07	71.	0 0	- 0	0 0	900	0 0	0 0	2 (7 0		

References

- /1/ H.P. FURTH, J.KILLEEN, and M.N.ROSENBLUTH, Phys. Fluids 6, 459-484 (1963)
- /3/ R.B.WHITE, D.A.MONTICELLO, M.N.ROSENBLUTH, and B.V.WADDELL, Phys. Fluids 20, 800-805 (1977)
- /4/ G.BATEMAN, MHD Instabilities, MIT Press (1978)
- /5/ A.H.GLASSER, J.M.GREENE, J.L.JOHNSON, Phys.Fluids 19, 567-574 (1976)
- /6/ J.M.FINN, Nuclear Fusion 15, 845-854 (1975)
- /7/ A.B.RECHESTER, T.H.STIX, Phys.Rev.Lett. 36, 587-591 (1976)
- /8/ B.V.WADDELL, B.CARRERAS, H.R.HICKS and HOLMES, Phys. Fluids 22, 5, (1979)
- /9/ R.JAENICKE, H.WOBIG, to be published Proc. 9. European Conf. Oxford (1979)
- /10/ J.D.CALLEN, Proc. 7.Int.Conf. Innsbruck (1978)
 Vol. 1, IAEA Vienna (1979), p. 415
- /11/ R.D.RICHTMYER and K.W.MORTON, Difference Methods for Initial Value Problems, Interscience Publishers, John Wiley & Sons, New York 1957
- /12/ R.BECKER, Theorie der Elektrizität, 1. Band, § 58 Teubner'sche Verlagsgesellschaft, Stuttgart, 1957
- /13/ P.H.RUTHERFORD, Phys.Fluids 16, 1903 (1973)
- /14/ S. v.GOELER et al., Proceedings of Symposium on Disruptive Instabilities, Garching (1979)
- /15/ S. v.GOELER et al., Proceedings of 9. European Conference on Controlled Fusion and Plasma Physics, Oxford, 17-21.9.1979.