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Abstract:

An improved formula for anomalous transport caused by the dissipative
trapped-ion instability (without shear effect) is derived numerically and
by two independent analytical methods. The new shearless result is also

used to derive the anomalous diffusion with shear effect by a general

method already published.




Earlier numerical calculations by Saison et al. [l] of the
anomalous diffusion caused by the dissipative trapped-ion instability
in a toroidal plasma without shear gave Bohm-like diffusion. A
diffusion formula that includes shear effects was derived from this
shearless result [2:] . In the meantime, more refined calculations
[4, 5] have produced more accurate results for the cases without
and with shear effect. A brief account of these new results is
given in this letter. As in the earlier work, the starting point is

set by the Kadomtsev-Pogutse 2D trapped-fluid equations [3] , viz.
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with j =i,e. Here na(x,y,r) are the trapped-particle density
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perturbations, the subscripts x,y,t designate derivatives, 8 =N -,
yj are the effective collision frequencies of the trapped particles,
A = cT/2eBNP(I-80), NP(x) is the particle equilibrium density of

P
one species, 60 = nO/N is the relative number of magnetically

p
trapped particles (in equilibrium), o ASONP/rn, with b 2 lN /Ni
Egs. (1) are now refined by applying, in addition, a Gaussian spectral
cut-off operator to the time increments of the trapped-ion and trapped-
electron density perturbations. By this device, a regularization of the
equations at short wavelengths is effected. The quasineutrality
condition is used to determine the electric potential Cb(x,y,f) from g
From® one can determine the spatial distribution of ExB drift

velocities, and the velocity field and the density perturbations yield



a y-averaged trapped-particle flux in the radial x-direction and

the corresponding ambipolar, anomalous diffusion coefficient.

The initial-value problem was numerically solved for broad-
spectrum initial perturbations in the rectangle 0 € x < a, 0 £y £ b,
with b =gta, a = minor plasma radius. The usual boundary conditions
[], 2_]were employed, viz. periodicity in y with period b and zero
perturbations for x = 0 and x = a. The number of grid points and
the width of the Gaussian cut-off in the y-direction were adjusted
according to the values of the dominant mode number. In this way,
numerical errors were kept comparatively small in all calculations.

The results are summarized in Table |. The anomalous diffusion coeffi-

cient is shown to scale as (cgs-units)
D 3.5 x 1072 § c:"’yi : (2)

As in the earlier calculations [I] , a dominant mode number m s

visible that obeys

m o 4m , (3)
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where mmcrg is the marginally stable mode number. As an illustration,
Fig. 1 shows late-time m Fourier transforms for an m =1
y marg
equilibrium, and Fig. 2 a typical wave structure ni'(x,y), n, = trapped-
ion density. One recognizes a periodic structure in the y-direction

with my = 4 and m)’ = 5 in the outer and inner plasma regions,

respectively, and V-like curves of equal phase.




The new shearless result, eq. (2), is confirmed by two
independent methods. One method is a combination of a similarity
analysis [1, 2, 4] and the numerical result [1, 5] stating that the
solutions have approximately m periods in the angular y-direction,
with ma 4 m , m = marginally stable mode number. The

marg marg
scaling of eq. (2) is recovered from this derivation. The second

method consists in considering exact, special solutions of the

Kadomtsev-Pogutse fluid equations, eq. (1), that satisfy the ansatz
"7\1(3‘:"3 W)= /nf (x) + %i (x) Cos [K‘j -l - Téfx)‘]

for the trapped-particle density perturbations. The Ky cut-off can
be taken into account in this analysis. The resulting anomalous

diffusion formula reads
r J 2
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which is similar to eq. (2), but numerically larger by a factor of
~2. The KY cut-off does not enter eq. (5). The solutions nt
of eq. (4) are exact because the nonlinear terms of eq. (1) do not

produce second harmonics. It should be noted that D of eq. (5)

is independent of M b, and B.

Equation (2) can be modified to include an important shear
effect, viz. the effective radial localization of modes due to
strong Landau damping [2,6] . Comparison with experiments

should be done using the modified formula. The method given in



[2] yields the anomalous diffusion coefficient with shear effect, viz.
- 2
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where Qa is the distance between properly chosen mode-rational
surfaces (where K,, = 0). It is given by [2,6]
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with # :Iq/qx,)q(x) = safety factor. For low enough temperatures

eqs. (6) and (7) give, for b = 2#r, r = local minor radius,

92
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which is small compared with DKP = 236;'0:/1)6. At sufficiently

1.

high temperatures, shear becomes ineffective because Miom —
Equation (6) then applies with Aa = min { a, rq } . In evaluating
eqs. (6) and (7) it must be ensured that a number of existence
conditions for the dominating mode of the instability are also

satisfied [2,4] . If not all conditions are satisfied, one must put

Ds = 0, contrary to eq. (6).

The ambipolar, trapped-particle anomalous diffusion also causes
a convective, anomalous energy flux. A zero-dimensional analysis
permits one to evaluate equivalent energy confinement times 'L"E

from the above process as well as from the neoclassical ion and

anomalous electron heat conductivities. The latter are discussed in




refs. [7, 8, 9] . The combined numerical results of these three
transport mechanisms, as evaluated for several toroidal plasma

devices, will be published elsewhere.
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table m_, for ¥y [ug = 1.17 x 10°°.
S my or ~/ 2

diffusion coefficient, $ = electric potential, m
number m , m

y' e
in the initial perturbation, N

m_ = 16 = half-width of cut-off of m s Nx = 64 = number of grid intervals in the

CX

x=direction. The values of (Q‘b/T )max hold for 50 =

= half-width of numerical cut-off of m , m
Y oy

= number of grid intervals in the y-direction,

Quantities: DKP = Kadomtsev-Pogutse

dom

Anomalous trapped-ion diffusion coefficient D versus m o

|

2

= dominant azimuthal mode

= highest my present

Mnarg | 2/ Soy, @) [ 0/(& av) | oo, |eom | g | | N
0.5 | 410102 | 4.43x10° | 8.21x102 | 1.4310"" | 3 4| 8 | o4
1.0 | 3.37x1072 | 7.27x107° | 2.69x107 | 1.42x107 | 45 | 8 | 16 | 64
2.0 | 3.40x1072 | 1.47x107% | 1.09 1.54x107 | 8+ 9) | 16 | 32 | 128
3.0 | 4.19x1072 2. 71x1072 3.02 1.73x107" 14(+15) 32 | 64 | 256
4.0 | 3.3x1072 | 2.931072 | 4.34 1.58x1070 | 1618) | 32 | 64 | 256
5.0 | 3.02x10% | 3.26x1072 | 6.04 1.61x107 | 20t...) | 40 | 80 |25
6.0 | 2.77x1072 3.59x10"2 7.98 1.73x10"" 22(+...) | 48 | 96 | 256

Table | .

. the marginally



Fig. 1

Fig. 2

Figure Captions

Fourier transforms in the y-direction of trapped-ion and
trapped-electron (dashed line) densities, root-square

averaged over x, for m = 1 at late times.
marg

Trapped-ion density distribution in the x-y plane, for

m = 1 at late times.
marg
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