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Abstract °

An energy principle for 'helical' incompressible per-
turbations in shaped-cross-section plasmas is derived in
the tokamak scaling (e = ka ~ B,/B, << 1). Two models
for the resistivity are used. The resistivity is assumed
to be transported either by the fluid or by the magnetic
surfaces. In the first case generalized rippling and tear-
ing modes are discovered, while in the latter case the
rippling is cancelled in a self-consistent way. The Euler
equation for the tearing modes generalizes the previously
derived equation for two-dimensional perturbations. It is
pointed out that the energy principle cannot be extended

to higher orders in e.




1 .INTRODUCTION

The stability equation of some dissipative systems

can be written in the form
NY + MY + Q¥ = O (1)

where ¥ is a complex state vector, N, M and Q are time
independent Hermitian operators and, in addition, N and
M are positive. As has been shown by Barston (1969), a
necessary and sufficient condition for the stability of

such systems is that Q is positive definite, i.e.
(v, Q¥) > O (2)

for all Y. The scalar product is defined by

(L¢)=erﬁT¢dT

where the star denotes the complex conjugate and T the

vector transpose.

Unfortunately, not all interesting systems can be re-
presented by-an equation of type (1) as has been discussed
by Tasso (1978). In particular, the operatbr Q generally
contains both a Hermitian and an anti-Hermitian part,

Q = Qh - iQa (Qh and Qa are Hermitian), which makes the



stability analysis much more difficult. The basic reason is
that the system may be overstable and that w # O at the
marginal point. To see this, we consider a marginal mode
y = Woeimt with real w. Substituting this in (1) and taking

the scalar product with wo’ we get

2 : PR
nw” + imw + q - iq =0 (3)
where the small letters stand for the expectation wvalues

of the respective operators, n = (wo, NWO) etc. All these

are real numbers because of the hermiticity of the operators.

The imaginary part of equation (3) gives

. (4)

When Q is Hermitian, one has qa = 0 and the margin-
ality occurs at w = O. The mode equation (1) for the marginal
state is therefore simply QY = O, which makes it under-
standable that the stability can be decided by consider-
ing Q alone. If the anti-Hermitian part iQa does not vanish
then also, in general,one has q # O and the marginal
point shifts from the zero frequency. No simple stability
criterion exists for such cases. One cannot hope to get
rid of Qa by a time independent coordinate or variable
transformation since w at the marginal point is a physical
property of the system and cannot vanish in one represent-

ation if it is shown to be non-zero in some other re-




presentation by equation (4). One could try to substitute
(4) in the real part of (3) and require the left-hand side
to be positive for all ¥. This would be a sufficient sta-
bility condition, but unfortunately this condition can al-
ways be violated for resistive plasmas. It seems that,
apart from a special limiting case to be discussed, one has
to face dealing with the full eigenvalue equation (1) with

a complex w in order to solve the stability problem.

In this paper we carry the analysis of resistive sta-
bility as far as seems to be possible with the aid of the
energy principle (2). It turns out that one has to restrict
oneself within tokamak scaling in order to get a Hermitian
Q. The energy integrals and corresponding Euler equations
are derived for plasmas with arbitrary cross-sections. It
is shown that by assuming the resistivity to be transported
by the magnetic surfaces the rippling mode is cancelled in
a self-consistent way. The remaining stability equation for
the tearing modes emerges as a natural generalization of
the stability equation for two—diﬁensional perturbations
previously derived by Tasso (1975). The present work also
generalizes the previous results for the helical modes of
circular-cross-section tokamaks (Tasso, 1977) and completes
the test function approach for shaped cross-sections by
Caldas and Tasso (1978). Our equation for the marginal state
is essentially the same as the one recently obtained by
Jensen and Chu (1979). The energy method, however, is more

rigorous and allows the use of test functions and at the

same time affords justification for the method of neighbouring

equilibria.




2. EQUILIBRIUM AND PERTURBED EQUATIONS

We consider resistive systems in a static equilibrium.
The equilibrium magnetic field B and current density J

are given by (Tasso, 1975)

B ‘= Bj * Eg =e, X vy + BZ e, (5)

I =JWe, (6)

where e, is the unit vector along the straight plasma. The

poloidal magnetic flux ¢y satisfies the equilibrium equation

dp
Loy =aw =-—=2
f® dy

with an arbitrary pressure profile po(w). Moreover, Bz

and the electric field

E=n_(y) I (7)

where no(¢) is the resistivity, are constants in the

equilibrium.

The linearized equations of motion around the

equilibrium are




— g -
o £_+VP1 - jJxB-Jdxb=0 (8)
e+ExB-n J-n3=0 (9)
Vxe=-b (10)
V.b=0 (11)
uoj_=Vx_hl (12)

where £ is the displacement vector, and j, b, e, P, and N4
denote the perturbed current density, magnetic field, electric
field, pressure and resistivity, respectively. We restrict

ourselves to incompressible perturbations
VeseE =0 , (13)
For the resistivity we use two alternative physical models.

We assume that the resistivity is transported either by

the fluid
n, =~ & "n (14)
or by the magnetic surfaces

(B + V)n, + (b - V)n_ = O, (15)

The latter model is representative of hot plasmas where the

heat conductivity along the magnetic field is large.




Equations (10), (11) and (13) are satisfied identically
by the introduction of the vector potentials A and U and the

scalar potential ¢ ;

b=7xa
E=7xU
e =-A- 9.

With the particular choice of the gauge ¢ =—§-Q equation
(9 ) becomes

A - v(B-0) +Bx (vx0) + n,J +n_3j=0. (16)

1

In this gauge BZ enters into the equation only in combin-

ation with the 2z derivative. Indeed, we have

-v(B-0) + B x (vxU) = -0 x (vxB) - (B.V)U - (U-V)B

and, since Bz is constant, the only term where BZ survives is

o_ a ©
(B*v)U = (B, - L + B, 3)U .

The pressure can be eliminated from equation (8) by

taking the curl

vxe, 9xU-79x(ixB) -B(v-j) -x(@xb)=0. (17)




Corresponding to the particular choice of the gauge in
equation (1€), we have here added zero in the form

= E(V'i) in order to gain symmetry of the subsequent
operators. We note that also in this equation BZ only

appears through the magnetic differential operator B * V.

3. OPERATORIAL EQUATION AND ENERGY INTEGRALS

Upon substitution of j from equation (16) in (17) this
pair of equations can be written in the form (1), where the

state vector is defined as

V X p_ Vx o}
N = 2
0 0
- (Vng = BVa) l— (ExVx - Vg-) - (ngx - EV')l_
M o o o
L (BxVx — VB-) .
n = = n

C o



The fact that N and M are of the required type will shortly

be proved.

The last term of equation (1) reads for our system

n
(B-9)=L 3 - (B'")J + (I-7)b

where use has been made of the constancy of B along the
Z axis, (J*V)B = O. The explicit form of the Q operator
(not necessarily Hermitian) depends on the model for the
resistivity. In the case of the fluid convection model (14)

we have

gz(g-v)(VJ)-Vx 'EZ(VJ)'VX + (Q-V)Vx

(£)

e (VJ)-vx T v (18)
—Z U

o]

while the surface convection model (15) leads to

o) (J-V)Vx
Q(s) _ (19)

0 gZ(E-V)-1 (vJ) -vx + g—- VxVx .
&)

The inverse operator (g-\‘/)“‘I formally introduced here may
not exist on some resonant surfaces, as will be seen later.
In obtaining these equations we have used the relation
Jvno/nO = -VJ, which is due to the constancy of Jn0 (see

equation (7)). Because of equations (5) and (6) the gradient




dJg
dy

(VJ) -Vx appearing in (18) and (19) thus becomes

VJ is equal to J'(B, x gz) , where J' = . The operator

(v3) +vx = 3' [ (By-Wle, - (e,-V)B, -,

A straightforward calculation shows that

(@, N@) = J,po|v X g[z dr , (20)
L e 'I . L4 ® 2
(v, My) = ‘[ e [&-V(E-g) - (ng)xg[ dt ; (21)
o : ‘
where E_ = - é ¥ v(g-é) + (ng) xB is equal to the

resistive electric field, Er =nJd + noj , owing to

equation (16). The integrals (20) and (21) are real and
positive quantities, implying that the real operators N

and M are Hermitian and positive as required in equation (1).
Physically, (@, N¥) and (@, MY¥) represent the kinetic energy

and the resistive dissipation of the system.

We also calculate the expectation value of the Q operator

as follows:

(v , oBly) = suE) 4 si(E)

where
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6W(f) = | (H’é'_é (B-7) (Ba+V) (E'EZH'J' l:(é*'gz) (B4-V) (g-gz)+

1
uO

+@re) (Be7) (e ) ] + — (A% - (xa)} dr

Gw(f)‘:f{—lj' (9_*'22) (_E_o_'V) (gz.v) (EJ'.H)-J' (é*.gz) (-e—zoV) (.@:\-'9.)4‘

+3'(UMe,)) (e,7) (BaR) WU (e V) UxA} dr
and

v, 9y = 'S + W'

where

SW(S) — I{JI (ék-.gz) (E.v)—1 (EJ-.V) (‘j}_ogz)-{- %—(—J— (Vxé*) . (Vxé) } dz

sw (s

J{J U (e, n 7 - I @Fe) B7) " (e,°V) (Ba'A)} dr .
When singularities arise from the inverse operator (E-V)—1
these integrals are to be understood to mean appropriately
defined principal parts. The éW parts of the expectation
values are real, but the 6;'5, in general, have both real and
imaginary parts. Hence the ¢ operators are not Hermitian

and one is not allowed to apply the energy principle. We note,
however, that each term in the 6%'5 contains the derivative

(gz'V) along the ignorable direction (without being multiplied




by BZ). Since the exact solutions can be taken to depend

: n
on z as elkz, the 6W's have k as a factor and in the limit
k -+ O they vanish leaving real expectation values, i.e.

Hermitian Q operators.

4., TOKAMAK SCALING

A comparison of the terms in the &W's and Gﬁ's shows
that the latter may be ignored when ¢ = ka << 1, where a is
a characteristic dimension of the plasma in the cross-sectional
plane. Symmetry of Q is obtained in zeroth order of .
Equations (16) and (17) were written in a form where Bz

enters only through the expression BV = _1§_,,_-V+Bz 2. . One

9z
is allowed to assume that at the same time as ka - O
B, increases in such a way that ka % By/B, and B'V still re-
mains of the order 0(e®). Then A and U also remain of the
order O(eO), and the 6%'5 of the order 0(51), thus wvalidi-
tating the use of the energy principle in the zeroth order.
In this tokamak scaling, ¢ = ka ® B;./BZ << 1, the perturbation
may be resonant with the magnetic field even though ka is
small; the derivative BV does not reduce to B,*V. It also
follows from the tokamak scaling that the aspect ratio L/2ma
of the plasma (L is the length in the z direction) has to be
large L/2ma = n/e >> 1, where n is the mode number (k = 2mn/L),
when modes other than the strictly two-dimensional ones

(i.e. n # 0) are considered.




In the limit ka » O the magnetic energy term in the

energy integrals $§W reduces to the form

1 2 1 2 1 2
= |vxAa|© = . |vaxAa, | + ™ [V*x(é-gz)gz[ ;

o o o

Since the transverse component A, appears only in this ex-
pression, we can trivially perform a minimization of the
dW's with respect to this variable to give XAy = 0. Only
the z components of the vector potentials U = U-e, and

A = é-gz then remain in the energy integrals, thus leading

to a reduced problem in terms of the reduced state vector

The Q operators are now

' (B:V) (B, V) 3" (B.+)
o) _
J'(By-V) — b V¢2 (22)
- H
o
0 o
Q(s) -
0 I (B-7) N (BarV) - ﬂ: v, 2 /(23)

and the corresponding energy expressions are




() 1

f [3'0*(B+9) (By-7)U-T'UT (B, V)AHT'A™ (B, ") U= = At %A ar (24)
(o]

W

sw'S)

[[J'A*‘@-V)‘1 @a')A - — A" v, a] ar . (25)
o]

The operator (22) was previously discovered by Tasso (1975).
He considered strictly two-dimensional perturbations but his
derivation leading to (22) is also valid for three-dimensional
perturbations in the tokamak scaling, virtually without any

modifications.

It can easily ke shown that the energy integral for ideal

incompressible MED equations can be written in the form -

swid) - f{ ' Ce-wnu™] (B_L'V)U“-E]_ [@9u] v,°@00 ) d
(o]

in the tokamak scaling. This is essentially the same as GW(S)
formulated in terms of U rather than A, A = (B-V)U, the
difference being that in the resistive case A can be taken

as finite everywhere.
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5. STABILITY CONDITION AND DISCUSSION

In tokamak scaling we have obtained Hermitian Q operators
(22) and (23) which can be used for a stability analysis
by the energy principle (2). The stability is determined
by the sign of the minimum value of W = (¥, QY) over all
permissible states ¥. We therefore extremize 6W under the
constraint that some appropriate norm HWHz = (¥, NY) be
constant, where ¥ is a Hermitian positive definite operator.

The resulting Euler equation reads

Qv ANY (26)
where the Lagrange multiplier A appears as an eigenvalue.
The extremum value of &éW is A(Y¥,V¥). The stability is thus
decided by the sign of the lowest eigenvalue A. The form of
the extremum solution depends on the norm; the extremization
of a homogeneous expression like (¥,QY) makes sense only
with respect to the norm. With regard to the stability of
the system, however, the choice of the norm is immaterial

since at the marginal point A in (26) is zero in any case.

For our purposes it is convenient to choose ﬂ?“z' =

=‘[|A|2d1. We then get for the fluid convection model Q(f)

the pair of equations




(B*¥) (Bx+V)U = (By+V)A = O

(27)

J'(Ba"V)U - :—- v,2a =1

o
and solving for (B,.°V)U from the first equation and substi-
tuting the result in the second one yields

J'(B+7) N (ByrV)A - ﬂ-—— 9,2 A = 1a. (28)

o
Exactly the same eqguation is directly obtained for the sur-
face convection model. There is a difference, however, bet-
wecen the models. In the case of the fluid convection model,
it is not guaranteed that the first equation (27), which

(£)
W

represents extremization of § with respect to U, produces

a minimum. In fact, as we show below, this is never quite

true. SW(f)

can be made negative by suitable test functions,
giving rise to the rippling mode instability. The question
of the nature of the extremum does not arise in the context

of the surface convection model. The rippling is cancelled

here in a self-consistent way.

In order to make the considerations more explicit, we
have to specify a coordinate system. We choose Hamada-like
coordinates ¢y, ©, ¢, where ¥ is the equilibrium poloidal
flux, ¢ = 2nrz/L, and 6 is an angle-like variable defined

on each magnetic surface by



where df is the differential arc length along the contour
around the plasma. (The curve ® = 0 at the z = 0 plane can
be taken to be any smooth curve that begins from the mag-
netic axis and intersects each magnetic surface only once.)
While ¢y and © coordinate curves are not, in general,
orthogonal, these coordinates have the advantage that the
operators B°*V and B,°*V have constant coefficients on the

magnetic surface, as discussed by, for example, Dewar et al.

(1974) :
21B
it S T I
B-Vv=1t3g (38 *93g)
(29)
2HBZ 3
Ba°V = Lg @6
B
where gq(y) = ﬂi %ﬁ is the safety factor. Because of the
L

tokamak scaling g is of the order of unity.

The existence of the rippling instability in the fluid
convection model can now be shown in the same way as in

previous work (Tasso, 1977; Caldas and Tasso, 1978). Choos-

ing test functions A X O, U = u(y) el(nc_me) equation (24)

becomes

271B
6W(f) = fJ' ( L(;)2 m(nq-m)uu%d-r .




The factor ng-m changes sign at the resonant surface. Con-
centrating ]u|2 on the negative side of the integrand,

the energy integral can always be made negative.

In the Euler equation (28) for the tearing modes one
needs the inversion of the magnetic differential operator
B-V. By using equations (29) one readily sees that the
expression (E-V)-1(§l'V)A is equal to A-X, where X satisfies

the magnetic differential equation

-+ q&) X = igna . (30)

Both X and A depend on ﬁ as e %

and are periodic functions
of 6 with the period 2m. Equation (30) can be written as an
ordinary differential equation along the characteristic

curve (field line)
d » _ .,
A A = ignA (31)

with

where o is the curve parameter. Integrating (31) over the
inverval o € [ 0,27 | and making use of the periodicity in

® and harmonicity in ¢, we obtain




2T
A(‘I) fe+0'-) e da

Xw,e) = (32)
27

j elnqa Fx

o

inga

O

where the exponential dependence on ¢ has been suppressed
from the notation. X is a weighted surface average of A.
Using these results the Euler equation (28) becomes

L %® & % §1fAD) = np, (33)

Yo

This equation is to be solved subject to the boundary
condition that A vanish at the conducting wall (or at the
infinity). The solution and its gradient must be continuous
everywhere. Since the denominator in (32) becomes zero on
tﬁe resonant surfaces where qn is inteéer, the equation has
a singularity at those surfaces. The soluticn A of equation
(33) can, however, be continued across the singularity so
that both A and VA are continuous by using an analytic ex-
pansion near the singular surface similar to that given by
Furth et al. (1973). The gradient VA becomes infinite at
the singularity but it may still be continuous in the sense

of a 'principal value'.




Our procedure of solving equation (33) with continuous
VYA and looking at the sign of X does not, in fact, differ
from the more familiar method (in plane and cylindrical
geometries) of solving the Euler equation with A = O and
looking at the sign of the discontinuity of the logarith-
mic derivative A' at the resonant surface. The apparent
difference arises solely from different norms used in the
minimization. The usual A' method can also be interpreted
as resulting from equation (26) when the norm is defined
to be the integral of [A12 over the resonant surface.
Then N = 6(¢—w0)(8 ?) and the corresponding eigenvalue is
seen to be proportional to -A' in simple geometries. Here
wo refers to the resonant surface. As discussed after (26) ,
the marginality condition is not affected by the choice of
the norm. The eigenvalue at the marginal point is zero,
A» = A' = 0, and the solutions are identical. The dis-
continuity A' in the minimum solution, for a non-marginal
system, is quite unrelated to the singularity of K in
equation (33) and could be shifted anywhere by changing
the value of y in the norm operator N. The extremal so-
lutions resulting from the choice where wo is the ¢y of the
resonant surface seem physically appealing because they re-
semble the real modes which behave 'discontinuously' near
the resonant surface. One has to remember, however, that
the energy principle does not at any rate give the real modes

correctly except for the marginal point.



In order to reveal more clearly the nature of the reso-

nances it is useful to expand A(y,8) in Fourier series in ©

('multihelical' representation):

A(y,0) = a_(¥) e ~ims

b
m
Substituting in (32) one gets

—-ime

m
; m-ng At B

(34)

When ng is integer, exactly the harmonic component m = ng

is resonant. The singularity is of
nq(wo) = m). As seen from equation
different harmonic components. The

because the metric coefficients of

the type 1/x (x=¢-¢oi
(34), A does not couple
coupling comes from VLZ

our coordinate system

depend on © (and V). In the case of circular cross-section,

however, © is the ordinary angle of the cylindrical co-

ordinates, and the harmonic components decouple completely.

For each component we then find an

given by Glasser et al. (1977) for

equation identical to that

a marginal MHD mode.

While the Fourier expansion has the advantage of clarity,

it is not obvious that it provides

the best method for the

numerical solution of the full equation (33). In particular,

if the deviation from circular symmetry is large, some other

numerical scheme based directly on

equations (32) and (33)
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may give more rapid convergence. On the other hand, the
energy principle allows one to use test functions, and for
this purpose the Fourier expansion is well suited. For
instance, a necessary condition for the stability is that
(25) is positive for any single harmonic component. Testing
this reduces the problem to a one-dimensional one similar to
that in the circular cross-section case, with the only
distinction that the 'radial part' of Vlz is modified by

the geometry of the problem.

In the case of two-dimensional perturbations (n = 0)
the expression (32) reduces to the ordinary surface average
A= {A %£ /frgg , and the Euler equation derived by Tasso

pa A

(1975) is regained. Equation (33) is a natural extension

of this equation for helical perturbations.

Equations (33) and (34) were recently also found by
Jensen and Chu (1979) using a more heuristic neighbouring
equilibria approach. By showing that in the tokamak scaling
the Q operator is approximately Hermitian and consequently
at the marginal point w = O we have given justification for
the use of these equations. We have also shown that in first
and higher orders in e the energy principle is not applicable.
The antisymmetric part of Q causes the frequency w at the
marginal point to shift from zero. With a finite value of €

one has to face the solution of the full eigenvalue problem




with complex eigenvalues. The stability criterion in such
cases most likely depends on the resistivity, finite Larmor

radius effects, gyroviscosity and other physical effects.
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