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Abstract

Collisionless two-fluid guiding centre equations are used to investigate
stability of toroidal plasma equilibria with respect to localized
MERCIER-type modes. The anisotropic equilibria are characterized by
a(V,B) = 1—(P"~Pl)/B2, where V is the volume inside the flux surfaces.

It is found that, in general, no localized MERCIER-type eigenmodes exist.
For o = o(B) such modes exist but no explicit stability condition can be
given. For ¢ = const in the localization region and no trapped particles
the necessary stability condition for axisymmetric equilibria agrees with
the MERCIER criterion except that the pressure is replaced by

(Prr & P_L)/(ZU)-



1. Introduction

MERCIER (1960) derived a necessary stability condition for axisymmetric
toroidal plasmas with respect to displacements which are localized
around a rational magnetic surface and are almost constant along the
field lines. Subsequently the criterion was shown to be necessary

and sufficient with respect to such modes in general toroidal geometry
(GREENE and JOHNSON, 1962, MERCIER and LUC, 1974). For axisymmetric

equilibria PAO (1975) derived the criterion from an eigenmode analysis.

It is now investigated whether a MERCIER-type mode ansatz may also
be used in guiding centre theory (GCT) to derive an anologous stability
condition. The GCT (GRAD, 1961) allows for kinetic effects parallel to
the field lines and for pressure anisotropy but keeps only E x B drifts
and assumes vanishing guiding centre radii. No collisions are included.
GCT-type energy principles were derived by KRUSKAL and OBERMAN (1958)
and by ANDREOLETTI (1963). Instead of these principles we use here an

eigenmode approach similar to that of PAO (1974, 1975).

Stability and mode analyses of GCT plasmas have hitherto been
mainly performed in simple geometries. ALEKSIN and YASHIN (1961), PAO
(1974) and CHOE, TATARONIS and GROSSMAN (1977) have investigated modes
in straight cylindrical (screw pinch) geometry where in MHD the MERCIER
criterion changes to the SUYDAM criterion (SUYDAM, 1958). Stability in
bumpy 6-pinch and helical equilibria. was investigated by, for example,
VAHALA and VAHALA (1977) and WEITZNER (1976) for the cases of small

bumpiness and helicity, respectively. Here, we initially consider



arbitrary toroidal plasma geometry. Later on, consideration is restrict-
ed to axisymmetric plasmas which are symmetric with respect to the equa-

torial plane.

The presentation is as follows: Secion 2 gives the basic equa-
tions. In Section 3 plasma equilibria are described as far as necessary
and particular coordinates are introduced. Section 4 presents the
linearized eigenmode equations. In Section 5 a MERCIER-type localization
ansatz is made and the existence of such modes is discussed. When the
pressure anisotropy coefficient o = 1-(P, - P_L)/B2 is a function of
B only (B = |§|) and the plasma is axisymmetric, the eigenmode equations
are further discussed in Section 6. For ¢ = const in the localization
region and with the further assumption that trapped particles may be
neglected a necessary MERCIER-type stability condition is finally de-
rived and compared with the MHD case in Section 7. Conclusions are

given in Section 8.



2. Basic Equations

We consider a fully ionized collisionless plasma which is described by

the following guiding centre equations (GRAD, 1961):

>

pg%=[3><§] - VP, (2.1)

J=curl B s (2.2)
> - P”—Pl
F=P1T+ 5 BE, (2.3)

B
3B
rot curl [U X B] (2.4)

The anisotropic pressure P, , P, and the mass density p consist of the

contributions from electrons and ions:

Pn,_|_ = Pu,, + Pu:_L ’

(2.5)
+ -—
p = p + p ’
which, in turn, are defined as moments of the distribution functions
F¥ of the guiding centres:
[P.. . P:| fdv J'du Ov%, wB] F(v,u,7,1)
+co [+ (2'6)
+ + -+ +
PT =mn =fdv fdu E
-y

where v is the velocity of the guiding centres along the field lines, and

+ .
p their magnetic moment. The F~ are determined from the kinetic equations




+ >
w8 | g [@ v et +

ot
9 (2.7)
] et +
+E {[(a) En + g'V(EZ'— * IJB) + V-I:'KJF } = 0 3
+
where e~ and mt are the charge and mass of the ions and electronms,
respectively, and
ﬁ — > —
B-3, k=G@WwE, (2.8)
> > > > > >
u=U—B(UB)=[§X|:UX§:I:|- (2.9)
The electric field parallel to the magnetic field lines,
E, = - 8-V , (2.10)
is given by
+ + > _ ot
enyt _ eyt Foo
En +§;.1_ ('?) = +):_ (m) B:+V+P (2.11)

+
or by the assumption of quasineutrality, +2_(en)‘ =0, which we shall adapt
]

here.

For later purposes it is useful to write the equation of motion

(2.1) in two alternative forms (NORTHROP and WHITEMAN, 1964):

2

o o= Ve, + 2 + Bv)dB (2.12)

Py = P.I.

B2

[ +]
=|KxB ] -vp, + VB , (2.13)

where

-5
K = curl oﬁ (2.14)



and

G = | e (2.15)

(0 > 0 is assumed to avoid fire hose instability; see, for example,

KADISH (1966)).



3. Equilibria and coordinates

For static equilibria we have from equ. (2.13)

P, - P,
[§x§]=VP.,-——-2——VB : (3.1)
B

A discussion of anisotropic equilibria which satisfy equ. (3.1) is given
by, for example, SPIES and NELSON (1974). We assume that the plasma has

arbitrary toroidal geometry with nested joint flux surfaces of B and K.

It is also assumed that P, is given as an arbitrary function of the flux

N
surfaces and the absolute values of B :

P, = PII(V}B) ’ (3.2)

where V is the volume contained inside each flux surface.

It follows from equs. (3.1) and (3.2) that

aPu
P, =P, - B— (3.3)

oB
if B'VB 4 0 (which excludes circular straight cylinders, i.e. screw
pinch geometry). Hence, P,(V,B) and o(V,B) are completely determined

from P,(V,B). For the pressure balance one obtains
[% x 3] =pacv.mww . (3.4)

For the derivative with respect to V the following notational conven-

tion is adopted: A' = (B/&V)IBA , A= (3/3W)] , 4A , where r2,r3 are
s A

]



arbitrary nonsingular coordinates on the flux surfaces. For isotropic

> >
pressure, P,, = P, , one has 3P,/3B =0 , 0 =1 and K =J .

It is easily seen that static equilibrium distribution functions

are given by

+ T,
F_(v,u,?) = BF_(S“,u,?) " (3.5)

+ -
where ¢~ = v2/2 + uB + (e/m) " ® and F~ are arbitrary functions of
+ % 5 =* il s : i
€ ,u,r, provided that B'VIEiF = 0. By taking moments of these dis-

tribution functions it follows that equ. (3.3) is valid separately for

. . 2 :i =+ o +> z
each species. With B*V*P~ = B°'VP, + (P1 - P,,) B"VB/B one then obtains

>

B

+
+
v.P" = 0 so that according to equs. (2.10), (2.11) E, = 0 , & = const

along B. One may set ¢ = 0 without loss of generality. Toroidal
equilibria without electric field exist in guiding centre theory

> ; . .
because only E x B drifts common to all species are retained.

For the calculation of axisymmetric equilibria it is useful to

3

specify r2 =6, r =¢ , where 6§ is an arbitrary poloidal variable

and r,$,z are cylindrical coordinates with ¢ equal to the ignorable

5>
angle. Explicit representation of B and K in terms of the poloidal

fluxes x(V), I(V) of ﬁ and K is then possible:

_>- -~ -~ ~
B=--{ [ x o] +A(x, 0%} ,
T
(3.6)
i=i{[v¢ x VoA - r2div 2% g4 } ,
2T = r2
with oA = I(VT) - I(V) . The flux surfaces y = const are determined by
) o 1 doh _ _, 21 _,
div (_2 Vx) + 2 A dx = lHT ').Z P"(V,B) B (3-7)



In general we shall use covariant notation with coordinates ra,
o =1,2,3, where r1 = V, and where rm, m = 2,3, are arbitrary coordi-
nates on the flux surfaces. The summation convention is that Greek
indices indicate summation over all indices, while Latin indices in-
dicate summation over surface coordinates only. Some of the usual

definitions and relations are (LAUGWITZ, 1960)

3=
A By , A =%F, & -2
o o ol o
or
L _ B
g':15 = eu e8 5 Aa gaBA 5
Fl =l BpY
[KXB o " Cagyd B
divk=n > @Y, (3.8)
Bra
-+, 0 afy BAY
(curl A)” =h ¢ _,
BrB

h = [§r1 X Vrzj -Vr3 = v/ det (gaB)

Coordinates derived from SPIES-NELSON coordinates are particularly
useful for the analysis of localized eigenmodes. For anisotropic equi-
libria SPIES and NELSON (1974) proved the existence of coordinates e

1

with the properties: r =V , r2 and r3 are poloidal-like and toroidal-

like coordinates with periodicity unity and

o~]
|}
o
v}
L}
l=n
> o
o
1
e g
<

(3.9)



where §(V), J(V) are the toroidal fluxes of ﬁ, K. The Jacobian

3, ~1

h(V,rz,rB) is normalized by flfl dr2dr h ' = 1. The pressure balance

is

h(Iy - Jx) = PL(V,B) . (3.10)

The safety factor is defined as q = 33/32 = &/x . For isotropic

pressure one gets h = 1 and the coordinates change to HAMADA coordinates.

Let V = VO be a rational surface where q, = q(VD) = M/N . The

coordinates 6,9 are defined by 6 = r2, b = r3 = qor2 , which implies
that
9 .
B = hy , B¢=(q-q0)hx,
e . d) . PI'I'
K" =hI , K =(q - g )hl = — : (3.11)
o X
and that
3w = hyp |-B Cq) 2]
BV —hx[ae+(q qo)8¢ ,

(3.12)

30 o’ 3¢ X 3¢ °

— P!
- . "
S =h1[_a_+(q_q)i -

. "). . .
For q = q, 6 is a coordinate along B and ¢ counts the field lines.

Periodicity conditions are

a(8,0) = a(8,6 + 1) = a(8 + N,¢) = a(8 + 1,6 - %) ) (3.13)
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4, Eigenmode equations

The system of eigenmode equations is obtained by linearizing equs.
(2.1) to (2.9) around static equilibria of the type discussed in the

last section. The time dependence of the linearized quantities is

(1)

iwt

assumed to be of the form e . The first-order quantities B 7,
+ + . * + .
PE11_, F_(1), Q(I) will be denoted by g, Pu g » £, ®. The displace-
] 5
> . : (1) _ o2 3
ment vector £ 1s defined by U = —= = -1w¢. Its surface component

is decomposed into the components x and y along the equilibrium fields

- = - - —- - . .
Bund K: £ =xB +y K+ £ . In covariant notation
normal
= x B+ y K. (4.1)

From equs. (2.4), (3.4) and div B = 0 one obtains

b = Bm4§§; = g® EE%-B“ div £ (4.2)
or ar
so that
! < pe! (4.3)
and, with equ. (4.1),
p™ = B%x + K%y + T - 8% ' - B® div ¢ . (4.4)

Here and in the following we shall use the definitions

D=Bv=8"-, E=FKvV=gx"-2, (4.5)
m m
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The vector T is defined by T = DK - EB , which, using div B=divKk=0
and equs. (2.15), (3.3), (3.4), may be expressed as

1
T=curl [KxB] = [ve), x w] =i§#[v3 x W]
(4.6)
=B [Vo x VB |
For isotropic plasmas one gets T=0.
Let
* T 2
P = v 28O = p, 4 BB 4.7)
. - * . . . -
In the equation of motion (2.12) p 1is the only linearized quantity
which has a derivitive in the radial direction. Using equs. (4.3),
(4.4), the linearized covariant component of equ. (2.12) with index
1 yields
5 *
_BT = (DUB1 + a)X + (D0K1D + bD + T1)y
ar
+ amz(B x+Ky+g £1)
‘ 1 1 11
(4.8)
+ (chHD + A+ c1D) 51
+ (DB1 4 51)0(1) 3
where
a=pP +0B B", b=ogK B",
m m
s men . BoBm BUB1
A = -Dog, B -og B"E" + B™( = )
m mn 1 m
or ar
(4.9)

-oB_B" ,
m
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_ 1 sm o+ om
¢y =By, sy =5 (BB -BB) e
_ i BUBm 30’B1
v, =T (6B) T( - ) + DoT, ,
1 m 1 m 1
or or
and
X = Dx - div E. (4.10)

Here and in the following the operators D and E act on all quantities
to the right of them, except if enclosed in square brackets |: ] . The
only other radial derivative in the eigenmode equations occurs in the

definition of div E which using equs. (3.8) and (4.1), may be solved for

ot
BrI
_jif %9 el . (4.11)
or

—— = -X - Ey - h(

851
31:1

The remaining covariant components of equ. (3.8), when contracted with

B and ¥ , yield

(DoB*B + a1)X + (DoB'KD + b,D + DTZ + T3)y

1

pmz(_ﬁ'_ﬁx - EE y) =

+
(4.12)

o _ 2 1

= ( DoB,D + Da + c, + c,D —pu B1) £

*
+ (-D BB + 32)0(1) + Dp
and
(Do_ﬁ_lz+ ) KK b
a,)x + (DOK*KD + 2D+DT4+T5)y
2 > - s

+ pw (B*Kx + K'Ky) =
(4.13)

= (-DoK,D + Db + ¢, + ¢.D - pw2K ) El

1 4 5 1

*
+ (-D B-K + 53)0(1) + Ep



The coefficients are defined as follows

a1=[D0:| EE, az=[E0]E-§—U%'§,
b1=[D0] —ﬁfz, b2=[EU:]_ﬁ'_EE—0:f-_I€,
cy=[po] BB" -DR}, ¢;=-[DJB,, (4.14)
¢, = [Eo] Bmﬁm-chi?’“ , ceg=-[E0c]B, +otr ,
1 > > 1 > > > >
52= §DB'B, S3= EEB.B + T'B ,
12 = 0 ﬁ ? s T3 = [DU] ﬁ % 5
T4 = a ﬁ-f : T5 = [Ec] ﬁ'% - o%'% .

The 1.h. sides of equs. (4.12), (4.13) constitute first-order differential
operators along E for X, and second-order operators for y.

(n

. ’ - - ;
It remalins to determine o and div £ as functions of the other

linearized quantities. Equations(2.15), (4.7) yield

o1 - ;%.[Pi = Ty * 2(1"0)(P* - p)] Gt

where the partial pressures

=00 w0
x 2 +
Pn = [fdv v [ dU ’
—o o)
(4.16)
+ +o oo (1) i =
p, = Jdv J dun (B F~ + Bf)
it o

/B = (p* - p,)/B .

I
<=1
oy

s + :
yleld Pu 1 = Pn 5 8 + pn 1 with B
3 -]
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From the equation of continuity which follows from equ. (2.7) one

obtains
- -1 = i = +
div £ = = (E-Vp + I [ odv J duf”) . (4.17)
’ . o

Quasineutrality of the displacement requires that

+W [o2]

+ +
T (EY r av s duEt =0 . (4.18)
+,-- m e o

+
The functions f  are determined from equ. (2.7). With the

. -
definitions € = v2/2 + uB and £ = Bf~ one gets

3 v it = - _
(-5?+ED) 2 (E,U,T,t)—
(4.19)
B - + + EE
= B, F +C2V|F #Eyes
v
where
1 3 . . (1)
C1=—E[i(d1vn+;<n)+vd1v8 ],
> 1.0m , = (1)
3, -t e 500y (4.20)
+ 1 et (1) > (1) 3 n
= _ 1 e\ b 71 . . _ K*'N
6; =5 [ gbe + "B + £9B> ) e, |
and
n = [gx I:Ex_é]] (4.21)
The ansatz
+ + + + aFt ~
+ >, + — e\t
- =¢F -nvV|F + [ 70 + uBg ] 5— + Bg , (4.22)
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where

P ~— Py
c == (@ivn+ iR =4 (B 4 ——) (4.23)

+ -
separates f~ into an adiabatic part and an w- dependent part Bg , which

after some algebraic manipulation is found to satisfy the equation

~+
. v % ., .+ 9FT
(-iw + D) g~ = iw¥" ——, (4.24)
where
¥ = &% ¢ uBr + E7 v° (4.25)

and v2 = 2(e - uB). The second half of equ. (4.23) follows from the
definition of the curvature x and equs. (4.2), (4.7), (4.21). Terms con-

o4 > ; - .
taining n may be expressed as functions of £ by the relations

- - 1 -
=g , Kn=KE +tke

o
g

(4.26)

nTVB = 51(ﬁ - B1DB) + y(f -

F: : 5 = .
The component x of £ in the direction along B does not occur in the

microscopic equations.

. t .. .
In the formation of density and pressure moments from f it is

: ot v e * .
useful to have relations between the quantities Am A and Bm n defined
]

by
+ o 2n ¢
+ m Zn.:k S
Ay n = Ldv [ anGB) v (e,u,1),

(4.27)

+o oo +
B m_2n 3F"
= [ dv JOr du (]JB) v —a—E"
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Direct verification and partial integration yields

+

* _ d + _ . +
Bm,n = (m + BBB ) Am—1,n =-(n - 1) Am,n-1 2 (4.28)
where the second equality is only valid for n > 0 . Quasineutrality
of the equilibrium implies that
. (4.29)
+§— gn) Ao,o D 5

With equs. (4.28), (4.29) quasineutrality of the linearized displace-
ments requires that

“+co -]
eds+ + e+ e
o +§—(E) Boa ™ +§_g;) S, dv [ duBg =0 (4.30)

Similarly, the pressure moments are determined by

Pn 1 P p* - 3P, /3B
pa| T7F et | T ap, /3B | *
(4.31)
400 © V2 -
+ I dv [ d B
Jodvfdu| o |Bg
. + . -
and div £ is given by
5
P ~ Py
- Aty E = (Fs Ty 9p Byt ok
p div g = (£°VB + — ) z5 * ®+§_(m) By,o +
oo . . C4.32)
+ L [ dv [ du Bg™ .
iy =00 o

In order to obtain eigenmodes and eigenvalues w, the following

problems would have to be solved step by step. The differential equa-

. + = S .
tion for g~ along B is solved as a path integral over source terms
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- 1 * ’ 2 : ;
containing p, , ¢, y, &€ , p . The solution, inserted into the quasi-

neutrality condition (4.30) and the equation (4.31) for the pressure p,
yields two coupled integral equations of the second kind for ¢ and p,
Their solution and, from equs. (4.31), (4.32), (4.13), also p, , div f

*
(1) may be expressed as convolutions over vy, EI, p (MICHLIN, 1962).

and o
In the next step the integro-differential equations (4.12), (4.13) for
x and y are solved as functionals of Ei,p*, and the solutions are in-

serted into the equs. (4.8), (4.11) with the radial derivatives for 51,

*
p . The solution of these equations together with periodicity and

boundary conditions finally determines the eigenvalues.

It is obvious that no general explicit solution is possible. 1In
the next section a particular class of eigenmodes will be further in-

vestigated.
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5. Localized Mercier-type eigenmodes

In MHD the Mercier criterion may be obtained by considering modes
(MERCIER and LUC, 1974; PAO, 1975) which are confined in a small region

AV around a rational surface V = VO .

= g << 1

5 (5.1)

and have frequencies w = 0(g) . With the definition w = ew this amounts
to w = 0(1). (No confusion should arise here with the previously defined
£ = v2/2 + uB.) Introducing the scaled radial coordinate s = (V - VO)/e ,

with 3/3V = (3/3s)/e , the localization is expressed by s = 0(1)

All nonequilibrium quantities are expanded in powers of &, starting

(arbitrarily) with e 1,

1
X =X hX o+ X 000,

(5.2)

* * %
etc. It follows from equs. (4.8), (4.11) that p = P, * €py * -+ and

*

1 -1 9P
A Eo + efy* - cannot have a O(e ') contribution owing to el 0

*
and p = 0 on the boundary of the localization domain.

The operators D and E are expanded as follows:

D:h' I:_E)_.‘.S(.ls_a_-p-.-]
X L3p ) s
(5.3)

: 3 . 3
E = hI [5§—+ £qs 3% + ...j = 3; 55
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In lowest order one obtains from equs. (4.12), (4.13)

> > > >
= :
(D_oB"B a)X_, + (D_oB'KD, + b,D + DT, + 13)y_1

= (D BB +s.) G-
- Y 2791 »
(D oBK +a,)) X, + (DoK'KD +bD +Dr1, + 1)
o’ ) -1 o’ o} 270 o4 T57 ¥
> >
= (D_B-K + 53)0_1 y
where DO = h*kg% . Equation (4.24) yields Dogf1 = 0 so that
g:1 = gi1(V,$). This function is determined by going to the next order

in €, some details of which will be touched on in Section 6. Here, it
suffices to know that following the precedure described in the last
section 0_1(y_1) is eventually determined as a convolution over Y_q

(although no explicit representation of the kernel exists in general).

As a result, equs. (5.4) are a coupled system of integro-differ-

ential equations for X_, and Y_4 with a free parameter w which enters

1

the equations only because o_y = 0_1(w,y_1). As in the theory of dif-

ferential equations with periodic coefficients (KAMKE, 1977), it may be

shown that the periodicity condition in 8 for X_ . and y_4 here also fixes

1

the eigenvalues Voo and eigenfunctions X_1 = xng(a), ¥y =¥ G(8). This

spectrum does not exist in MHD where:5(1)3 0. 1Its eigensolutions have

nothing in common with MERCIER-type modes where eigenvalues are determined

by a radial matching procedure (PAO (1974), (1975)). Here, the W

spectrum will not be considered any further.

In order to recover MERCIER-type modes, it is obviously necessary

that w should not enter at this stage so that it is not "prematurely"
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fixed. As a first requirement, this restricts one to modes Y_4 and
equilibria such that oy = 0. The only periodic solution of the re-
sulting differential equations (5.4) with periodic coefficients is,
however, in general, the trivial solution X_1 o R 0. To dominant

order, this is a degenerate mode with displacements only along ﬁ, X_4 =z 0,

but not a MERCIER mode with Yy_4 z 0.

In order to obtain MERCIER modes, as a second condition, the co-

efficients of Y_4 in equs. (5.4) have to vanish. This implies
T=[Vox VB =0 (5.5)

so that B ™ 0, i =1, **5. 1In this case the "trivial" periodic solu-
tion is
9x 3y~1

1 @b =—gl=0, (5.6)

e T 1 = 30

which allows X_4 s Y 4 ® 0 and is the analogue of the MHD case for which

3%_,/38 =(div £)_, = 8y_,/36 = 0 QMERCIER and LUC, 1974).

1

Equation (5.5) implies the requirement ¢(V,B) = ¢(B) and is equiv-
alent to

P, (V,B) = 91(\1) + PZ(B) (5.7)

with arbitrary functions P, and PZ'

1

The pressure balance becomes [ﬁ X ﬁf]= VP, , which is completely

1

analogous to the MHD equation. This correspondence together with

o , = 0 makes plausible the existence of MHD-like eigenmodes in this case.

=il
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On the other hand, for general ¢ = o(V,B), the plasma anisotropy
seems to make the plasma so "stiff" that either 9y is nonzero or the
frequency of the eigenmodes is higher, w = O(eo), or the anisotropy

does not allow x, y, 51 to be of different order, in contrast to the

localization assumption x, y = 0(6-1), 51 = 0(50).

For the present purposes this restricts one in the following to
equilibria with o = o(B). In order to cope more easily with the re-

quirement ¢ = 0, we shall, in addition, restrict ourselves to axi-

1

symmetric (tokamak) equilibria which are symmetric with respect to the

equatorial plane.
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6. Modes in axisymmetric o(B) equilibria

For axisymmetric equilibria ¢ is an ignorable coordinate and the ansatz

eann¢ for the linearized quantities can be made. Equations (4.24)

can then be written as

+
= +
E%T + edg =¢ G ,
. wB . . 2
A= AO - €R1 + ++ = (27ngs - ;§) i + egimngs” + ** , (6.1)
G+ _ 1wB ¢i oF
vy o€
1 .* +
=_G +G + oree
£ =i o]

In order to determine g:1 s gi , etc., a distinction between trapped and
untrapped particles has to be made. Boundary conditions for untrapped
particles are éi(e) = éi(e + N), while for trapped particles ;t(ﬁi, sign
v) = éi(ei, - sign v) states that no particles should be lost at the
turning points Gi , i =1,2 . (Generalization to more than one pair

of turning points is obvious.) From v2 = 2[:5 - uB(8) ] there follow
the domains (I) untrapped: 0 < p < E/Bmax , and (II) trapped:

e/Bmax < u < ¢/B, where Bmax is the maximum of B(8). The turning points

are determined by uB(Bi) = g.

One easily obtains for untrapped and trapped particles

<Gi > <GlL >
¥ -1 T _ iR
Bty TS e T s (820
o v t
where
1N 82
<A> = —[de A(8) , <A> = ————— [ d6A(6) (6.3)
No = 82 - 61 8

1
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and A = _lYB
v vy

From the assumed up/down symmetry of the equilibria it follows

. This

+
that terms with vanish identically in <G_ .

> d Gi >
{~ e N

follows from equs. (4.23) to (4.26) and the fact that #+K, K+VB and B-VB

: : L . :
are antisymmetric, while KB and y_, are symmetric. (y is constant.)

=1

The integral equations for p, and ¢ . , obtained by inserting equs.

s—1 1
(6.2) into equs. (4.30), (4.31) are therefore purely homogeneous. The

trivial solution Py _4 = @_1 = 0 is acceptable (at least for g << 1,

s 2 0 it is even the only solution; see Appendix A) and agrees with

the MHD ordering. The result so far is then X_1 = 8y_1/86 = Py g™ Py iy =
] ,_
% = o4 = 0.
From equs. (4.11), (4.8) one obtains
3¢ P, 3y
D o . Wil |
TS B (6.4)
* L . *
and Bpolas = 0. This implies that 350/39 =P, = 0.
The next order in € yields
*
8p1
B_S = (DOOB1 + a) XO + (DDOK1 + b) (Dy)o
(6.5)
* A‘Eo * (D0B1 * 51) 0O
Averaging yields
*
3<p1>
= <axo> + <b(Dy)0> + <A>g0 + <s1co> : (6.6)
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Here one has

. ay0 : ay-i
(Dy)o = X (7&; + qS-ﬂggﬂ) (6.7)
so that
ath
Xqs —yp= = <(y) > . (6.8)

*
As "basic" quantities we consider £ and <Py s in terms of which
X, s (Dy)O and o, have to be determined. 8y_1/3¢ then follows from equ.

(6.8). To 0(30) the equs. (4.12), (4.13) are

> - >
(D_oB B+ a) X + (D oBK+b) (D)

= (Doa + c2) 50 + (—Doﬁ'ﬁ + sz) g,
(6.9)

(Doo‘ﬁ-’ﬁ +a,) X+ (Dooﬁ-ﬁ +b,) (Dy)

<y
(Dob + c4) Eo + (- DoB K + 33) 9,

In order to determine o, equ. (6.1) has to be solved to 0(50). With

<Gt > = <Gi > =0 on t
> 17 one gets
8 6
. i . LI -
By =4 A0'6_y =gz (A S AB'G_ 1> =G > )
o o o
(6.10)
6 5
. - 1 + +
g = de'G_ = <k T de'G_'> - <G> ) ,
t 8 1 <;\v>t q 6 1°¢ o t

1 1

where Aq = 2mings. The first terms do not contribute to density and

pressure moments, respectively, since they are antisymmetric in sign v.
When this is inserted into the quasineutrality condition (4.30) and the
equations (4.31) for p,, p; , the following coupled systems of integral

equations for ¢0, Pi, is obtained, together with an equation for Pyt
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e/B
© e/B + max
o  fde Javs 1 & -sac saw 13- 2 &
o} o *s o o} Mg Sgn o X &
v
6 (§]
o B g gts B el B e By 5 o By
{<V‘PO>+2qs aqs( B <v'rdG V"y-1> </de v"{,—1>)}
<—=> o
v
= /B et 3FT . B+ g 9 pro
+ fde Sduo—5— () a—{<—w->t - 24s o < fdo'w¥_2 }e
o /B sBa oo m € v o ad 8 v t
max vt 1
(6.11)
- p"o Py il 3P,, /9B /B
Pig max
= -f - — - 2 [fde [ dp
= B2 o 0
Py P 9P, /3B
5
gl " Q aF" TEEE
v B_ +,- 3¢
L4 uB L=
v
= eB v? 1 SF"
-2 fde [ du— I — {7},
& E/B v uB <_§> Ty ae
max N E

where the brackets {"""1}

in the first one, and

in the second equation are identical with those

(6.12)

2 B

w2Bd — (ampis)®

<

=]

¥  and ?z are defined in equs. (4.23 to 4.26) as functions of ¥eif

and EO, ¥ € 5 Pigs respectively.

o}

. . 2 :
The integral equations only depend on w , as do the macroscopic

equations (4.8) to (4.13). For w real and q # 0, Q may diverge, which
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; ; Ll v
corresponds to the wave-particle resonance at (iw - v EE-) f~ = 0. For

unstable modes, w2 < 0, on the other hand, Q is finite.

The existence and properties of solutions of the integral equations
are discussed in Appendix A. It is obvious, however, that, in general,
no explicit solution may be given. This is also valid for w2 + 0 since
the trapped-particle term is independent of wz. Furthermore, even if
g, were a given function no explicit solution of the coupled first-order
system of differential equations (6.9) for Xo,(Dy)O is available in

general.

There is an additional complication which will become apparent in
. 1 ; : ;
the next section: The O0(e ) equations which have to be taken into ac—
count introduce coupling to G5 ¥ys ete. It is far from obvious how

the coupling (ultimately between all orders) may be truncated.

One is thus forced to the conclusion that a further analytic :
discussion of stability with respect to the localized modes is not
possible in general. There is one particular case, however, for which
an explicit stability criterion can be derived. This case will be

investigated in the next section.
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7. Stability criterion for special ¢ = const equilibria

Let us consider plasmas in which the number of trapped particles (at the
resonant surface) may be neglected. In order to obtain criteria for
marginal stability, we consider 0 > w2 + 0. With @ - 0 the solution to

equs., (6.11), (6.12)becomes trivial:

~-deg pr =ZLE .pp
Pig T "0 & I g g 8
(71}
Pug =T Py » ¢ =0,
, 4P,
with T = 1 + 3 aE (I > 0 is required to avoid mirror instability
(KADISH, 1966).) With equs. (4.15), (5.7) o, may be expressed as
Pis do
O'0=—Tﬁ- (7.2)

The differential equatioms (6.9) for Xo, (Dy)O may be explicitely inte-
grated in the case a1 = B, = b1 = b2 = 0. According to equs. (4.14)

this requires
g = const (7.3)

(provided B'VB = 0, K'vB = 0), i.e. if the plasma anisotropy is constant
on the rational surface. This will be assumed in the following. Equation

(7.3) implies that

1 ) =y _ 1 Cy ol
P1(r ) -3 B, P, =P (r ) + 5B,

Pl’l
(7.4)

Q
i

r=1+c¢,

. ; s 2,
where ¢ 1s an arbitrary constant, provided c > -1, |c| < 2P1/B s LI

order to satisfy ¢ > 0, P, , > 0. Equation (7.3) also implies that
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c. =0, i=1, *+5, and B = 0 even although the equilibrium is allowed

to be anisotropic.

One finally obtains

- > >
cB'B XO + 0 B*K (Dy)0 - a Eo = C1 §
(7.5)
BKX +0KK (Dy) -b g =
g b o g y o Eo - C2 2

where the constants CT’ 02 have to be determined from the next order in

e. From equs. (4.12), (4.13) one obtains to 0(&1)

xds . <oB'B X+ oB°K (Dy) - aE >= <s,0,>
3 o o o 271 7
.. ) > > > = _
xds 3% <gB-K XO + gK*K (Dy)o b B, #= <830, >+ (7.6)
P

2

where most 0(51) quantities have disappeared by the averaging, but not

o - In Appendix B, however, it is shown that 9, is up-down symmetric,

and since Sy s and sy are antisymmetric, the terms <8,0,% , <850,>

vanish. (Note that in the more general case, o = o(B), more 0(81)

quantities such as <aTX1 > etc. would remain in the equations.)

Comparison of equs. (7.6) with equs. (7.5), averaged over 6,

determines

P1 »
C1=0’ By = ==—=<p, ¥. (7.7)

Xqs
The determinant d of equs. (7.5) is

a=5FRE- BD*=[Kkx5]% = wp?. (7.8)
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When the solutions XO, (Dy)O are inserted into equs. (6.8), (6.6), (6.4)

one finally obtains

S2 EEE = C § E #® ¢ & = >
ds 11 o s
* (7.9)
d<p1>

*
A Cyy 8 &y ¥ Cop <Py >

. 2.9 2 :
i.e. s°d go/ds + 2s dEO/ds + M go = 0 with M = c11c22 - c12c21 - c11

Here
-+ > -+ >
_ B-Q -0
Cip=rA<5a T 0 ST A <5g
3‘6 (7.10)
Byq = % "ga = ¥ AT,  Byy =iy
and
1':‘1 - -
A=m-— , Q=ak+bB,
Xq
. - 3B 331 (7.11)
<A>= <-gg B"8" + oB" (— - —) .
mn 1 m
ar ar
The ansatz EO nogY yields v =-%(-1 +v1-4M ) . The condition
1 = 4M >0 (7.12)

ensures that the solution is nonoscillating and serves as a necessary
criterion for stability. (See PAO (1974) for a discussion of the

matching procedure across the singular layer.)

It is straightforward to express the covariant and contravariant

vector components in the criterion by means of quantities involving
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ﬁz, ﬁ:j, (ﬁ =(13), and covariant field line curvature Ky As a result,
the stability condition 1is
& 2 2 .1 2 2
Gess (4 + F<R'8>)" - 2, — - §X"<R> -<R"S> >0, (7.13)

X

where R = }'E/Bz and S = B2/(VV)2. This is identical with MERCIER's
criterion, except that the hydrodynamic pressure P(V) is replaced by an

effective pressure PO(V),

P —

1
. = P1(V) , (7.14)

where P1 was defined in equs. (5.7), (7.4).
A posteriori, this simple result is not surprizing: For ¢ = const

the anisotropic equilibria are identical to MHD equilibria with the same

magnetic field configuration but with P replaced by P . In the line-

arized equations the plasma motion behaves as if it were isotropic,

gy 0, with no influence of 9, z 0, Pug # Pig- In spite of the

fact that, in general, (div 3_1) # 0, unlike in MHD, its actual value

. Z . e
does not matter either, because only the combination X = Dx - div £

enters into the derivation of the criterion.

From equ. (7.4) one can deduce which direction of plasma anisotropy
is favourable. Let us compare plasmas which are marginal with respect to

the criterion (7.13), i.e. have the same PO . (and the same field con-

figuration). The plasmas, however, may differ in their P, /P, ratio.
If we introduce B = 2(P, + 2Pl)/(3B2) as a figure of merit, then

2P 2

- _o© B
B=— (1+c+cg—) . (7.15)
B o}
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This shows that among all plasmas with the same P0 , those with ¢ > 0,

i.e. P, < P,, are better, within the framework of the present theory.




32

8. Conclusions

The guiding centre eigenmode equations for toroidal plasmas are invest-
igated. Eigenmodes which are localized around a mode-rational surface
and are almost constant along B (MERCIER-type modes) are shown not to
exist for general anisotropic equilibria with ¢ = 1 - (P, - Pl)/B2 =
a(V,B) (V is the volume inside a flux surface). Such eigenmodes do
exist for o = ¢g(B). No closed stability condition is obtained, however,
because the mathematical problems involved do not have explicit solu-
tions and because no obvious truncation procedure is available for the
hierarchy of equations which result from expansion in the localization

parameter g << 1.

In the rather special case when ¢ = const in the localization

region and when trapped particles may be neglected the difficulties may

be overcome and a necessary stability condition for axisymmetric equilibria
is obtained. It is identical to MERCIER's criterion, except that the
scalar pressure is replaced by an effective pressure PO(V) = (P, + P,)/
/20). With the above-mentioned restrictions this implies, for example,
that marginally MERCIER stable MHD equilibria can be loaded with higher
plasma-g8 if P, > P, and still be marginal according to guiding centre

theory.

The results obtained here do not exclude the existence of MERCIER-
type stability criteria for general o(V,B) equilibria. Properly tai-
lored test modes, when applied to guiding centre energy principles,
could yield the desired result. These modes would not, however, be

eigenmodes of the system.
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Appendix A

The integral equations (6.11) for @O, Py, are of the form
$(8) = A §d6" K (8,0")¢(8') + r(8) . (A1)

with A = 1 formally. Inspection shows that K(8,6') diverges logarith-

mically at 68 = 8' but, with w2 <0

§§ dede’ |K(8,8")[% < = (A2)

=
1}

is finite. For L2 and Py, M is 0(1) and 0(B = j%) , respectively.
B

Since for all eigenvalues Ai one has

1
|Ai| ."fﬁ

(A3)
(MICHLIN, 1962), it follows that at least for B << 1 the equation for

Pi, always has a unique solution, which may be obtained, for instance,

recursively as a NEUMANN series.

The equation for L however, has an eigenvalue Ai = 1 with
)
eigenfunction ¢00(B) = const, at s = 0. Since, if (A2) is satisfied,
eigenvalues do not accumulate, there is always a finite region around,
and excluding, s = 0 where the equation for @O also has a unique
solution. At s = 0 existence of an inhomogeneous solution requires

that the inhomogeneous term be orthogonal to @00 . This yields a side

condition on yo(e, s = 0) of the form

§do c, (8 y (&) =¢_, (A4)

o

where c?(e) is antisymmetric,
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Appendix B

Equations (7.5) show that Xo, (Dy)0 are up-down symmetric. According
to equ. (6.5) pT is also symmetric, provided that B1, K1 are antisym-
metric. The latter may be proved by, for example, using the explicit
representation of HAMADA coordinates, available for axisymmetric equi-
libria (LORTZ and NUHRENBERG, 1974). Therefore pT does not contribute
to o, in <52,301 >, The same holds for 51, which according to equ.

(7.2), disappears from g, if o = const. (The adiabatic 51 terms behave

identically in all orders.)

For free particles the non-adiabatic term of 0(51) is governed

by
- < )
Jt — B £ 1 £
& gda Aog0+ofde G!" +c, (B1)

% +
where c, is constant and Ao,gi, G; are defined in equs. (6.1), (6.10).

2 5 ;
It follows that for w~ =+ 0 terms which contribute to even moments of
~+ . . .
g; are symmetric. This completes the proof that for the conditions of

Section 7 <52,301 > =0 1is wvalid.

Acknowledgments

The author wishes to thank Dr. D. CORREA-RESTREPO for helpful discussions.



35

References

Aleksin V., and Yashin V. (1961) JETP 13, 787,
Andreoletti J. (1963) Comptes Rendus Acad.Sc. 256, 251.
Choe J., Tataronis J.A. and Grossman W. (1977) Plasma Physics 19, 117.

Grad H. (1961) Electromagnetics and Fluid Dynamics of Gaseous Plasma

(Proc. Symposium), Polgtechnic Press, Brooklyn, New York.
Greene J.M. and Johnson J.L. (1962) Phys. Fluids 5, 510.
Kadish A. (1966) Phys. Fluids 9, 514.
Kamke E. (1977) Differentialgleichungen, I., G.B. Teubner, Stuttgart.
Kruskal M.D. and Oberman C.R. (1958) Phys. Fluids 1, 275.

Laugwitz D. (1960) Differentialgeometrie, B.G. Teubner Verlagsgesell-

schaft, Stuttgart.

Lortz D. and Niihrenberg J. (1974), 5th Int. Congr. on Plasma Phys.

and Contr. Nucl. Fus. Research, IAEA, Vienna, 1975.
Mercier C. (1960) Nucl. Fusion 1, 47.

Mercier C. and Luc H. (1974) Lectures in Plasma Physics: The Magneto-
hydrodynamic Approach to the Problem of Plasma Confinement in
Closed Magnetic Configurations (Commission of the European Com-

munities, Luxembourg).

Michlin S.G. (1962) Vorlesungen iiber lineare Integralgleichungen, VEB

Deutscher Verlag der Wissenschaften, Berlin.

Northrop T.G. and Whiteman K.J. (1964) Phys. Rev. Lett. 12, 639.




36

Pao Y. (1974) Nucl. Fusion 14, 25.
Pao Y. (1975) Phys. Fluids 18, 1192,

Spies G.0. and Nelson D.B. (1974) Phys. Fluids 17, 1879.

Suydam R. (1958) 2nd. Int. Conf. Peaceful Uses At. Energy (Proc. Conf.

Geneva), 31, 157.
Vahala G. and Vahala L. (1977) J. Plasma Phys. 18, 317.

Weitzner H. (1976) Phys. Fluids 19, 420.

S

— .



