MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK GARCHING BEI MÜNCHEN

X-ray Pulse Height Analysis

F. Pohl

IPP 6/193

February 1980

Die nachstehende Arbeit wurde im Rahmen des Vertrages zwischen dem Max-Planck-Institut für Plasmaphysik und der Europäischen Atomgemeinschaft über die Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgeführt.

Abstract

This report gives a detailed description of a computer program for pulse height analysis (PHA) in tokamak experiments. The program yields the electron temperature and the Υ -factor in two energy intervals which have to be free of impurity lines and recombination steps. In such intervals the logarithm of the emissivity F is a linear function of the quantum energy E = hv:

$$ln F = \alpha + \beta E$$

Information from numerous experimental data is used for rather exact determination of the two coefficients α and β . For this purpose the experimental values are first smoothed. The user of the program then has the option of performing the Abel inversion first. He may, however, also call an iteration procedure in which α and β are obtained direct from the experimental data. The accuracy of this iteration method is in some cases much better than that of conventional Abel inversion.

Furthermore, the densities of the metal ions Ti, Cr, Fe, Ni are estimated from the electron temperature, electron density and the K_{α} lines. It should be noted, however, that this estimate is very rough because the necessary data, e.g. $\langle \sigma \, v \rangle$, are not very exactly known.

Table of Contents

Sec.	`	page	
1	Introduction	1	
2	Spectra	6	
	experimental setup	6	
	raw spectra R	7	
	normalized spectra UB	10,12	
	spectral function U	11	
3	Solid angle formula	14	
	radiation power into all directions	16	
	ΩΔ2Δ	17	
	u U o	18	
4	ABEL Inversion factor ${ t A}_{ m Z}$	19	
	approximation formulae	22	
5	Calculation of α and β (ln F = α + β E)	24	
	clean energy windows	25	
6	Positions $ exttt{p}_{ exttt{L}}$ and angles of sight $ exttt{\phi}_{ exttt{L}}$	28	
7	X-Radiation and Plasma Parameters	32	
8	Recombination raiation		
9	R ⁽²⁶⁾ (iron)	37	
	ionization potentials	37	
	approximation formulae	39	
	partial densities in corona equil.	40	
	R _{fb} plots	41,42	
	example	43	
	error sources	44	
10	R for stripped nuclei	46	
11	K _d line radiation	47	
12	Structure of the ONE SHOT Program	49	
	input data	50	
	subroutines	55	
	COMMON blocks	55 58	
	huilt-in nonemeters	ממ	

sec		page
13	BLENDE Subroutine	59
	filtering	60
14	OVLAP subroutine	62
	energy channels	63
15	GLATT subroutine	65
	smoothing interval	65
	ln U = 048 + B8 E	66
	arithm. and geometr. average	68
	wild points	71
16	LSTSQ subroutine	73
17	ITERAT subroutine	74
18	ALPBET subroutine	81
	NABEL	81
	parabolic and gaussian interp	. 82
19	ABEL subroutine	83
20	SORTIR subroutine	86
21	IMPUR subroutine	87
	continuum and K_{α} lines (fig.)	89
22	METAL subroutine	90
23	SESNIC subroutine	92
Refer	ences	95
Progr		96
	BLENDE	97
	SORTIR	97
	OVLAP	98
	SESNIC	99
	ALPBET	101
	ABEL	102
	AZRUT	102
	ITERAT	103
	IMPUR	104
	GLATT	105

1. INTRODUCTION

The report describes a computer program for pulse height analysis (PHA) in tokamak experiments. Data such as raw spectra, aperture parameters etc. are used to determine the electron temperature and the \$\mathscr{J}\$-factor with a good degree of accuracy and also the order of magnitude of the densities of the impurities Ti, Cr, Fe, Ni. It is not possible to estimate the oxygen ion density, as shown at the end of Sec.23.

The report is in three parts:

Part A (Secs. 2 and 3) describes how the spectral function U is produced from the detector signals (eq. (2.4)).

In Part B (Secs. 4 to 11) information on the plasma parameters (e.g. electron temperature) is derived from the spectral function ${\tt U.}$

Part C (Secs. 12 to 23) describes the individual subroutines and also details either not treated in Parts A and B or else not fully enough.

The experimental layout is shown schematically in Sec.2. The X-ray quanta emerge from the plasma along the line of sight, pass through the two apertures 1 and 2 (Fig. 1) and the filter and enter the detector. Not only are the photons detected in the detector, their energy is also measured. The resulting pulses are sorted in the analog-digital convertor (ADC) according to height or photon energy E = hv; the result is

the raw spectrum R of the detector. If the raw spectrum R is multiplied by an appropriate normalization factor (see eqs. (2.5) and (2.6)), one obtains the normalized spectrum \mathbf{U}_{B} , which only differs from the ideal spectral function U by statistical errors. In order to obtain the spectral function U in a wide energy interval, we superpose in eq. (2.4) the spectra of several detectors. This superpositioning is performed in the OVLAP subroutine (Sec. 14). This yields the spectral function $\mathbf{U}(\mathbf{L},\mathbf{J})$ at given "reference" energy mesh points (eq. (14.1)) and probe positions $\mathbf{P}_{\mathbf{L}}$. This result is transferred to the SESNIC subroutine for further processing.

First the function is smoothed (GLATT subroutine, Sec. 15) because the number of parameters sought (within a clean energy window there are two, namely α and β) is much smaller than the number of mesh points (a few dozen).

The problem of finding the emissivity F or α and β from the spectral function U by ABEL-Inversion (eq. 4.1) is mathematically not well posed, if U is given only at a few mesh points. In order to regularize the problem, we have to introduce an ansatz for U or for T_e and S etc. This can be done by various methods. The choice of this method is a matter of taste. We describe in Secs. 4, 5, 17, 18 and 19 several methods which the user can call by choosing a parameter (NABEL; see Sec. 18).

In Secs. 7 and 8 collection of formulae describe how the X-ray emissivity F depends on the plasma parameters.

Equation (7.2) is mostly used in the form

$$ln F_C = x + \beta E$$
(1.1)

with
$$S = e^{\alpha}$$
 (1.2)

$$T_{\beta} = -1./\beta \tag{1.3}$$

E = hv.

It is hoped here that there are large E-intervals without lines or recombination edges in which lpha and eta are independent of E; these intervals are called "clean energy windows" (see Sec. 5, Fig. 4). It should be noted that the linearity (1.1) is often satisfied very well, but that the interpretation (1.2 and 1.3) is wrong: e.g. with pure hydrogen plasma owing to the E dependence of the Gaunt factor (7.10), but possibly also when, for instance, there are metal impurities whose f factor for E < 2 keV strongly depends on E; see Sec. 9, Fig. 11 for Fe. In Sec. 9 the contribution of the iron to the \Im factor is calculated on the basis of the curves given in Ref. /2/ for the partial densities in corona equilibrium. At the end of the section we discuss how questionable these curves are and what errors are to be expected owing to the absence of corona equilibrium in the tokamak. It is not known whether similar curves are available for other metals. Under the circumstances we have given approximation formulae for the recombination part R_{fb} of the iron (eq. (9.7)) and used them for the other metals Ti, Cr and Ni as well (Sec. 22, METAL subroutine). When better data become available, the numerical coefficients involved will then just have to be replaced in the METAL routine by others. The cross-section $\langle \sigma \, v \rangle$ for the K_{α} line radiation is only known within a factor of 2 to 4; see, for example, the two curves of LOTZ and GRIEM in Sec. 11, Fig. 13. Accordingly, the values given for the ion densities by our IMPUR subroutine are also only known within a factor of 2 to 3. Here, too, better values have

to be awaited. Under these circumstances Sec. 10 on oxygen recombination radiation is superfluous; it has only been retained for the sake of completeness, and in Sec. 23 we give a method (eqs. (23.4 and 23.5)) by which the oxygen density may yet perhaps be estimated if the metal ion densities are known. Only the following ion species are considered in our program:

hydrogen	(Z = 1)	
oxygen	(Z = 8)	
titanium	(Z = 22)	(1.4)
chromium	(Z = 24)	
iron	(Z = 26)	
nickel	(Z = 28)	

It should be noted that, for example, a strong cobalt line at 7.0 keV can spoil the method of determining the continuum part that is described in Sec. 21, Fig. 24. - As already mentioned, the METAL subroutine is used to determine or, to be more correct, estimate the contribution of the metals Ti, Cr, Fe and Ni, listed in (1.4), to the \$\mathscr{G}\$ factor. The difference between the \$\mathscr{G}\$ factor and the contribution of the metals is ascribed to the oxygen and hydrogen. This conclusion is, of course, wrong when, for example, carbon is present, but also when tungsten or molybdenum is present, because their density cannot be determined by IMPUR according to the method described in Sec. 11. But even if only the ion species listed in (1.4) are present oxygen determination is mostly impossible at the present time: if, for example, the contri-

bution of the metals is about 5 to 10 and the total Υ factor is 11, any value between 1 and 6 is possible for the difference and hence for the oxygen density. Finally, the parameters calculated with our program and the inaccuracy roughly expected are presented below:

B,
$$T_e$$
 5 - 10% electron temperature S, f 10 - 20% f -factor f -factor

The \int factors are calculated for two separate clean energy windows which should be free of impurities so that eq. (1.1) is valid there. It is hoped to obtain the recombination edge from the difference of the \int factors.

2. SPECTRA

Here we define the terms "raw spectrum", "normalized spectrum", "spectral function" etc. as used in the description of the computer program. We start with the scheme of the experimental setup.

Figure 1 shows the plasma cross-section and a detector comprising two apertures, a filter and a counter. The two apertures 1 and 2 define a narrow cone whose axis we call the "line of sight" of the detector. The distance p of the line of sight from the plasma centre is called the "position" of the detector. Behind the aperture 2 is a filter which is more or less opaque to

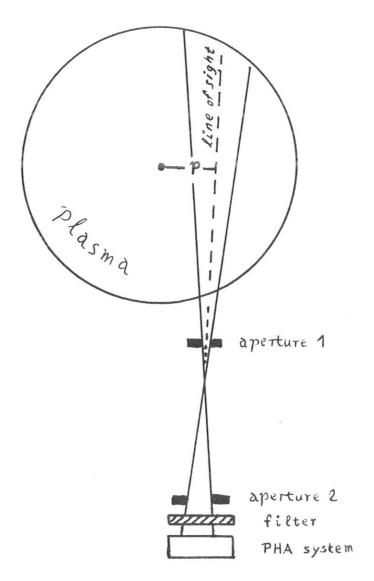


Fig. 1

soft X-radiation, but admits hard X-radiation (see Sec. 13). The radiation which has passed through the two apertures and the filter enters the PHA system.

The PHA system contains an energy scale divided into equal intervals which we call "energy channels" (see eq.(14.2)). The counter records the number of X-ray quanta E = hv per energy channel. One can imagine a counter behind each energy channel. (When, for example, a quantum arrives and its energy is incident on channel J = 57, counter No. 57 is advanced by 1.). This yields the following result:

Channel No. 1 recorded O quanta

Channel No. 2 recorded 1 quanta

Channel No. 3 recorded 3 quanta

etc.

Figure 1a shows a PHA system with six energy channels; in actual fact such systems have 256 energy channels. The energy channels are counted or designated by the channel

number J, the channel width being denoted by DE. When a quantum with an energy hv arrives from the interval $E_0 + DE(J - \frac{1}{2}) \le hv \le E_0 + DE(J + \frac{1}{2})$ counter No. J is advanced by 1. We now define "raw spectrum" as the number of quanta in the energy channel.

Figure 1b shows the raw spectrum for the case treated in Fig. 1a. The dashed line is the idealized raw spectrum.

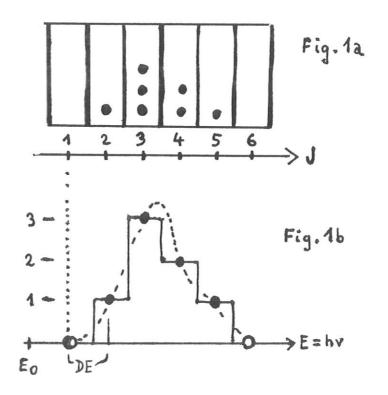
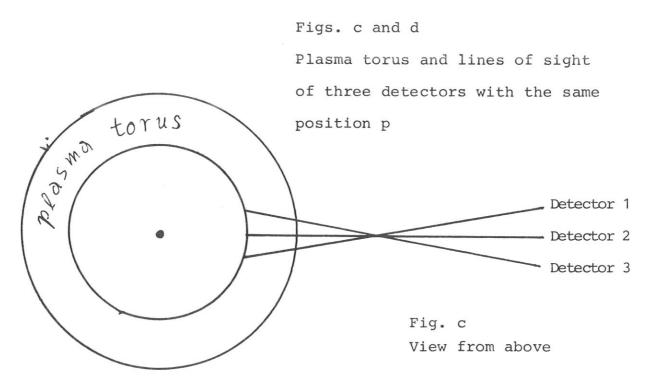
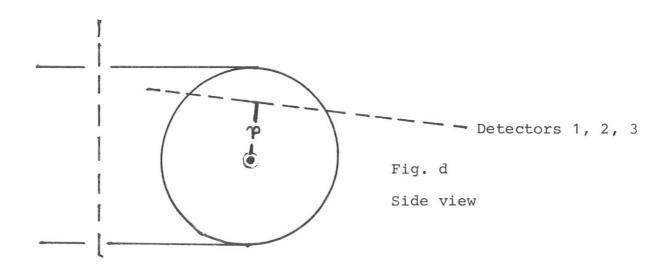
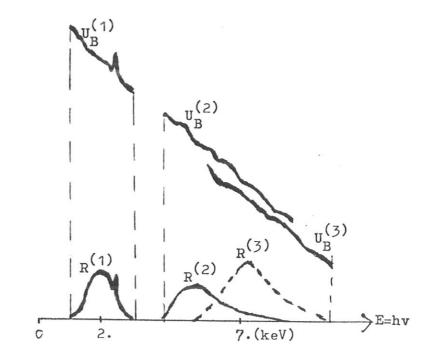




Figure 1b already shows the essential properties of the raw spectra: they vanish for low energies E = hv as a result of filtering exp(FILTER) (see Sec. 13, eq. (13.2)). Furthermore, they vanish for high energies hv because of the Saha factor exp $(-hv:kT_e)$ (see Sec. 7, eqs. (7.2) and (7.3)). The intervening energy interval - in Fig. 1b channels 3 and 4-are called the "sensitive regime" of the detector. This is usually a few keV. This is not much compared with the total regime of about $2 \lesssim hv \lesssim 20$ keV to be recorded or measured. Several detectors with different sensitivity regimes are therefore used: detector 1, for example, is sensitive to low energies, this being achieved with small aperture radii and weak filtering, while detector 2 is sensitive to high energies, this being achieved with strong filtering and large aperture radii.

Such control of the photon flux by the choice of aperture radius is necessary because the PHA system can only handle a limited maximum photon flux. Each detector thus yields a raw spectrum, denoted by $\mathbf{R}^{(\mathbf{I})}$, where I is the detector number. In the foregoing example I = 1 thus stands for the detector sensitive to low energies, and I = 2 for the one sensitive to high energies. Each of these detectors has its own energy channels, channel width $\mathrm{DE}_{\mathbf{I}}$ and zero displacement $\mathrm{EO}_{\mathbf{I}}$, and so these quantities have the index I; see Sec. 14.

The spectral function U emitted by the plasma - to be defined later in eq. (2.4) - depends on the position p in addition to the plasma parameters such as temperature, density etc. If the plasma spectrum is to be measured over a wide energy range with several detectors, we thus have to locate the detectors at the same position p. It is shown in Figs. c and d how this is done.



The idealized raw spectra and the spectral function U differ by an instrument function, which will be treated later in eqs. (2.5) and (2.6). When the raw spectra actually measured are multiplied by this instrument function, one obtains the normalized spectra $\mathbf{U_B}^{(I)}$. We now consider how to obtain the spectral function U from the $\mathbf{U_B}^{(I)}$. For this purpose we draw in a schematic example Fig. e.

Abb. e
Raw spectra $R^{(I)}$ and normalized spectra $U_B^{(I)}$ of three detectors located at the same position p.

In this example we have no other information on the vicinity of hv = 2 keV than the spectrum of

detector 1. We therefore set

$$U = U_B^{(1)}$$
 for hv $\approx 2.keV$. (2.1)

The situation is different in the vicinity of 7 keV, where two spectra are available. We form

$$U = G^{(2)} U_B^{(2)} + G^{(3)} U_B^{(3)}$$
 (2.2)

and now ask how best to select the weighting factors $G^{(2)}$ and $G^{(3)}$.

We now put forward the following rather sloppy and arbitrary argument: the raw spectra as photon numbers per energy interval are the more exact and informative the larger they are. The raw spectra themselves are therefore the appropriate weighting function, e.g.

$$G^{(2)} = \frac{R^{(2)}}{R^{(2)} + R^{(3)}}$$
 (2.3)

The objection will now be raised that the relative inaccuracy of a raw spectrum is $1/\sqrt{R}$, and so weighting should be done with \sqrt{R} . We nevertheless stick to eq. (2.3), not because the objection is unjustified, but because taking the root requires a lot of computing time (see Sec. 14 on OVLAP routine).

If the foregoing is generalized, one obtains

$$U = \frac{\sum_{I} R^{(I)} U_{B}^{(I)}}{\sum_{I} R^{(I)}}$$
 (2.4)

The summation covers all detectors I located at the same position p. In Secs. 4 and 13 we call these detectors "probe", and the U formed from their spectra "probe signal" or "spectral function". We regard eq. (2.4) as the definition of the spectral function U from the spectra of the detector of a probe.

We now describe the instrument function by means of which the normalized spectrum $\mathbf{U}_{\mathbf{B}}$ is obtained from the raw spectrum R of a detector. One has

$$U_{B} = U_{O} \frac{NW/NG}{t(N) - t(N-1)} R$$
 (2.5)

$$U_{O} = 4\pi \frac{E}{DE} \frac{\exp(FILTER)}{S}$$
 (2.6)

We now explain the individual factors.

We start with U_{0} , which contains all time-independent factors. For this purpose we define the emissivity F as the radiation power per plasma volume element and energy interval (see Sec. 3, eq. (3.6)). F thus has the dimension cm⁻³ s⁻¹. In addition, according to eq. (3.11) one has $U = \int F \, dx$, where dx stands for a line element of the line of sight of the detector. U has the dimension s⁻¹ cm⁻². Comparing the two defintions:

 $\label{eq:U} \begin{array}{l} \text{U = radiation energy per energy interval per cm}^2 \text{ per s} \\ \\ \text{R = quantum number per energy channel,} \\ \\ \text{it is seen that U}_0 \text{ must be proportional to } \\ \frac{\text{E}}{\text{DE}} = \frac{\text{quantum energy}}{\text{channel width}}. \end{array}$

The proportionality to $4\pi/\Delta S\Delta\Omega$ is thoroughly justified in Sec. 3. Furthermore, it should be noted that

R prop. exp(-FILTER)

from which it follows that

In addition, R must be proportional to the observation time t(N) - t(N-1): the longer the observation time the larger are the raw spectra. To study the time development of an ASDEX discharge, the user reads in times t(N), N=1,..NMAX, the meaning of which can be schematically described as follows: at the time t=t(N-1) all counters from Fig. 1a are set to zero. During the time t(N-1) to t(N) the detector is exposed to X-radiation, thus producing a raw spectrum. This is read off at time t(N) and put into the computer (see OVLAP routine, statement ISN 0013). The counters are then returned to 0 and the game starts all over again.

Finally, it should be mentioned that not all quanta reaching the counter in Fig. 1 are recorded. Consequently, the "true" number NW of quanta is larger than the number NG of quanta recorded. But we do not pay any attention to this and in the OVLAP routine we set in ISN 0014

$$NW/NG = 1. (2.7)$$

In practical applications this statement will be replaced by another in which NW/NG is either read in or calculated in a subroutine.

3. SOLID ANGLE FORMULA FOR $\Delta S \Delta \Omega$

Here the quantity $\Delta S \Delta \Omega$ from Secs. 2 and 13 (BLENDE subroutine) is calculated.

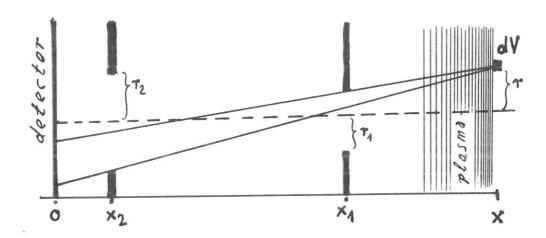


Figure 2 shows

at x = 0 the detector,

at $x = x_1/x_2$ apertures with radius r_1/r_2 , the axis through the aperture centres (dahsed),

a plasma volume element dV at a distance r from the axis.

Assumptions

- 1) The detector is equally sensitive everywhere.
- The plasma emissivity F only depends on x, thus not on r. In visual terms, this means that the straight lines drawn in Fig. 2 are so close together (a few mm) that in a figure like Fig. 1 they merge into one straight line, namely the line of sight of the detector.

Required

To determine the radiation power which passes through the apertures and enters the detector.

First we deal with the radiation power arriving at the detector from the volume element dV.

Viewed from dV, the two apertures appear as circles with apparent radius 1 (in units of angle):

$$v_1 = r_1 / (x-x_1)$$

and $v_2 = r_2 / (x-x_2)$ (3.4)

whose centres are at the apparent distance

$$d = \frac{r (x_1 - x_2)}{(x - x_1) (x - x_2)}$$
 (3.2)

from one another (see Fig. 3).

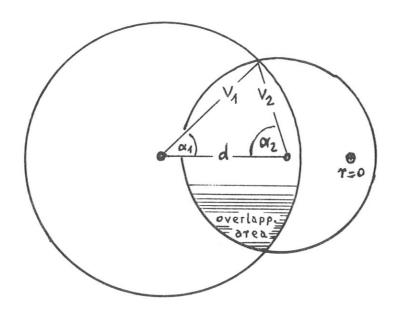


Fig. 3

The two aperture cross-sections, viewed from dV

As an example from astronomy it is mentioned that the sun and moon, viewed from the earth, both have the same apparent radius of about 15'. In partial eclipses overlapping areas similar to those in Fig. 3 can often be seen.

The two circles have in common the overlapping area

$$A = v_1^2 \left[\alpha_1 - \sin \alpha_1 \cos \alpha_1 \right]$$

$$+ v_2^2 \left[\alpha_2 - \sin \alpha_2 \cos \alpha_2 \right]$$
 (if $v_1 - v_2 \le d \le v_1 + v_2$)

where

$$\cos \alpha_1 = (d^2 + v_1^2 - v_2^2) / 2v_1 d$$

 $\cos \alpha_2 = (d^2 + v_2^2 - v_1^2) / 2v_2 d$

If
$$d = v_1 - v_2$$

it holds that

$$A = \pi v_2^2.$$

The radiation power of dV is

$$dP = F dV (erg sec^{-1} erg^{-1})$$

This radiation power is emitted uniformly in all directions. All directions together form the solid angle 4π . Only the fraction

$$d^2P = \frac{A}{4\pi} F dV \tag{3.6}$$

passes through both apertures and reaches the detector.

The next question is what radiation power do $\underline{\text{all}}$ volume elements $\underline{\text{at distance x}}$ transmit to the detector. These volume elements together form a disc. The contribution of the disc is

$$P_{x} = \int_{0}^{2\pi} d\varphi \int_{0}^{r_{max}} dr r \frac{A}{4\pi} F dx$$

where

$$dV = dx d\phi dr r$$
.

According to the assumption 2) F dx may be put in front of the integral. r_{max} is obtained by putting the largest possible value $v_1 + v_2$ for d in eq. (3.2):

$$r_{max} = \frac{r_1(x-x_2) + r_2(x-x_1)}{(x_1-x_2)}$$

Integration yields

$$P_{x} = \frac{dx F}{4\pi} \frac{\pi r_{1}^{2} \pi r_{2}^{2}}{(x_{1}^{-}x_{2}^{2})^{2}} = \frac{dx F}{4\pi} \Delta S \Delta \Omega$$
 (3.9)

where

$$\Delta S \Delta \Omega = \frac{\pi r_1^2 \pi r_2^2}{(x_1 - x_2)^2}$$
 (3.10)

(solid angle formula)

The total contribution of all volume elements located on the line of sight, i.e. visible from the detector through the two apertures, is

$$L = \int P_{X} dx = \frac{\Delta S \Delta \Omega}{4 \pi} \int F dx. \qquad (3.11)$$

According to Ref. /3/, Sec. 1 one has

$$\int F \, dx = 2 \int_{P}^{a} \frac{dr \, r \, F}{\sqrt{r^2 - p^2}} = U ; \qquad \text{see (4.5)}$$

One thus gets

$$L = \frac{\Delta S \Delta \Omega}{4 \widehat{\iota}} \qquad U \qquad (3.12)$$

Relation to the raw spectra

According to eqs. (2.1) - (2.5) one has

$$\frac{R}{t(N) - t(N-1)} = \int dE L/E$$

$$\approx \frac{\Delta E}{E} L$$

$$= \frac{\Delta S \Delta \Omega}{\Delta R} = \frac{\Delta E}{E} U \qquad (3.13)$$

$$U_{O} = \frac{4\pi}{\Delta S \Delta \Omega} \frac{\Delta E}{E}$$
 (3.14)

without taking filtering and NW/NG into account,

L being the power per energy interval, and L/E the photon
number per energy interval per s.

4. ABEL INVERSION FACTOR $\mathbf{A}_{\mathbf{Z}}$

In the first part of this report (Secs. 2 and 3) the spectral function U was obtained from the raw spectra and other parameters. The second part (Secs. 4 to 11) deals with the evaluation of the spectral function U.

If the plasma is transparent to X-radiation and U is a symmetric function of the probe position p, it can be assumed that the plasma is circularly symmetric. The emissivity F then only depends on the space via r, the latter being the distance from the plasma centre. In this case Abel's integral equation in the form

$$U(p) = 2 \int_{p}^{a} \frac{dr \ r \ F(r)}{\sqrt{r^2 - p^2}}$$
, (4.1)

is valid, where a is the plasma radius. U and F depend not only on p or r but also on the photon energy E = hv (see Sec. 7). Now under certain conditions there are intervals, already referred to as clean energy windows, in which

$$\ln F(r,E) = O(r) + B(r) E \qquad (4.2)$$

is valid, i.e. in which ln F is at least approximately a linear function of the photon energy E = hv. α and β may depend in which of the energy windows they are calculated; see Sec. 12, Fig. 14. One of the most important tasks of the programs in this report is to determine α and β from

the spectral function U. For this purpose we offer several methods which the user can select by the choice of the parameter NABEL; see Sec. 18 on ALPBET subroutine. The simplest concept is to solve Abel's integral equation (4.1) for F and then determine α and β by a least square fit (see Secs. 16 and 19). For this purpose one has to introduce for U an interpolation ansatz between two mesh points (probe positions) P_L . What is then obtained from the Abel inversion for F often drastically depends on the choice of the interpolation ansatz, particularly in the plasma boundary regions. We have therefore developed a completely different method in which F is not calculated at all, α and β being determined direct from the spectral function U. For this purpose we define a function $A_Z(p)$ by means of the equation

$$U(p) = 2a F(p) \sqrt{\frac{1-\hat{p}^2}{A_Z(p)}}$$
 (4.3)

where
$$\hat{p} = p/a$$
 . (4.4)

Substituting eq. (4.3) in eq. (4.2) yields

$$\alpha(r) + \beta(r) = \ln U - \ln \left\{ 2a \sqrt{\frac{1-\hat{p}^2}{A_Z(p)}} \right\},$$
 (4.5)

This is the initial equation for the iteration method described in Sec. 17. The disadvantage of this method is that, basically, one does not know anything about $\mathbf{A}_{\mathbf{Z}}$ and has to introduce arbitrary assumptions. Numerical tests have

shown, however, that the method is quite insensitive to wrong determination of A_Z . If, for example, one sets $A_Z = 1$, this makes $\beta(r)$ about approx. 10 to 20 % inaccurate. If A_Z is carefully determined, the inaccuracy in determining α and β can be reduced to just a few per cent. We therefore now determine A_Z for a few special cases in which the Abel integration (4.1) can be performed exactly or as an analytic approximation.

The simplest case is
$$F(r) = (1-\hat{r}^2)^n$$
 (4.6)

with integer n and
$$\hat{r} = r/a$$
 . (4.7)

It follows that

$$U(p) = U_O(1-\hat{p}^2)^{n+1/2}$$
 (4.8)

where

$$U_{O} = a \sum_{m=0}^{n} (-1)^{m} {n \choose m} \frac{2}{2m+1}$$
 (4.9)

$$U_0 \approx \frac{2a}{\sqrt{1.+(1.+0.273 \frac{n+1}{n+1.17})n}}$$
 (4.10)

and hence

$$A_{Z} = 1. + (1. + 0.273 \frac{n+1}{n+1.17}) n$$
 (4.11)

In this case A_Z thus does not depend on p at all. The approximation (4.10) is valid for all real n \gtrsim - 0.6; test calculations showed that the inaccuracy of eq. (4.10) is

for
$$n \ge -0.5$$
 at most 3×10^{-4}
for $n \ge 3$ at most 1×10^{-4} .

1

Now it is known from laser scattering measurements that the temperature is a profile function of type (4.6) in good approximation. We therefore calculated $\mathbf{A}_{\mathbf{Z}}$ for the following case (see Sec. 7):

$$F = S e^{-X}$$
 (4.12)

where
$$x = E/kT_e = x(r)$$
 (4.13)

$$S = S_0 (1 - \hat{r}^2)^C \tag{4.14}$$

$$kT_e = T_O (1-\hat{r}^2)^H$$
 (4.15)

In this case A_{Z} only depends on C, H, and x = x(p). S_{Q} and ${f T}_{{f O}}$ do not appear. The numerical results can be described by the approximation formula

$$A_{Z} = 1.+ \left(1.+ 0.273 \frac{n+1.}{n+1.17}\right)n + Z$$
 (4.16a)

$$n = C + H x$$
 b)

$$Z = \frac{H}{1 \cdot + \frac{C + H}{V}}$$

$$y = \frac{1.8 x^{E} H^{2}}{1.+ 0.83 H}$$
 d)

$$E = 0.5 + 0.03 C + \frac{0.46}{1.+H}$$
 e)

The inaccuracy is mostly less than 1 %. Errors of \gt 1 % occur almost only at very small H values (H \lesssim 0.01). We program this formula in the AZRUT subroutine. One therefore just has to modify the AZRUT routine if a better method of determining A_Z is wanted later; all other programs remain unchanged.

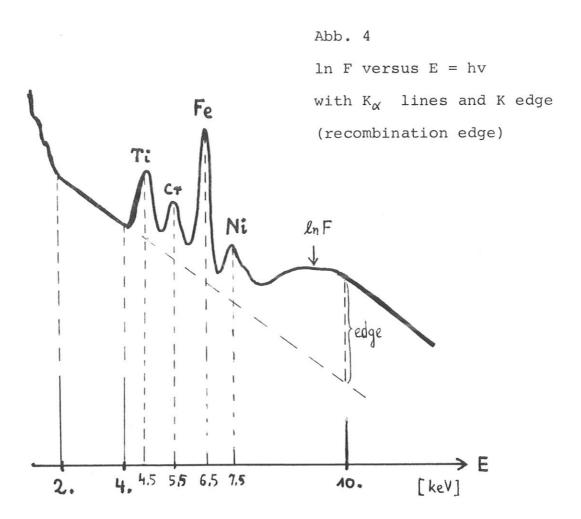
Testing was done by determining the profile number n by a least square fit from given data U, where U(p) was not of the profile type. We then determined A_Z according to eq. (4.11) and finally α and β from eq. (4.5) by a least square fit. The inaccuracy in determining α and β was about 10%.

5. CALCULATION OF & AND B

The X-ray emissivity F of a contaminated plasma consists of a continuum component ${\bf F}_{\bf C}$ and a line component ${\bf F}_{\bf L}$:

$$F = F_C + F_L \tag{5.1}$$

If oxygen, carbon, Ti, Cr, Fe, and Ni are the only impurities and, in particular, heavy metals such as tungsten, molybdenum etc. are absent, there are two ranges, namely $2 \lesssim E \lesssim 4$ keV and $10 \lesssim E$ (keV) (see Fig. 4) in which (5.2) the impurity lines and edges are absent, and hence it holds that


$$F_{T} = O F = F_{C} . (5.3)$$

Furthermore, in these regions (5.2) $\ln F$ is approximately a linear function of the quantum energy E = hv:

$$\ln F (r,E) = \alpha(r) + \beta(r) E \qquad (5.4)$$
(see eq. (7.2) and Fig. 4).

In Fig. 4 ln F is plotted versus E schematically for a plasma containing Ti, Cr, Fe and Ni.

Intervals in which ln F depends linerarly on the photon energy E = hv are called "clean energy windows". α and β can assume different values in different energy windows and must therefore have a window index. This is dealt with in Sec. 12, Fig. 14. Here we confine ourselves to mesh points located in the same window and omit the window index.

We now outline how α and β arise from the spectral function U of a clean energy window.

When the OVLAP routine is called the spectral function U(L,J) is given for each probe L at equidistant mesh points, called "reference mesh points"

$$E9(J) = DE9 J + E09$$
 (5.5)

see Sec. 14, eq. (14.1). The number of these mesh points is of the order

$$\frac{\text{window length}}{\text{channel width}} \approx \frac{2.\text{keV}}{0.1 \text{ keV}} \approx 20$$
 (5.6)

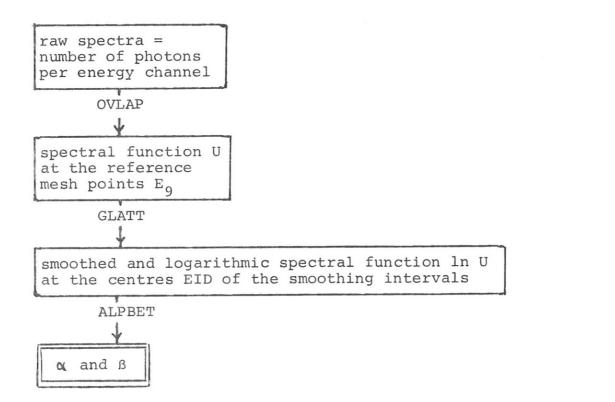
and may possibly be as high as 100.

From these 10 to 100 U values two parameters, namely α and β , have to be determined. For this purpose few mesh points with relatively exact U values are more suitable than many mesh points with relatively large statistical error fluctuations because the Abel inversion methods take less computing time the fewer mesh points there are present and work the better the more exactly U is given. We therefore smooth the spectral function U first of all. For this purpose we read in smoothing intervals

$$EL(M) \le E \le ER(M)$$
 (5.7)

whose centres are located roughly at EID(M); see Sec. 15, eq. (15.1). The GLATT smoothing routine produces from all U(L,J) in the smoothing interval M a mean value

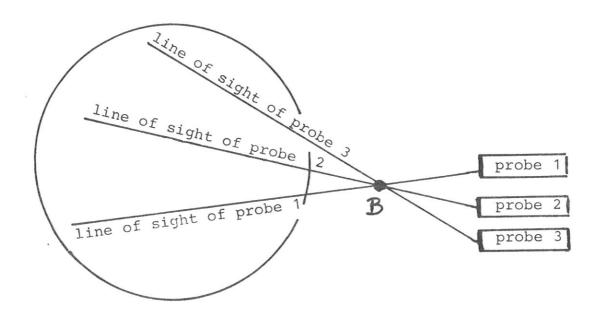
$$ULG(L,M) = ln U \quad at \quad EID(M) \quad .$$
 (5.7a)


The way in which this is done is described in Sec. 15. The ALPBET subroutine then yields the parameters α and β from the smoothed ULG (see Sec. 18).

We offer various methods which the user can call by choosing the parameter NABEL. The ITERAT subroutine starts from eq. (4.5) and uses eq. (4.16) for ${\rm A_Z}$. The method also works when, for example, ${\rm T_e}$ is not of the profile type at all.

In order to outline the next method, we give the following definitions:

If, for example, the user chooses NABEL = 2, the Abel inversion for D is performed by the ABEL subroutine; the result is G; and then we set $F = F_p + G$. α and β are then determined from F by a least square fit from eq. (4.2).


The other two methods dispense with the ITERAT routine and differ only in the choice of the interpolation function for U. Finally, we trace the path from the experimental data to α and β in the form of a diagram:

6. POSITIONS

In this program the positions p are read in, i.e. they have to be given. The reader who considers this obvious can skip this section. We can, however, test whether any given positions are reasonable because the positions are related to the angles of sight of the probes, which are known very exactly.

The probes are arranged in such a way that their lines of sight intersect at one point, the aperture B (see Fig. 5).

The aperture B corresponds to aperture 1 in Fig. 1 and is common to all probes and detectors.

We now arbitrarily give an origin O of coordinates inside the vessel. The plasma centre M then has relative to O the coordinates x and y, the straight line OB being the x axis. In Fig. 6 the line of sight of the probe L is drawn. It passes the plasma centre M at a distance p_L and forms the angle ϕ_L with the x axis. We refer to ϕ_L as the angle of sight of the probe.

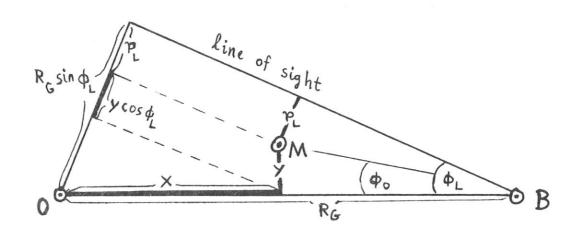


Figure 6 shows

the aperture B,

the line of sight of the probe L with angle of sight φ_L , the plasma centre M, the position \textbf{p}_L and the plasma shift x, y

with reference to an arbitrary point 0 inside the vessel; $\label{eq:observed} \text{OB} \,=\, R_{\mbox{\scriptsize G}} \,.$

The drawing plane of Fig. 6 is the same as that of Fig. 1 at the beginning of Sec. 2.

From the geometry it follows (see Fig. 6) that

$$p_{L} = (R_{G} - x) \sin \phi_{L} - y \cos \phi_{L}$$
 (6.1)

If we define

$$tan \phi_{O} = y/(R_{G}-x)$$
 (6.2)

$$p_{O} = (R_{G} - x) \cos \emptyset_{O} \tag{6.3}$$

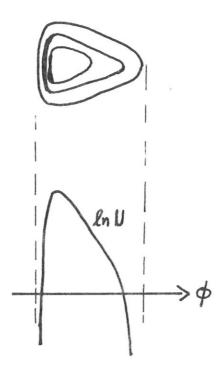
it then follows that

$$p_{L} = p_{O} \sin (\phi_{L} - \phi_{O}) \tag{6.4}$$

This relation can be used for testing because in ASDEX there are five probes (L = 1, 2, 3, 4 and 5) whose positions are expressed in eq. (6.4) by just two poorly known quantities, namely x, y or p_0 , ϕ_0 .

We now investigate whether the positions can be taken from the experimental data ULG to afford the user the possibility of replacing the reading in of the positions by calculation in a suitable subroutine.

The parameter $p_{O} = BM$, the distance of the plasma centre from the aperture is indeterminable because a plasma with small p_{O} yields exactly the same X-ray spectra as a plasma with large p_{O} if the other parameters are appropriately chosen: a giant may look just like a dwarf standing closer.


To determine ϕ_0 we use the fact that for E = hv \gtrsim 2 kT e can mostly be approximately represented by a Gaussian function, and ln U by a parabola:

$$\ln U = a_0 + a_2 (\phi - \phi_0)^2$$
 (6.5)

$$[\ln U]_{L} = a_{o} + a_{2} (\phi_{L} - \phi_{o})^{2}$$
 (6.5a)

Thus, when \ln U is present at at least three different values of L, then \emptyset_0 is the extremum of this parabola. This is only valid, however, when the temperature is approximately of the profile type; if, on the other hand, the temperature has, for example, a crater and two extrema, \ln U also has two extrema and is not even approximately parabolic.

Another difficulty is that the plasma is not always of circular cross-section. It is true that the case U(p) = U(-p) cannot be distinguished from a circularly symmetric plasma because only one aperture B is available; cf. Ref. /3/, Sec. 4 on quasi-circularly symmetric emission.

But with D-shaped plasmas the case illustrated alongside, in which ln U strongly deviates from the parabolic shape (6.5), can also occur.

Finally, it should be noted that the positions depend on the motion of the plasma and hence on the time, and hence have to be recalculated or read in for every time step.

7. X-RADIATION AND PLASMA PARAMETERS

Here we list the equations describing the relation between the X-ray emissivity F and the plasma parameters T_e , n_e , n_i , etc., the determination of these from the X-ray spectra being the objective of our programs. According to Ref. /1/ it holds that

Emissivity
$$F = F_C + F_L$$
 (dimension: $cm^{-3} s^{-1}$) (7.1)

 $F_C = continuum component$

F_{T.} = line component

$$F_C = S e^{-X} \tag{7.2}$$

$$x = E/kT_{\Theta}$$
 (7.3)

$$E = hv = quantum energy$$
 (7.4)

$$S = S_{H} \mathcal{T} \tag{7.5}$$

$$S_{H} = F_{a} n_{e}^{2} / \sqrt{kT_{e}}$$
 (7.6)

$$F_a = 3.03 \cdot 10^{-15} \text{ if } T_e \text{ in keV}$$

and $n_e \text{ in cm}^{-3}$ (7.7)

$$\mathcal{I} = \sum_{i} \frac{n_{i}}{n_{e}} \left(z_{iff}^{2} f_{ff}^{(i)} + R_{fb}^{(i)} \right)$$
 (7.8)

 n_e = electron density

T = electron temperature

i = ion species index = nucleus charge

 n_{i} = density of ions of species i

 $z_{iff} \approx i-2$ to i

 $g_{ff}^{(i)} = GAUNT$ factor. From ref. /1/, fig. 4a it follows that

$$g_{ff}^{(1)} = 1.2 (0.5+x)$$
 $T_{e}^{-0.45} -0.07-0.01x$ (hydrogen)

$$g_{ff}^{(8)} = 1.38 (0.5+x)^{-0.16} T_e^{0.35}$$
 (oxygen)

$$g_{ff}^{(i)} = 1.2$$
 for $i \ge 22$

 $R_{fb}^{(i)}$ = recombination component; see sec. 8 .

8. RECOMBINATION RADIATION

According to eqs. (1) and (3) from Ref. /1/ the recombination term from eq. (7.8) is

$$R_{fb}^{(i)} = \sum_{J=1}^{i} \frac{n_{iJ}}{n_{i}} g_{fb} Z_{iJ}^{2} \left(\frac{x}{n^{3}} x_{o} e^{x_{o}} + \sum_{V=1}^{i} \frac{2}{n^{4}V} x_{v} e^{x_{v}} \right)$$
(8.1)

where

$$x_{O} = \chi_{iJ} / T_{e} = x_{O,iJ}$$
 (8.2)

$$x_v = z_{iJ}^2 \chi_H / ((n+v)^2 T_e) = x_{v,iJ}$$
 (8.3)

i = ion species index, e.g. i = 26 stands for Fe,

 $z_{iJ}^{=J}$ = ionization stage index = ion charge <u>before</u> recombination,

n = principale quantum number of the ground state,

 ξ = number of electrons missing in the ground state.

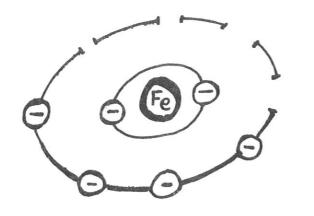
In the example:
$$i = 26$$

$$J = 20$$

i = 26 denotes Fe and

missing, see fig. 7.

J = 20 means that before recombination there are 26 - 20


= 6 electrons present. Of these 6 electrons there are

2 electrons in the K shell (n = 1)

4 electrons in the L shell (n = 2).

The K shell is completely populated (ξ = 0); the L shell is not completely populated till it has 8 electrons; for complete population there are thus ξ = 8 - 4 = 4 electrons

From i = 26 and J = 20 it thus follows that $\mathbf{\xi} = 4$ and n = 2.

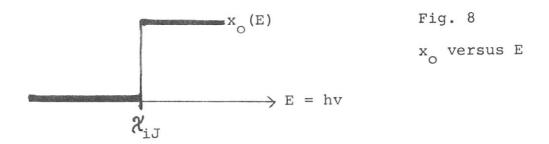
$$i = 26$$
 $n = 2$

example (8.3)

The other notations are:

 χ_{iJ} = energy required to wrest an electron from the J - 1 times ionized ion,

 $\chi_{\rm H}$ = 13.6 eV = ionization energy of the hydrogen,


 $n_{i,T}$ = density of the ions of species i and charge J.

It should be noted that in Ref. /1/, eq. (3) the ion charge (i.e. our J) is denoted by i and the species index (i.e. our i) is completely omitted.

Equation (8.1) requires explanation. $R_{\mathrm{fb}}^{(i)}$ is a function of E = hv and T_{e} . The latter appears in the denominator of x_{v} (see eqs. (8.2)) and x_{o} ; furthermore, the partial densities $n_{\mathrm{iJ}}/n_{\mathrm{i}}$ are functions of T_{e} ; see, for example, Fig. 9.

The x_{V} are step functions of E = hv, e.g.

$$x_{o} = \begin{cases} \chi_{iJ}/T_{e} & E > \chi_{iJ} \\ o & E < \chi_{iJ} \end{cases}$$
(8.4)

 $R_{\mathrm{fb}}^{(\mathrm{i})}$ is mostly composed from a number of step functions of type (8.4); hence the stair-step-like appearance in, for example, Fig. 11.

For the GAUNT factor we set

$$g_{fb}^{(i)} = 1$$
 (8.5)

9.
$$R_{fb}^{(26)}$$
 (IRON)

Here we give a detailed calculation of $R_{\mathrm{fb}}^{(i)}$ for iron (i=26). In the interval

$$0.5 \text{ keV} \le \text{hv} \le 10.\text{keV}$$
 (9.1)

it holds that
$$g_{fb} = 1$$
 independently of E (9.2)

with an inaccuracy of approximately 10 % (cf. Ref. /1/, Fig. 4b).

According to Ref. / / the ionization potentials for iron are at the energies $\pmb{\chi}_{iJ}$ (in keV):

J	χ _{iJ}	v = 1	v = 2	
26	9.3	2.3	1.02	
25	8.8	2.1	0.94	
24	2.04	0.87		
23	1.95	0.80		
22	1.80			Table 1
21	1.69			
20	1.58			
19	1.45			
18	1.35			
17	1.26			
16	0.49			

The 3rd and 4th columns contain $x_v^T = Z_{iJ}^2 \chi_H^2/n+v)^2$ where

$$Z_{iJ} = J$$

 $\chi_{H} = 0.0136 \text{ keV}$
 $n=1 \text{ for } J = 25 \text{ oder } 26$
 $n=2 \text{ for } 17 \le J \le 24.$

The partial densities are plotted in Ref. /2/, Fig. 6. This figure is reproduced in Fig. 9.

Let

$$A_{J} = n_{iJ}/n_{i} \tag{9.3}$$

One then has

$$R_{fb}^{(i)} = \sum_{J=1}^{i} g_{fb} Z_{iJ}^{2} \frac{n_{iJ}}{n_{i}} \left[\frac{8}{3} x_{o} e^{x_{o}} + \sum_{v=1}^{\infty} \frac{2}{n+v} x_{v} e^{x_{v}} \right]$$

$$R_{fb}^{(26)} = 1 \cdot 26^{2} A_{26} \left[2 \frac{9.3}{T_{e}} \exp(\frac{9.3}{T_{e}}) + 1 \frac{2.3}{T_{e}} \exp(\frac{2.3}{T_{e}}) + \cdots \right]$$

$$+ 25^{2} A_{25} \left[1 \frac{8.8}{T_{e}} \exp(\frac{8.8}{T_{e}}) + 1 \frac{2.1}{T_{e}} \exp(\frac{2.1}{T_{e}}) + \cdots \right]$$

$$+ 24^{2} A_{24} \left[1 \frac{2.04}{T_{e}} \exp(\frac{2.04}{T_{e}}) + \frac{2}{3} \frac{0.87}{T_{e}} \exp(\frac{0.87}{T_{e}}) + \cdots \right]$$

$$+ 23^{2} A_{23} \left[\frac{7}{8} \frac{1.95}{T_{e}} \exp(\frac{1.95}{T_{e}}) + \frac{2}{3} \frac{0.8}{T_{e}} \exp(\frac{0.8}{T_{e}}) + \cdots \right]$$

$$+ 22^{2} A_{22} \left[\frac{6}{8} \frac{1.8}{T_{e}} \exp(\frac{1.8}{T_{e}}) + \cdots \right]$$

This summation is arranged according to descending ionization potentials. For this purpose we define

$$T_{9.3}$$
 (read "term with ionization potential 9.3 keV"), $T_{9.3} = 26^2 A_{26} 2 \frac{9.3}{T_e} \exp(\frac{9.3}{T_e})$ (9.5) $T_{2.3} = 26^2 A_{26} 1 \frac{2.3}{T_e} \exp(\frac{2.3}{T_e})$ $T_{8.8} = 25^2 A_{25} 1 \frac{8.8}{T_e} \exp(\frac{8.8}{T_e})$

According to eq. (8.4) it then holds that

$$R_{fb}^{(26)} = T_{9.3} + T_{8.8} + T_{2.3} + T_{2.1} + T_{2.04} + \dots$$
 for $E > 9.3$
 $R_{fb}^{(26)} = T_{8.8} + T_{2.3} + T_{2.1} + T_{2.04} + \dots$ for $8.8 < E < 9.3$
 $R_{fb}^{(26)} = T_{2.3} + T_{2.1} + T_{2.04} + \dots$ for $2.3 < E < 8.8$
 $R_{fb}^{(26)} = T_{2.1} + T_{2.04} + \dots$ for $2.1 < E < 2.3$

The numerical results obtained by programming this equation can be described by the following approximation formula with about 10 to 20 % inaccuracy:

$$R_{fb}^{(26)} = 5800. T_e^{2.5} / (1.+ T_e^{2.9})$$
 E > 9.3 (9.7a)

$$R_{fb}^{(26)} = 5700. T_e^{2.5} / (1.+T_e^{3.88}) \quad 2.3 \le E < 8.8$$
 (9.7b)

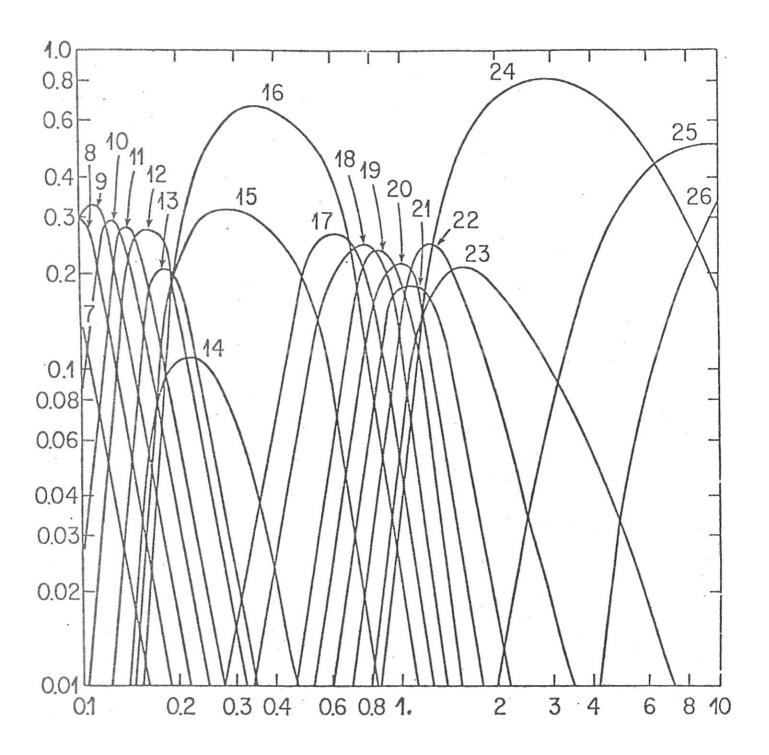


Fig. 9 $n_{iJ}/n_{i} \text{ versus } T_{e} \text{ in corona equilibrium; for } i = 26 \text{ (Fe);}$ reproduction of Ref. /2/, Fig. 6.

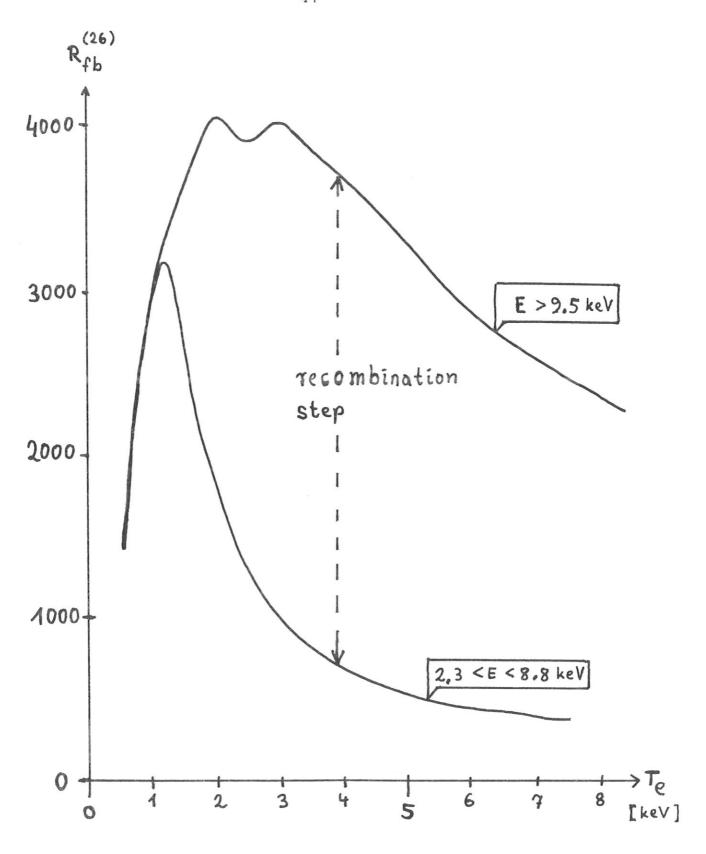


Fig. 10 $R_{\rm fb}^{(26)}$ versus $T_{\rm e}$

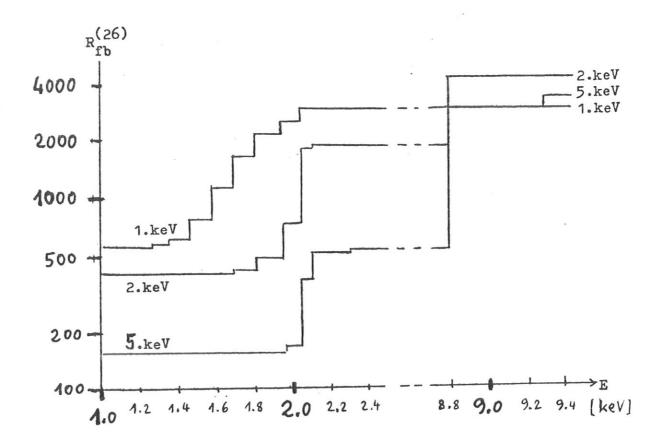


Fig. 11 $R_{fb}^{(26)}$ versus E = hv for three different temperatures: $kT_e = 1.keV$; 2.keV and 5 keV

The interval 2.1 \leq E \leq 8.8 is free of steps; consequently, $R_{\rm fb}^{(26)}$ is independent of E in this interval.

In the interval 4 \leq E \leq 8 keV, however, we have the K $_{\propto}$ lines of Ti, Cr, Fe, Ni. Consequently, the interval

 $2.1 \le E \le 4.\text{keV}$

is left over for the energy window No. 1. There are no steps for E \geqslant 9.2 keV, and so E \geq 9.2 keV

is the energy window No. 2.

Appendix to Sec. 6

Calculation of $R_{fb}^{(26)}$ for 8.8 < E < 9.3 keV

* This terms come from $\sum_{v=1}^{\infty}$; in this case we write x_v instead of x_0 in the 6. column.

This shows that although the partial density of Fe(25) at $T_{\rm e}$ = 2 keV is only 1 %, Fe(25) makes the largest contribution to $R_{\rm fb}$.

At high temperatures ($T_e > 3 \text{ keV}$) one should not neglect v = 1

Comparing (for $T_{\rho} = 5 \text{ keV}$) the following three values

$$R_{fb}$$
 (E = hv > 8.8) = 2600
 R_{fb} (E = hv < 8.8) = 400 with $\sum_{v=1}^{\infty}$
 R_{fb} (E = hv < 8.8) = 200 without $\sum_{v=1}^{\infty}$

it is seen that R_{fb} "left" of the step at 8.8 keV is enhanced by the $\sum_{v=1}^{\infty}$ -terms by a factor of at least 2.

Error sources

- 1) In eq. (8.1) the definition of ξ as the number of electrons missing in the n shell is only an approximation.
- The ionization potentials χ_{iJ} are not very well known; the data differ by up to 0.5 keV. This can lead to errors of over 30 % in calculating R_{fb} ; see example (9.8a) for $T_{e} = 2$ keV; contribution J = 25.
- The assumption of corona equilibrium is not satisfied.
 For example, J = 25 ions diffuse from hot plasma regions to colder ones without first recombining. The consequence is explained in an example:

Example: In a plasma boundary layer of $T_e = 1$ keV the density of J = 25 ions is 0.1 %, i.e.

 $A_{25} = 0.001$. One then has

$$R_{fb}^{(26)} = J^2 A_J x_o e^{X_o}$$

$$= 625 0.001 8.8 e^{8.8}$$

$$= 36000.$$
(9.8d)

- i.e. about ten times as large as would be expected from corona equilibrium. We therefore expect in the hot plasma centre a normal recombination step such as is shown in Fig. 10, but in the cool boundary layer a pronounced recombination step. To represent this in Fig. 10, one would have to top curve E > 9.5 at $T_{\rm e} \approx$ 1 keV with a peak several meters high.
- 4) According to D. Düchs one requires for calculating the partial densities in Fig. 9 coefficients which are not accurately known.

 The error is:

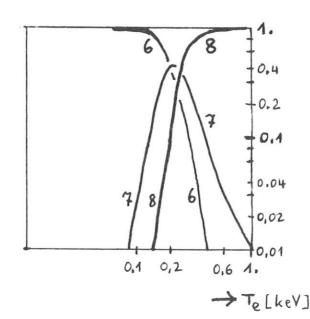
for the ionization coefficient \approx factor 2 for the recombination coefficient factor 5.

10. R_{fb} FOR STRIPPED NUCLEI

At plasma temperatures of $T_{\rm e} > 0.8$ keV oxygen is almost completely stripped of its electrons. The plasma consists almost exclusively of stripped nuclei. In such a case one has

$$n_{iJ} = \begin{cases} n_i & \text{if } J = i \\ 0 & \text{if } J < i \end{cases}$$
 (10.1)

From eq. (8.1) it then follows that


$$R_{fb}^{(i)} = 2 i^2 x_0 e^{x_0}$$
 (10.2)

with

$$x_{o} = \chi_{i,i}/T_{e}$$
 (10.3)

$$\chi_{ii} = i^2 \text{ 0.0136 keV}$$
 (10.4)
= 0.49 for carbon (i = 6),
= 0.87 for oxygen (i = 8).

There are only recombination steps below 1 keV; consequently, $R_{\text{fh}}^{(i)}$ is independent of E = hv if i \leq 8.

 $\frac{n_{iJ}}{n_{i}} \text{ versus } T_{e}$ in corona equilibrium
for i = 8.

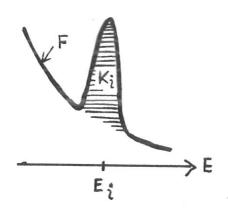

Reproduction of Ref. /2/,
Fig. 4.

Fig. 11

11. K_{α} LINE RADIATION

The metals Ti, Cr, Fe and Ni, which we consider in this report, have their K_{α} lines in the range 4 keV < hv < 8 keV. Let $E_{\dot{1}}$ be the energy at which the ion species i has its K_{α} line. We then define

$$K_i = \int F_L dE = n_e n_i \langle \sigma v \rangle E_i$$
 (11.1)

where the integral is taken over the line; K_i is thus the hatched region in Fig. (12). 6 is the cross section for K_{α} emission.

Fig. 12 $F \text{ versus } E = hv \text{ and } K_i$

(6v) is taken from Ref. /4/, Fig. 10, which we reproduce
in Fig. 13.

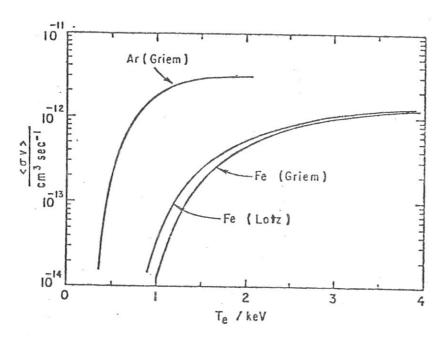


Fig. 13 $\langle 6 \text{ V} \rangle$ for K_{α} emission versus T_{e}

These curves can be approximated by the following formulae:

$$\langle 6 \text{ V} \rangle = \begin{cases} 2 \cdot 10^{-12} \exp(-4.4 \text{ T}_e^{-1.7}) & \text{for Fe} \\ 4 \cdot 10^{-12} \exp(-0.8 \text{ T}_e^{-1.7}) & \text{for Ar} \end{cases}$$
 (8.2a)

S. von Goeler considers the values shown in Fig. 13
to be too small: at the bottom left by a factor of about
2 or 3, and at the right by about 20 %. We, therefore, choose
for our program rather arbitrarily

$$\langle 6 \vee \rangle = 10^{-13} \text{ a } \exp \left(-\frac{x}{1.+\frac{a}{x^2}}\right) \text{ cm}^3 \text{ s}^{-1}$$
 (11.3)

where

$$x = \begin{cases} 2.5 / T_e & \text{for Ar} \\ 5.2 / T_e & \text{for Fe} \end{cases}$$
 (11.4)

$$a = \begin{cases} 35. & \text{for Ar} \\ 14. & \text{for Fe} \end{cases}$$
 (11.5)

We require $\langle \mathbf{6} \mathbf{v} \rangle$ not only for Fe and Ar, but also for other elements, e.g. titanium. For this purpose we arbitrarily generalize eqs. (11.4) and (11.5) as follows:

$$x = 0.0077 i^2 / T_{\Omega} (keV)$$
 (11.6)

$$a = 4.8 \cdot 10^4 i^{-2.5}$$
 (11.7)

where

$$i = \begin{cases} 18 \text{ for Ar} \\ 26 \text{ for Fe} \end{cases} = \text{ordinal number,}$$

see IMPUR routine. The coefficient 0.0077 i 2 denotes approximately (in keV) the excitation energy for dielectronic $\rm K_{\alpha}$ emission, which occurs primarily at low temperatures of 1 to 2 keV.

12. STRUCTURE OF ONESHOT PROGRAM

As the name ONESHOT suggests, the program is designed to determine a number of plasma parameters from the data of one shot - although it is also possible to superpose the results of several shots, e.g. by adding up raw spectra of different shots, averaging, introducing more than five probes, i.e. probes No. 1 to 5 yield results from shot No. 1, probes No. 6 to 10 results from shot No. 2, etc. This is not dealt with here.

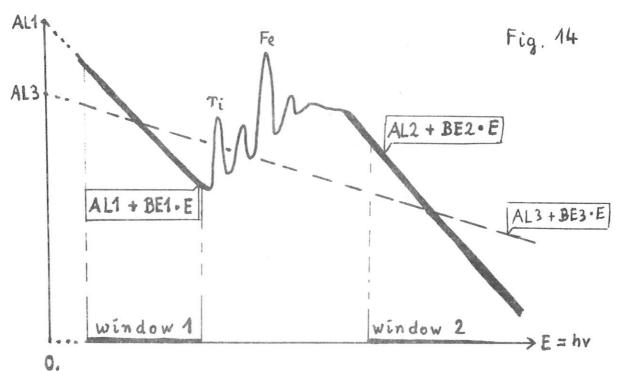
The plasma parameters determined with ONESHOT are:

Electron temperature TE(L);

Ion densities N1(L); N8(L); N22(L); N24(L); N26(L); N28(L);

f factors Z1(L); Z2(L);

and AL1(L); AL2(L); AL3(L); BE1(L); BE2(L); BE3(L);


The notations are as follows:

N1(L) the hydrogen density at $r = p_L$

N8(L) the oxygen density (Z = 8)

N22(L) the titanium density (Z = 22), etc.

To explain AL1, AL2, AL3, BE1, BE2, BE3, we reproduce Fig. 4:

Here the recombination step is grossly exaggerated to make the principle clear:

In energy window 1 one has F = AL1 + BE1 E; (12.1) in energy window 2 one has F = AL2 + BE2 E; if a straight line is drawn through the F values from the two energy windows, one obtains

F = AL3 + BE3 E.

Input data

The input data are stored in the AMOS segment DATA; an example is shown below. The meanings of these parameters are presented in the form of a list. Columns 2 and 3 list the line number and numerical value of the respective parameter in the example; column 4 states the section in which the parameter is introduced or more accurately described.

Para- meter	Line	Value	Sec.	Meaning	
IMAX	100	3	13	No. of detectors in a probe	
LMA	100	4	18	No. of probes + 1	
M ₁	100	3		No. of smoothing intervals in window 1	
MS	100	6	15	No. of all smoothing intervals	
NABEL	100	Ο	18	For choosing the Abel inversion method	
NGLA	100	Ο	15	For choosing the smoothing method	
NMAX	100	4	2	No. of observation time intervals	
DE9	100	.27	14	Channel width of reference scale in keV	
E09	100	0.	14	Zero displacement	
T(N)	200	0	2	Observation times in sec	
EL(M) ER(M)	300	1.4	15	Smoothing intervals in keV	

[×] on page 53

The lines 400 - 1200 are read in the BLENDE subroutine. The latter is called in the main program in the
DO-3 loop a total of IMAX·Lm1 times; in our example we have
LM1=LMA-1=3 and IMAX=3; there therefore have to be 3 x 3 = 9
lines available. In our example the filter parameter A has the
value 1317 and the filter thickness D has the value 0.00075.

A and D only occur in the combination A·D; consequently,
A·D is not changed when A is divided by 1000, and D multiplied by 1000, thus making A and D of the order 1 and therefore allowing them to be read in with F format (see BLENDE,

As an example we treat line 700, which contains the data of detector I = 1 of probe L = 2

Para- meter	Value	Sec.	Meaning
IMAX(I,L)	19	13	No. of energy channels of detector I, L
A	1.317	13	Filter parameter
В	3.276	13	Filter parameter
D	0.75	13	Filter thickness
DE(I,L)	0.45	2	Channel width of detector I, L in keV
EO(I,L)	0.04	2	Zero displacement
X1	100.	3	Aperture position in cm; see Fig. 2
Х2	2.	3	п п п п
R ₁	.1	3	Aperture radius in cm; see Fig. 2
R ₂	.017	3	п п п
R3	.11	13	Sensitivity radius of detector

In our example the time loop, i.e. the DO-6 loop of the main program, starts from line 1300. First we read in:

statement No. 3300).

[×] on page 53

Parameter	Line	Value	Sec.	Meaning
Ne(L)	1300	10		Electron density
P(L)	1400	0	5	Aperture position (L=1,2,3)
				and plasma radius (L=4)

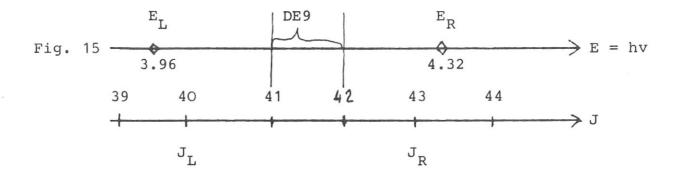
Then the raw spectra are read in the OVLAP subroutine. The latter is located in the DO-4 loop of the main program, the loop running from 1 to LM1; the READ command for the raw spectra in the OVLAP routine is located in the DO-5 loop, which runs from 1 to IMAX. For each time step we thus have to read in LM1·IMAX = 9 raw spectra; for the 1st time step (N = 1) these are lines 1500 - 2300.

In our example we manage with one line per raw spectrum. The reason is the choice JMAX = 19 in lines 400 - 1200, and that there is room in one line for 24 integers. If, for example, we had chosen JMAX = 27, we should need 2 lines per raw spectrum.

In line 2400 we have the electron density for the next time step - and the game starts all over again.

Sample input data

```
100
                             0 4 .27 0.
200
       0.
             .1
                   .2
                         .3
                                                                           9.
                        3.6
                                           6.
                                                 7.2
                                                       6.3
                                                              8.3
                              2.8
            2.6
                  2.0
                                    4.2
300
                                                            .01
                                                                  .11
                            0.57
                                   C.13
                                         100.
                                                2.
                                                      . 1
       19 1.317 3.276 0.75
400
                                                            .016
                                                                  .11
       19 1.317 3.276 20.
                             0.55
                                   C.05
                                         100.
                                                2.
                                                      .1
500
                                                            .04
                                                                  -11
       19 1.317 3.276 200.
19 1.317 3.276 0.75
                                                      .1
                             0.53
                                   C.
                                         100.
                                                2.
6C0
                                                            .017
                                               2.
                                                                  . 11
                                   0.04
                                         100.
                                                      .1
                             0.45
700
       19 1.317 3.276 20.
                                   .0.09
                                                2.
                                                      .1
                                                            .03.
                                                                   .11
                             0.51
                                         100.
.800
                                                     .1
                                                           . .09
                                                                   .11.
       19 1.317 3.276 200.
                             0.52
                                         100.
                                                2.
                                   C.26
900
                                                            .C8
                                                                   . 11
       19 1.317 3.276 0.75 0.57
                                   0.06
                                         100.
                                                0.2
                                                     . . 1
1000
                                                     .1
                                                                   .11
                                                0.2
                                                            .2
                                   0.15
                                         100.
1100
      19 1.317 3.276 5.
                             0.48
                                                            l.
                                                                   .11
                             0.51
                                         10C.
                                                C-2
                                                      .1
                                   C.
      19 1.317 3.276 50.
1200
                        0.
            6.
                  2.
1300
     10.
            .4
                  .7
1400
     0.
       5 28 18 11
                            5
1500
                   6
                      7 5
                            8
                               2
                                   2 1 3
                   8
               5
16C0
             1
                                             5 2 2
                                                     1 1 1
                          1
17CO
         25 26 16 9 5
                                   3
1800
                        3
                        5
                             5
                                5
                5 7 6
1900
                                      1
                                5
                                   3 2
                                            1 1 1
                       1
2000
      10 88 32 10
                   3
2100
2200
         9 73 56 27 12
                         5
                             2
                6 48 65 45 34 21
                                   5 2 3
2300
```


Main program (MAINPR)

The main program includes read-in and print-out of the input data and conversion of the smoothing intervals in the DO-2 loop:

In Sec. 15 the smoothing intervals are not required in keV but in units of the channel width DE9. Conversion is done as follows:

$$JL = (EL - EO9) / DE9 + 1$$

 $JR = (ER - EO9) / DE9$ (12.2)

so that the JL, JR interval is somewhat shorter than the corresponding EL, ER interval. This is illustrated by an example with EO9 = 0 , DE9 = 0.1 in fig. 15:

The energy window parameter M1 decides which M intervals belong to energy window 1:

The intervals $1 \le M \le M1$ belong to energy window 1 The intervals $M1 + 1 \le M \le MS$ belong to energy window 2.

The program flow

After read-in of the filter, aperture and other parameters in MAINPR statement No. 1200 etc. and in BLENDE routine the time independent component $U_{\rm O}$ (see eq. (2.3)) of the normalization factor is calculated in the BLENDE routine. Then the time (DO-6) loop commences:

The raw spectra are read in normalized and superposed in the OVLAP routine, yielding the spectral function U(L, J); the SESNIC routine computes the parameters collected at the beginning of this section.

Altogether, the following subroutines are required:

Routine	Input	Output	Description	
BLENDE	aperture and filter parameters	Uo	Sec. 2; 3; 13	
OVLAP	U _o ; raw spectra	U(L,J)	Sec. 2; 14	
GLATT	U(L,J); JL(M); JR(M)	ULG(L,M);EID(M)	Sec. 15	
SESNIC	U; ULG	TE; N26 etc.	Sec. 23	
ALPBET	ULG	AL; BE	Sec. 18	
ABEL	U	F	Sec. 19	
AZRUT	С, Н, х	AZ	eq. (4.16a-e)	
ITERAT	ULG	ALP; BET	Sec. 17	
LSTSQ	i.e. E; ln U	∝ ; ß	Sec. 16	
SORTIR	Q(L)	MA(L)	Sec. 20	
IMPUR	U; TE; i.e.Z=26	i.e.N26; P26	Sec. 21	
METAL	TE	ZME1; ZME2	Sec. 22	

In addition, most routines require the positions $\mathbf{P}_{\mathbf{L}}.$

We now discuss the COMMON blocks and the meaning of the variables stored in them.

1) Blank COMMON (blk)

EID	smoothing interval centres	Sec. 15	Fig. 17
GEW	weighting factors	15	eq. (15.5a)
P	L=1,LM1: probe positions L=LMA : plasma radius	2 4	Fig.1;Sec.6
PLOG	$= \ln (1-\hat{p}^2)$	17	
U	spectral function at the reference grid points (14.1)		
ULG	1n U at EID	15	Fig. 17
DE9) EO9	reference grid points	14	eq.(14.1)
JMAX9	number of V grid points	=JR(1	MS)
LM1	number of probes		
LMA	= LM1 + 1		
M1	number of M grid points in the energy window ${\bf 1}$	7	
MS	number of M grid points in the energy windows 1 + 2; M grid point = smoothing into		ntre

2) COMMON /BLE/

DE(I,L) = channel width of detector No. 1 2 Fig. 1b of probe No. L 13

EO(I,L) = zero displacement 2 Fig. 1b

UO normalization factor 2 eq.(2.5-6)

JMAX(I,L) number of energy channels for detector I, probe L

3) COMMON /OVL/

$$T(N)$$
 observation times $t(N)$ 2 eq.(2.5)
 $DTN = T(N) - T(N-1)$
 $IMAX = number of detectors of a probe$

4) COMMON /GLA/

COMMON /ALB/

- 5) FP profile F see Sec.5, just before eq. (5.8)
- 6) COMMON /ITE/

ALP =
$$\alpha_p$$

BET = β_p see Sec. 5, just before eq. (5.8)

$$\frac{C}{H}$$
 profile numbers; eqs. (4.14) to (4.16)

7) COMMON /IMP/

NE(L)
$$\}$$
 electron density at r = p_L

8) COMMON /MET/

P22 =
$$\frac{N22}{NE}$$
 = partial density of titanium (Z = 22); similar to the rest

9) COMMON /SES/

sec.

 $AL1 = \alpha$ in energy window 1

 $AL2 = \alpha$ in energy window 2

12 Fig. 14

AL3 = α in energy windows 1+2

BE3 = β in energy windows 1+2

N8 = oxygen density in energy window 1

D8 = oxygen density in energy window 2

analogous: N1 and D1 for hydrogen

N22 = titanium density (Z = 22); analogous: N24, N26, N28

Z1 = \Im factor in energy window 1

Z2 = y factor in energy window 2

S1, S2, S3, T1, T2, T3 are not needed in the present version. The parameters listed in COMMON /SES/ only feature in the SESNIC routine. We have collected them in a COMMON block in case later users write an input/output routine in which COMMON/SES/ would appear.

Precision parameters

with "built-in parameters". An example of such a parameter is the number 0.1 in the test IF(RL. LE.O1) .. in the OVLAP routine, ISN 0061, which is discussed in detail at the end of Sec. 14. The user may now want to replace the number test 0.1 by another and do the same in other statements. We therefore present at the end of this section a list of all test statements containing built-in parameters:

Routine	Statement	Discussion
BLENDE	ISN 0026	If $hv \le 0.1$, then set $U = 0$
BLENDE	ISN 0029	If FILTER ≥ 13 ., then set $U = 0$
OVLAP	ISN 0061	If $R \le 0.1$, then set $U = 0$ (Sec. 14)
LSTSQ	ISN 0010	In eq. (16.2) sum terms are ignored,
LSTSQ	ISN 0012	if $G \le 0.001$ or $V \le -700$
LSTSQ	ISN 0021	If $D \le 10^{-6}$, absurd values are set for α and β
SESNIC	ISN 0030	If $B_1 \le -0.001$, then set $N_g = 0$ (or if $T_e \ge 1.$ MeV or negative)
ABEL	ISN 0022-28	Sec. 18 and 19
ALPBET	ISN 0034	If ULG ≤ -100. then set D=U=O
ALPBET	ISN 0061 }	If $MC \le 1$ then set α , β absurd
ITERAT	ISN 0037	
ITERAT	ISN 0052	If LC \leq 1 , then set H=C=2 (see Sec. 17, Fig.22).
ITERAT	ISN 0056	11 H ≤ O, / 11 H = 2
ITERAT	ISN 0058	11 € € 0. ; Il II € =2 ; step profile not permitted

13. BLENDE SUBROUTINE

The BLENDE subroutine is for calculating the time independent normalization factor U_O from Sec. 2, eqs. (2.2) (2.5). In the ASDEX experiment there are five probes with
three detectors each. In our program each detector therefore
has a probe index L and a detector index I:

The probe index L goes from 1 to LM1 (in ASDEX LM1 = 5); the detector " I goes from 1 to IMA (in ASDEX IMA = 3).

Those characteristics of a detector which are also used outside the BLENDE routine (mostly in OVLAP) are therefore given the indices I and L. The characteristics of a detector are:

aperture radii R_1 and R_2 aperture positions x_1 and x_2 (see Sec.3, Fig.2), sensitivity radius x_3 filter constants a, b, d energy channel width DE zero displacement EO number of energy channels JMAX.

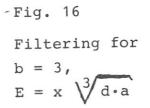
These parameters are read in statement ISN 0005.

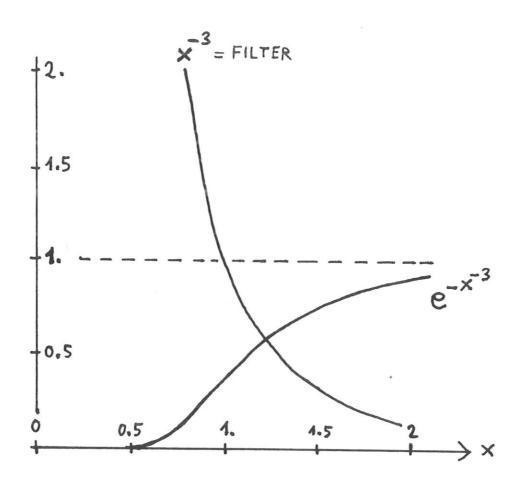
BLENDE (German) = aperture (English)

The first part of the routine is for calculating DSDO = $\Delta S \Delta \Omega$ according to eq. (3.10). Here the following change was made compared with Sec. 3: the detector has a finite sensitivity radius x_3 .

If $x_3 \gg x_2$, then eq. (3.10) is valid.

where


If $x_3 \ll x_2$, then x_3 has to be substituted for x_2 in eq. (3.10). If $x_3 \approx x_2$, we interpolate, see ISN 0016.


The second part of the routine consists of the DO-5 loop. The loop index JI counts the energy channels of the detector; EN is the energy in the centre of the energy channel JI. We set $U_O = 0$ if the energy is too small (EN < 0.1) or if the filter function is too large (FILTER > 13). In the normal case (statement ISN 0031) eq. (2.3) is valid.

Finally, we discuss the filter function. From the filter constants a, b, d we form

FILTER =
$$\mu(E)$$
 d (13.2)
 $\mu(E) = a E^{-b}$ (13.3)
 $E = hv$.

For most materials one has b \approx 3; for this special case we therefore plot FILTER versus $x = E(d \cdot a)^{-1/3}$ in Fig. 16.

14. OVLAP SUBROUTINE

The OVLAP subroutine is used for

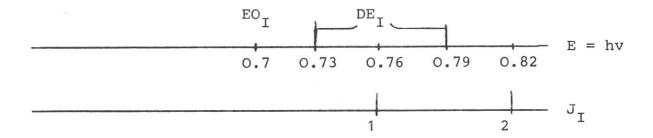
- 1) reading in the raw spectra (in statement ISN 0013),
- 2) normalization (statement ISN 0016),
- 3) superposing the normalized spectra (ISN 0038, ISN 0063).

The user reads in the numbers DE9 and EO9 in the main program, and from these one forms the energy mesh points (ISN 0018)

$$E9(J) = DE9 J + E09$$
 (14.1)

This energy scale is called the reference scale. The purpose of OVLAP is to calculate the spectral function $U(L,J)=U(p_L;E9)$ according to eq. (2.4). Before describing the program, we define the necessary concepts "energy channel", "channel width" and "zero displacement".

A detector can be schematically described by energy mesh points


$$E_{\underline{I}}(J_{\underline{I}}) = DE_{\underline{I}} J_{\underline{I}} + EO_{\underline{I}}$$
 (14.2)

located in the centre of intervals of length DE_{I} . These intervals are called "energy channels", the interval length DE_{I} is called "channel width", and the quantity EO_{I} is called "zero displacement". When a quantum with an energy in the interval

 ${\rm E_I}({\rm J_I}) \ - \ {\rm O.5\ DE_I} \ {\rm \le \ hv} \ {\rm \le \ E_I}({\rm J_I}) \ + \ {\rm O.5\ DE_I}$ enters the detector, the counter with the number ${\rm J_I}$ is advanced by 1. We illustrate the situation with an example: let

$$EO_I = 0.7 \text{ keV}$$
 $DE_T = 0.06 \text{ keV}$.

The first energy channel is then located in the interval $0.73 \le E \le 0.79$ keV. A quantum with the energy 0.71 is not recorded. A quantum with the energy 0.74 is recorded as a quantum in the energy channel $J_I = 1$, causing the raw spectrum $R_T(J_T = 1)$ to be increased by 1.

We now describe the program.

The OVLAP routine gets the parameters DE9 and EO9 via the unlabeled COMMON, and the zero displacements EO(I,L) and channel widths DE(I,L) of the detectors via COMMON /BLE/; here L = probe index and I = detector index.

The raw spectra are read in the DO-5 loop and normalized; the result is UB(I,J). The index L is not needed at this point because it appears in the argument list of OVLAP.

Superpositioning of the normalized spectra according to eq. (2.4) takes place in the DO-7 loop. In this loop we form

$$S_R = \text{denominator of eq. } (2.4) = \sum_{I=1}^{IMAX} R^{(I)}, \quad (14.3)$$

$$S_U = \text{numerator of eq. } (2.4) = \sum_{R} (I) U_B^{(I)}$$

at the reference energy E9. For this purpose we require R $^{(I)}$ and U $_{\rm B}$ $^{(I)}$ at E9. For this purpose we look for the channel number J $_{\rm I}$ for which

$$E_T(J_T) \le E9 \le E_T(J_T+1)$$

is valid. The solution is

$$J_{I} = \frac{E9 - EO_{I}}{DE_{I}}$$
 (statement ISN 0025).

We then check whether ${\rm J_I}$ is reasonable. This is done by means of the IF-statements ISN 0028-32: ${\rm J_I}$ is not reasonable and therefore does not make any contribution to ${\rm S_R}$ and ${\rm S_U}$ if

- 1) J_{I} does not occur among the channel numbers of detector I, $\underline{\text{or}}$
- 2) R = 0 for $J_T = and J_T + 1$.

If $\boldsymbol{J}_{\boldsymbol{\mathrm{I}}}$ is reasonable, a linear interpolation is performed:

$$RI = R^{(I)}(E9) = VL R_{JI} + VR R_{JI+1}$$
 (ISN 0037).

The quantity R_L calculated in ISN 0060 is the raw spectrum at E9 and according to sec. 2 the inaccuracy in calculating the spectral function U is about $1/R_L$. Therefore it is tested in statement ISN 0061, whether R_L is sufficiently large. In ISN 0061 we compare R_L with 0.1; in this case practically every quantum is taken into account, but it may also lead to large statistical errors. If the user does not need the rare high-energy quanta, but good statistics instead, he may replace the number 0.1 by a larger one.

15. GLATT SUBROUTINE

In the GLATT subroutine we smooth the spectral function within the clean energy windows. For this purpose we read in several smoothing intervals (see Sec. 12, eq. (12.2)) and determine ULG = ln U in the centre EID(M) of these smoothing intervals. This is done because for application in the ALPBET routine U or ln U should be available with a good degree of accuracy at a few mesh points. After OVLAP (MAINPR, statement ISN 0043) is called, however, the spectral function U(L,J) is present at very many mesh points, viz. the reference mesh points (14.1), and is subject to large statistical errors.

Such a smoothing interval is shown in Fig. 17.

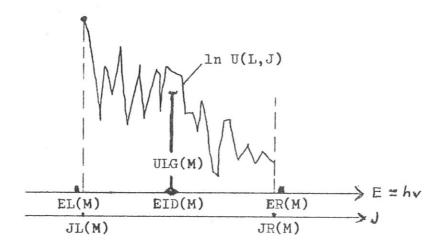


Fig. 17 The spectral function U(L,J) at the reference mesh points $E9 = DE9 \ J + E09 \ within the \ smoothing \ interval \ JL(M) \le J \le JR(M) \, .$

The GLATT routine works as follows:

<u>Given:</u> U(L,J) ; DE9 ; E09 ; JL(M) ; JR(M)

J=1, .. JMAX9 energy channels,

L=1, .. LMA-1 probe positions M=1, .. MS smoothing intervals.

Required: ULG = ln U at EID(M),

where EID(M) = 0.5 DE9
$$[JL(M) + JR(M)] + EO9$$
. (15.1)

Method: The GLATT routine should only be used within clean energy windows, where

$$ln F = \alpha + \beta E$$
, see (5.4)

is valid. Substituting this equation in eq. (4.16), it is seen that, if the smoothing intervals are properly chosen (in window 1 approx. up to 1 keV long, in window 2 in Fig. 4 up to 4 keV long), ln U is also a linear function of E:

$$\ln U = \Re {M \choose 8} + \Re {M \choose 8} E$$
 (15.2)

where unlike eq. (5.4), of course, the coefficients α_8 and β_8 may be different from one smoothing interval to the next and therefore have the index M.

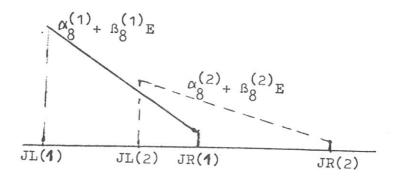


Fig. 18

Clean energy window with two smoothing intervals.

From eq. (15.2) it follows that at EID(M):

ULG = arithmetic average value of ln U(L,J);

U = geometric average value of U(L,J).

But this way of taking the average value raises problems when so few quanta are available that one gets U(L,J) = 0 at a few mesh points. An example is given in Fig. 19.

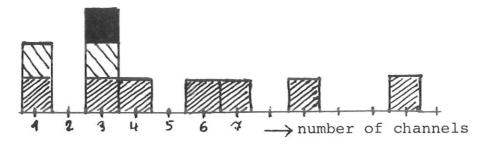


Fig. 19
Distribution of 10 quanta on 12 energy channels.

We offer two methods of taking the average value, which the user can select by the choice of the parameter NGLA:

NGLA = 0 We take the geometric average value from the arithmetic average value of U(L,J) by means of the correction factor (15.4). For this purpose we determine β_8 in Appendix A (eq. (15.8)) and use it to form

$$\mathbf{Z} = \beta_8 (\mathbf{E}_8 - \mathbf{E}_9),$$
 (15.3)

which is the dimensionless length of the smoothing interval. The index M has been omitted. By means of z one can calculate the ratio of the arithmetic to the geometric mean: it holds that

(see Appendix B)

$$\frac{\text{arithmet. over.}}{\text{geomet. over.}} = \frac{e^{0.5z} - e^{-0.5z}}{z}$$
 (15.4)

$$1 + \frac{z^2}{24} \left[1. + \frac{z^2}{80} \left(1. + \frac{z^2}{168} \right) \right]$$
.

The advantage of this method is that it also works if a large number of U = 0 mesh points is present, and, furthermore, requires only two transcendental functions to produce ULG, viz. the root in eq. (15.8f) and the logarithm for obtaining $ln\ U$.

NGLA ≥ 2 The influence of the U = 0 mesh points are taken into account by a correction term:

$$ULG = \frac{1}{SU} \sum_{J=JL}^{JR} l_{1n} U(L,J) + ln \frac{SU}{KM}$$
 (15.5)

where

KM = JR - JL + 1 = number of all mesh points,
SU = number of mesh points with U ≠ 0.
Summation is only performed over those J for
which U(L,J) ≠ 0 is valid, hence the prime at
the summation symbol. The method

NGLA ≥ 2 requires much more computing time than
method NGLA = 0 because when, for example,
SU = 20, the logarithm is called 20 times to
produce ULG. An advantage of the method NGLA ≥ 2
is the stronger smoothing, which is discussed
in Appendix A for a particular example.

For subsequent least squares fitting the mesh points EID(M); ULG(L,M) are given the weighting GEW(L,M) = SU.

APPENDIX A

Calculation of β_8

From the U(L,J) of the interval (15.1) we perform the two summations

$$S_0 = \sum_{J=JL}^{JR} U(L,J)$$

$$s_1 = \sum_{J=JL}^{JR} U(L,J) E$$

where

$$E = DE9 J + E09$$

We now consider S_0 and S_1 as approximations for the integrals

$$S_{o} = \frac{1}{DE9} \int_{E_{8}}^{E_{9}} dE U$$
 (15.6a)

and

$$S_1 = \frac{1}{DE9} \int_{E_8}^{E_9} dE U E$$
 (15.6b)

where

$$E_8 = DE9 (JL -0.5) + E09$$
 (15.7a)
 $E_9 = DE9 (JR +0.5) + E09$.

$$E_9 = DE9 (JR + 0.5) + E09.$$
 (15.7b)

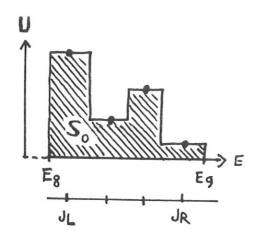


Fig. 19a
U versus E;
So (hatched area),
E8 and E9

Substituting U prop. $\exp(\beta_8 E)$

(15.2)

in eq. (15.6) and defining Q =
$$S_1/S_0$$

C = $(Q-E_9)/(E_8-Q)$
F = B_8 (E_8-Q) (15.8)

one obtains the transcendental equation

$$\exp \left[(1+C) F \right] = \frac{1+CF}{1-F}$$

for the dimensionless unknown F; the solution is approximated by

$$F \approx \frac{C - 1}{C - C^2 / \sqrt{1.-0.8 C + 8.6 C^2 - 0.8 C^3 + C^4}}$$
 (15.8f)

The inaccuracy of the approximation (15.8) is approx. 1 %, and it applicable for all $\beta_{\rm R}$.

Finally, we discuss the advantages and disadvantages of the two methods. Method (15.4 + 8) or NGLA = 0 is recommended when there are a large number of U = 0 mesh points present. The disadvantage of using an approximation formula is more of a theoretical nature. Much more important in practice is what

happens when there are "wild points", i.e. mesh points with U values which for some reason become too large. We use both methods in the following example:

JL=1
JR=7

$$B_8=0$$

KM=7
SU=7
SO=406
NGLA = 0
ULG = $\ln \left[\frac{S_0}{K_M} \right]$
= $\ln(106/7) = 2.7$
NGLA \geq 2
ULG = $\frac{A}{SU} \sum \ln U$
= $\frac{1}{7} \ln 100 = 0.66$

Wild points are thus more strongly damped by eq. (15.5) than by eq. (15.4). With "ordinary" errors, on the other hand, this effect is not very pronounced: substituting U(J=4)=2 in the above example yields

ULG =
$$0.13$$
 for NGLA = 0
ULG = 0.10 for NGLA = 3 .

If it is to be feared that the spectrum of the clean, or rather presumably clean, energy windows will be distorted by wild points, method NGLA ≥ 2 is to be recommended instead.

APPENDIX B

Relation between the arithmetic and the geometric averaged value of the spectral function U in the smoothing interval.

Introducing the dimension-less variables

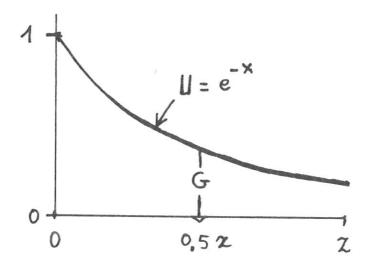
$$x = - \beta_8 (E - E_8)$$

and

$$z = \beta_8 (E_8 - E_9)$$

one has $U = e^{-x}$ (normalized to 1 at $E = E_8$).

The arithmetic averaged value is


$$A = \frac{1}{z} \int_{0}^{z} dx U = \frac{1}{z} [1 - e^{-z}].$$

The geometric averaged value is

$$G = \exp \left\{ \frac{1}{z} \int_{0}^{z} dx \ln u \right\} = e^{-0.5z}$$

and, consequently,

$$\frac{A}{G} = \frac{e^{0.5z} - e^{-0.5z}}{z}$$

16. LSTSQ SUBROUTINE

We are given pairs of values E_{J} ; V_{J} and their weighting G_{J} . The purpose of the LSTSQ subroutine is to calculate two numbers & , ß so that

$$V_{J} = + \beta E_{J} \tag{16.1}$$

is satisfied as well as possible or that the square of the error

$$S = \sum_{J=1}^{JMA} G_J \left[\alpha + \beta E_J - V_J \right]^2$$
 (16.2)

becomes minimal. The system of equations

$$\frac{\partial S}{\partial \alpha} = \frac{\partial S}{\partial \beta} = 0 \tag{16.3}$$

can be reduced to the form

$$A_{11} \propto + A_{12} = B_1$$
 (16.3a)
 $A_{12} \propto + A_{22} = B_2$ b)

where

$$A_{11} = \sum_{J} G_{J} \qquad (16.4a)$$

$$\mathbf{A}_{12} = \sum \mathbf{G}_{\mathbf{J}} \mathbf{E}_{\mathbf{J}}$$
 b)
$$\mathbf{A}_{22} = \sum \mathbf{G}_{\mathbf{J}} \mathbf{E}_{\mathbf{J}}^{\mathbf{L}}$$
 c)

$$A_{22} = \sum_{J} G_{J} E_{J}^{2}$$
 c)

$$B_1 = \sum G_J V_J$$
 d)

$$B_2 = \sum G_J V_J E_J \quad , \qquad e)$$

IF-statements

If V < -700., the respective sum term is not taken into account. When this is applied to V = ln U the "trivial" cases U = O are not counted.

If the determinant is D = O, absurd values α = -444 and β = 222 are set.

17. ITERAT SUBROUTINE

The ITERAT subroutine calculates the quantities α and β and the emissivity F for a given spectral function U. It performs Abel inversion by means of eq. (4.16), A_{Z} being calculated on the assumption that S and kT_{ρ} are of the profile type (eqs. 4.14 and 4.15). Since this assumption need not always be correct, we do not call the result α , β but $\alpha_{\rm p}$, $\beta_{\rm p}$.

Given:

Energy mesh points E = EID(M), M = ML, MR

$$E = EID(M)$$
, $M = ML$, MF

Probe positions

$$\mathcal{P}_{L} = P(L)$$
 , $L = 1$, LMA

Spectral function ln U= ULG(L,M);

Required:

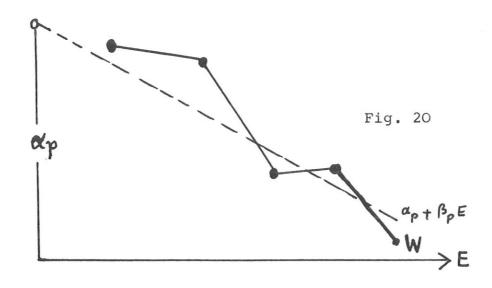
$$\alpha_p = ALP$$

$$\beta_{D} = BET$$

$$F_p = FP(L,M)$$

$$U_p = UP(L,M)$$
.

Method:


It is assumed that the energy mesh points are located in a clean energy window so that eq. (5.4) is valid.

The basis equation is eq. (4.5) in the form

$$\alpha_{p}(r) + \beta_{p}(r) E = W$$
 (17.1)

$$W = \ln U - \ln \left\{ 2a \sqrt{\frac{1-\hat{p}^2}{A_2}} \right\}$$
 (17.2)

The idea is now to choose α_p and β_p for fixed r such that eq. (17.1) is satisfied as well as possible (see Fig. 20).

To determine AZ we use eq. (4.16a-e), i.e. we assume that the quantities S and T_e are of the profile type (eq. (4.14)-(4.15)). If S and T are not of the profile type, there are errors which experience shows to be small because W only depends logarithmically on AZ. Another difficulty is that the variational problem (eqs.(17.1)-(17.2)) is not linear because W depends on α_p and β_p via A_z . Under these circumstances we calculate α and β by the following iteration method:

Let
$$\alpha_n = \alpha_p$$

$$\beta_n = \beta_p$$
 after the n-th iteration step;

we then make the ansatz

$$\alpha_{n+1} + \beta_{n+1} E = W(\alpha_n; \beta_n; E; ...)$$
 (17.3)

and determine α_{n+1} and β_{n+1} so that eq. (17.3) is satisfied as well as possible (least square fit; see Sec. 16 on LSTSQ routine). Here α_n and β_n and hence W are known from the

previous iteration step. As already mentioned above, the left-hand side of eq. (17.1) depends much more strongly on α_p , β_p than the right-hand side W; the method therefore already converges after 2 to 3 iteration steps.

To calculate A_{Z} , we need the profile numbers C and H. These are determined by a least squares fit from the rearranged equations (4.14)-(4.15):

$$\alpha_{n}(r) = \ln s_{0} + C \ln(1.-\hat{r}^{2})$$
 (17.4)

$$-\ln(-\beta_{n}(r)) = \ln T_{o} + H \ln(1.-\hat{r}^{2})$$
 (17.5)

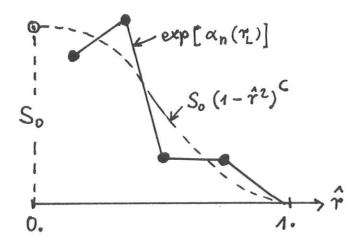


Fig. 21

Determination of the profile number C

We start the method by arbitrarily giving

$$C = H = 2$$
 , $\beta_{n=0} = -1$. (17.6)

Each iteration step consists of the parts given in the table below:

Table III

Calculatio of	n according to equation:	routine:	parameters necessary:	line
AZ W	(4.16a-e) (17.2)	AZRUT	C, H, ß	K I
$\alpha_{n+1}; \beta_{n+1}$	(17.3)	LSTSQ	W	III
$S_0; C _{n+1}$	(17.4)	LSTSQ	α_{n+1}	IV
T _o ; H n+1	(17.5)	LSTSQ	^β n+1	V

Line III is a least squares fit in the E direction:

 α_{n+1} and β_{n+1} are chosen for fixed $r=p_L$ so that eq. (17.3) is satisfied as well as possible. Lines IV and V are least square fits in the r or p direction: S_o and C are chosen such that eq. (17.4) is satisfied as well as possible. The analogy is as follows:

In line III W is approximated by a linear function of E and in line IV α_{n+1} is approximated by a linear function of $\ln(1-\hat{r}^2)$. We have thus determined α_p and β_p from U. This also yields F_p from eq. (5.4) (see DO-8 loop at the end of ITERAT) and U_p from eqs. (4.16) and (4.3).

Furthermore, an error square

$$ER = \frac{1}{SU} \sum_{L,M} \left[\frac{\ln UP - ULG}{ULG} \right]^2$$
 (17.7)

is formed rather arbitrarily at the end of the DO-8 loop, SU being the number of sum terms.

Meaning of variables appearing in ITERAT

 $ML \leq M \leq MR$ energy mesh points used for calculating p, B

ALP =
$$\alpha_p$$
BET = β_p

FP = F
UP = U
ULG = ln U
P = p

C, H profile numbers from eqs.(4.14) - (4.16)

LMA = number of p mesh points (probes and plasma radius)

MS = number of EID " (smoothing intervals)

GE, GEW, G weighting factors for the least square fit (see Sec. 16)

PLOG(L) = ln
$$(1.-\hat{p}_L^2)$$

AL = ALP = α_P

TL(L)= $\ln \left[-\frac{1}{\beta_L}\right]$ From this the profile number H is determined in statement ISN 0054 by a least square fit.

W see eq. (17.2).

Structure

The first lines up to the DO-1 loop describe the start of the iteration method (eq. (17.6)). In addition, the quantities TL and AL are given absurd values so that they are defined if for any reason the mesh point has to be missed later. Later we also have the same basic structure in most DO loops:

- 1) Weighting factor made zero
- 2) Absurd value for the variable (e.g. W or TL)
- 3) Test: if, for example, ULG absurd, then GO TO CONTINUE
- 4) ULG reasonable: then calculate the variable.

The DO-6 loop contains the iteration scheme described in Table III; the result is ALP(L), BET(L), C and H. The ULG are supplied together with the weighting factors GEW by the calling program; G is calculated in statement ISN 0033 from the GEW.

Our next task is to discuss the meaning of the variables LC and MC. For this purpose we have to know that in the high-energy regime there are many "trivial" mesh points, i.e. pairs of numbers L, M for which

$$U(L,M) = 0$$
 or $ULG(L,M) = -711$

is valid. This is because the quantum density decreases as $\exp{(-\frac{hv}{kT_e})} \quad \text{for high energies hv. But trivial mesh points may}$ also exist for very low energies if the filters are too impermeable. On the whole, there is then, in principle, a distribution of the trivial (o) and non-trivial (x) mesh points, as shown in Fig. 22.

MC denotes the number of non-trivial mesh points of a column.

|F - statement ISN 0037 means: ALP and BET are only calculated

when MC \geq 2; this condition is met in our example (Fig.22) in all five columns. LC denotes the number of columns for which ALP and BET are calculated; in the example in Fig. 22 one thus has LC = 5. The if statement ISN 0052 means: C and H are only calculated when LC \geq 2. Otherwise C = H = 2 is set. In the case of Fig. 22 one has LC = 5.

18. ALPBET SUBROUTINE

The ALPBET subroutine calculates the quantities α and β .

Given:

Energy mesh points E = EID(M) , M = ML, MR probe positions p = P(L) , L = 1, LMA-1 Plasma radius a = P(LMA)

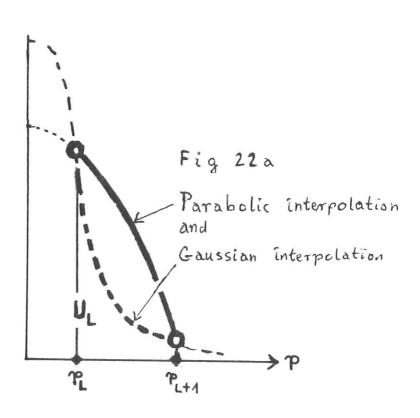
Spectral function ln U = ULG(L,M)

Required: $\alpha(p_L) = AL(L)$ $\beta(p_T) = BE(L)$

The variable NABEL specifies the method used:

NABEL = 0 Use of ITERAT routine. We set $\alpha = \alpha \qquad \text{AL} = \text{ALP}$

 $\beta = \beta_{p}^{P}$ BE = BET


and thus consider the $^{\alpha}p$ and $^{\beta}p$ yielded by ITERAT in Sec. 5 to be the best approximations for $^{\alpha}$ and $^{\beta}$.

NABEL = 2 Use of ITERAT and ABEL routines. In addition to $\alpha_p \text{ and } \beta_p \text{ ITERAT yields } U_p \text{ and } F_p \text{ (see ITERAT,} \\ \text{DO-8 loop); for the difference D = U - U we do} \\ \text{the ABEL inversion in the ABEL routine. The} \\ \text{result is G. We form}$

 $F = F_p + G$. etc., see Sec. 5.

- NABEL \geq 3 We skip ITERAT and calculate F solely by means of ABEL. To allow this, se set $U_p = 0$ in the DO-3 loop.
- NABEL = 4 In the ABEL routine Gaussian interpolation is used if possible.
- NABEL = 6 In the ABEL routine only parabolic interpolation is used.

In the DO-9 loop F is put in log form. In the DO-11 loop α and β are calculated by a least squares fit according to eq. (5.4). If the parameter JWRITE \geq 2 is chosen, intermediate results are printed out.

19. SUBROUTINE ABEL

The ABEL subroutine is used to perform ABEL inversion, i.e.

Given:

Positions
$$p_L$$
 $K = L = 1,2,...N$ and $U_L = U(p_L);$

Required:
$$F_K = F(r_K)$$
 for $r_K = p_K$.

The formal solution to Abel's integral equation (4.5) is

$$F(r) = -\frac{4}{\pi} \int_{r}^{a} \frac{dp}{\sqrt{p^2 - r^2}} \frac{dU}{dp}$$

It follows that

$$F_{K} = -\frac{1}{\pi} \sum_{L=K}^{N-1} \int_{\mathbf{r}_{L}}^{\mathbf{r}_{L+1}} \frac{dp}{\sqrt{p^{2}-r^{2}}} \frac{dU}{dp} . \quad (19.1)$$

In the ABEL subroutine we provide two interpolation ansatzes for U:

1) If

and

$$U_{L} > U_{L+1} > 0$$
 (19.2)
NABEL = 4

is satisfied, we use Gaussian interpolation:

$$\ln U = B_L - C_L p^2$$
 for $P_L \le P \le P_{L+1}$ (19.3)

It follows that

$$F_{K} = \frac{1}{\pi} \sum_{L=K}^{N-1} \sqrt{C_{L}} \exp(B_{L} - C_{L}r^{2}) \left[erf \sqrt{C_{L}(p^{2} - r^{2})} \right]_{p_{L}}^{p_{L+1}}$$
where
$$erf(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} dx e^{-x^{2}}$$
(19)

In the program we use, instead of erf, the complementary function

$$erfc(z) = 1.- erf(z).$$
 (19.5)

(19.4)

2) If condition (19.2) is not satisfied, we use the parabolic interpretation:

$$U = Q_0 + Q_L p^2$$
 for $p_L \le p \le p_{L+1}$ (19.6)

It follows that

$$F_{K} = + \frac{2}{\pi} \sum_{L=K}^{N-1} Q_{L} \left[\sqrt{p_{L}^{2} - r_{K}^{2}} - \sqrt{p_{L+1}^{2} - r_{K}^{2}} \right]$$
 (19.7)

In both cases (Gaussian and parabolic interpolation) it is assumed that

$$U_N = F_N = O$$
 (19.8).

As can be seen from Sec. 6, negative positions can also occur, e.g. when some of the lines of sight of the probes pass the plasma centre on the right and some on the left. The few mesh points that we have are thus distributed over an interval

As circular symmetry was assumed in eq. (4.1), U only depends on U via p^2 ; we therefore sort the mesh points according to increasing p_L^2 by calling the SORTIR routine, which yields an index function

$$J = MA(L)$$

with the following property:

$$QS(L+1) > QS(L)$$

with

$$QS(L) = Q(J) = p_J^2$$
.

In the DO-7 loop at the end of the ABEL routine the sequence originally presented is restored.

The variable NG denotes the number of non-trivial mesh points. A mesh point is said to be "trivial" when U=0 there. Trivial mesh points are particularly abundant for high quantum energies, especially for relatively large positions p. If there is only one non-trivial mesh point, no statement is possible by means of F; because we had set F=0 in the DO-1 loop we can give RETURN in this case (statement ISN 0047).

The variable NABEL selects the interpolation method:

NABEL \leq 4 if at all possible, Gaussian interpolation (eq. (19.3) - (19.5))

NABEL ≥ 5 parabolic interpolation (eq. (19.6)-(19.7)).

20. SORTIR SUBROUTINE

SORTIR orders the components Q(L) of a vector according to magnitude. The notations are as follows:

LMA = number of components of the vector Q;

M(L) = an index function with the property

$$Q(M(I)) > Q(M(K)) \quad \text{if} \quad I > K. \tag{20.1}$$

First we consider an example:

$$Q(1) = 23.$$
 $M(1) = 1$
 $Q(2) = 67.$ Then $M(2) = 3$ (20.2)
 $Q(3) = 34$ $M(3) = 2$

The SORTIR routine is for calculating the index function M(L). For this purpose we start in statement ISN 0006 with an arbitrary function,

$$M(L) = L.$$

If we find a pair of indices I, K for which condition (20.1) is not satisfied, we set

$$M(I)_{neu} = M(K)_{alt}$$
 (20.3)

and

$$M(K)_{neu} = M(I)_{alt}$$

21. IMPUR SUBROUTINE

The IMPUR subroutine calculates for the metal impurity with nucleus charge number Z and K_{α} - line at EI the ion density NI and the ratio PI = NI/NE according to the formulae of Sec.11.

Given:

Spectral function U(L,J); DE9; E09

Electron density NE(L)
Electron temperature TE(L)
Atomic number Z K_{xx} energy EI

Required:

Ion density NI(L) and $PI(L) = \frac{NI(L)}{NE(L)}$

Method:

First we determine the continuum component according to the principle in Fig. 23a: it is assumed that in the intervals

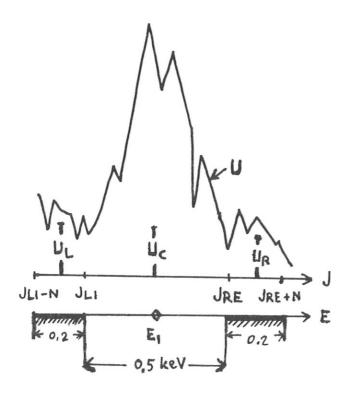


Fig. 23a

JLI-N < J
$$\leq$$
 JLI (21.1) and JRE+N > J \geqslant JRE (21.2) we have U = U_C (21.3) i.e. there is no line radiation present. The mean values of U in these intervals are U_L and U_R respectively. From these we take the mean value

$$U_{C} = \sqrt{U_{L}U_{R}}. \qquad (21.4)$$

Here we have assumed

$$DE9(JRE-JLI) = 0.8 \text{ keV}$$
 (21.5)

as a measure of the extent of the ${\rm K}_{\alpha}$ $\,$ spectrum and

DE9 N =
$$0.2 \text{ keV}$$
 (21.6)

for the line-free boundary continuum.

We now form

$$UK = \int dE (U - UC),$$

$$UK = DE9 \sum_{J} \left[U(L,J) - UC\right]$$
(21.7)

It is allowed to take for the continuum component UC the mean value from eq. (21.4) because UC is approximately a linear function of E. UK and K from Sec. 11 are related by Abel's integral equation:

$$UK = 2 \int_{P}^{a} \frac{dr \, r \, K}{\sqrt{r^2 - p^2}}$$
 (21.8)

Depending on the choice of NABEL (see Sec. 18), K is calculated from UK either by ABEL inversion (CALL ABEL) or from AZ by means of eq. (4.3) (CALL AZRUT). As soon as K is known, the formulae from Sec. 11 are used in the DO-9 loop to calculate the impurity density.

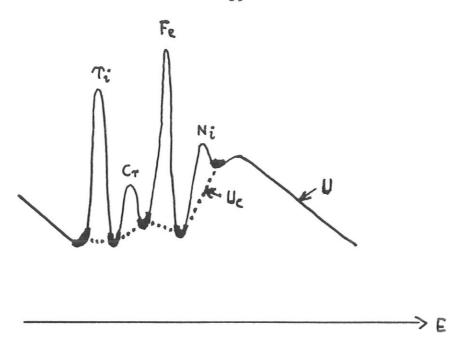


Fig. 24

Schematic representation of U and $\rm U_C$ versus E if the IMPUR routine is called four times to determine the densities of Ti, Cr, Fe and Ni. The dashed line represents the continuum component $\rm U_C$.

22. METAL SUBROUTINE

The METAL subroutine calculates for a given temperature the contribution of the metals Ti, Cr, Fe and Ni to the \int_0^{∞} factor (eq. 7.8). According to Sec. 5, Fig. 4, we have two clean energy windows in which R_{fb} can assume various values. These values were calculated for iron in eq. (9.7). We repeat eq.(9.7) here in the form

RFE1 = 5700
$$T_e^{2.5}$$
 / (1.+ $T_e^{3.88}$) for energy window 1
2. < E < 4. keV
RFE2 = 5800 $T_e^{2.5}$ / (1.+ $T_e^{2.9}$) for energy window 2
E > 10.keV

For the other metals there are no curves like those in Fig. 9 for the partial densities of the individual ionization stages. Calculation is therefore not yet possible; the same values are taken for Ti, Cr, and Ni as for Fe.

The second part of the routine is concerned with the contributions of the individual metals. For example, according to eq. (7.8)

$$ZFE1 = \frac{n_{i}}{n_{e}} \left[Z_{iff}^{2} g_{ff}^{(i)} + R_{fb}^{(i)} \right]$$

$$= P26(J) \left[600. + RFE1 \right]$$
(22.2)

is the contribution of iron to the \S factor in the energy window 1. Here we have roughly estimated

$$z_{iff}^2 g_{ff}^{(i)} \approx 600.$$
 (22.4)

which according to Fig. 9 is probably best satisfied at 3 keV. The contributions of the other metals were similarly estimated.

The partial densities (e.g. P26) were calculated in the IMPUR routine before calling the METAL routine.

23. SESNIC SUBROUTINE

The SESNIC subroutine determines the plasma parameters from the spectral function U; see beginning of Sec. 12. The spectral function U(L,J) is obtained at the reference mesh points

$$E9(J) = DE9 + EO9$$

from Sec. 14, eq. (14.1). From it we obtain the smoothed ULG = ln U at the centres EID(M) of the smoothing intervals by calling the GLATT routine . By calling the ALPBET routine we then get the plasma parameters AL1 ... BE3, the meanings of which are shown in Sec. 12, Fig. 14. The DO-3 loop contains a temperature definition

$$T_{e} = - 1/BE3$$
 , ISN 0016

which we use because it is calculated from <u>all</u> available energy mesh points. It is not clear, however, whether this is the best temperature definition; perhaps only energy window 1 should be enlisted, i.e. $T_{\rm e} = -1/{\rm BE1}$ should be used, if, for example, BE2 is distorted by any effects (e.g. runaway electrons).

After the DO-3 loop the IMPUR routine determines the density of the metal ions Ti, Cr, Fe, Ni. For this purpose we require the electron density, which is stored therefore in COMMON /IMP/. The DO-6 loop now following is essentially for calculating the density of the oxygen ions. At the beginning the temperature TEMP is somewhat differently defined than in the DO-3 loop.

Furthermore we have

according to eq. (7.6) SH = 3 x
$$10^{11}$$
 n_e^2 / T_e ISN 0036 and according to eq. (7.5) $Z_1 = \exp(\alpha_1)/SH$ ISN 0037 and, similarly, for window 2 $Z_2 = \exp(\alpha_2)/SH$ ISN 0038

Z1 is the Υ factor in the energy window 1; Z2 is the Υ factor in the energy window 2.

The METAL routine then yields the contribution of the metals Ti, Cr, Fe, Ni to the Υ factor. As was shown in Sec. 9 for the example of Fe, the Υ factor in the energy window 1 is smaller than in energy window 2. The METAL routine therefore yields

ZME1 = metal contribution to the Υ factor in the energy window 1

and ZME2 = metal contribution to the f factor in the energy window 2.

While ZME may be about 5 to 10 for 1 to 2 o/oo Fe, the contribution of hydrogen to the \S factor is equal to the Gaunt factor and is of the order 0.5. The Gaunt factor depends on x (see eq. (7.10)); but we do not deal with this here. For each energy window we calculate with a mean x: for energy window 1 we set $x_1 = 3/\text{TEMP}$ because E = 3 keV is about the centre of energy window 1. Ignoring the x dependence of the Gaunt factor can distort the temperature by up to 10 %.

- Z81 is the contribution of oxygen to the f factor in energy window 1
- and Z82 is the contribution of oxygen to the $\ref{thm:contribution}$ factor in energy window 2.

RO is the recombination term according to Sec. 10 (ISN 0052). Strictly speaking, the statements for Z81 and Z82 should include the Gaunt factor for the hydrogen multiplied by the (unknown) partial density of the hydrogen. This has been neglected for convenience because either there are no impurities present and the partial density is then 1, or there are impurities and the error in determining \mathsection is mostly larger than the Gaunt factor $g_{\mbox{\scriptsize H}}$ itself.

R₁ in ISN 0025 is the partial density of the hydrogen without taking oxygen into account. Here we have rather arbitrarily set the ion charge number of the metal ions equal to the nucleus charge number - 2; this means that the metal ions are predominantly in a helium-like state.

We now conclude by considering the accuracy of the data and parameters calculated in SESNIC and elsewhere. α and β are reliable to a certain extent, i.e. AL1 ... BE3; the error for data with mean noise level is in T_e a few % and in S approximately 20 % or 10 %.

The metal ions are determined from the line integrals; the inaccuracy of these is, say, 20 %. Furthermore, $\langle \mathcal{E} \mathbf{v} \rangle$ from Sec. 11 appears in the calculation; $\langle \mathcal{E} \mathbf{v} \rangle$ is inaccurate by a factor of about 2 (see Fig. 13). Consequently, the metal ion density is only known to within a factor of 2. With 1 to 2 o/oo metal the metal component ZME of the \mathcal{F} factor is of the order of 5 to 10 according to Sec. 9, i.e. much larger than

the hydrogen component. It may now very well be that the f factor calculated from α according to $f = \exp(\alpha)/\mathrm{SH}$ is smaller than ZME. This is because so little is known about the constants in f and also in the METAL routine. Since f and f are reliable to a certain extent, and at least the order of magnitude of f is known - if f is 22, 24, 26, 28 - no faith should be put in the oxygen calculation performed in this section until the constants in Secs. 11 and 22 are known exactly and reliably to within a few %.

AKNOWLEDGEMENTS

The author wishes to thank D.Düchs, S.v.Goeler and S.Sesnic for helpful discussions.

REFERENCES

- /1/ S. v.GOELER, Nucl. Fus. 15 (1975), p. 301 ff.
- /2/ D. DÜCHS et al., Nucl.Fus. 17, 3 (1977), p. 579, Fig. 4 p. 581, Fig. 6
- /3/ F. POHL, IPP 6/173 (1978)

```
C TOKOMAK X-RAYS , SEGMENT M A I N P R
                                                                                                             100
ISN 0002
                       REAL #4 NE
                                                                                                             200
                                    EL(12) , ER(12)
                       DIMENSION
ISN 0003
                                                                                                             300
                       COMMON EID(47), GEW(5,12), P(6), PLOG(47), U(5,301), ULG(5,12)
ISN 0004
                                                                                                             400
                      L , DE9, E09, JMAX9, LM1, LMA, M1, MS
COMMON /GLA/ JL(12), JR(12)
COMMON /OVL/ T(20), DTN, IMAX
COMMON /IMP/ NE(5) , TE(5)
                                                                                                             500
ISN 0005
                                                                                                             600
ISN 0006
                                                                                                             700
ISN 0007
                                                                                                             800
TSN 0008
                   10 PRINT 98
                                                                                                             900
PC00 NZI
                       PRINT 90
                                                                                                            1000
ISN 0010
                       PRINT 91
                                                                                                            1100
                       READ 710, IMAX, LMA, MI, MS, NABEL, NGLA, NMAX, DE9, E09
PRINT 709, IMAX, LMA, MI, MS, NABEL, NGLA, NMAX, DE9, E09
ISN 0011
                                                                                                            1200
ISN 0012
                                                                                                            1300
ISN 2213
                       PRINT 94
                                                                                                            1400
                       READ 112, ( T(N), N=1,NMAX)
PRINT 110, ( T(N), N=1,NMAX)
ISN 0214
                                                                                                            1500
ISN 0015
                                                                                                            1600
ISN 2216
                       PRINT 93
                                                                                                            1700
ISN 0017
                       READ 112,
                                     ( EL (M), ER (M), M=1, MS)
                                                                                                            1800
                       PRINT 110, ( EL(M), ER(M), M=1,MS)
ISN 0018
                                                                                                            1900
ISN 0019
                                   M=1, MS
                                                                                                            2000
                           JL(M) = (EL(M) - E09) / DE9 + 1

JR(M) = (ER(M) - E09) / DE9
ISN 0020
                                                                                                            2100
15N 0021
                                                                                                            2200
                    2 EID(M) = 0.5* DE9*( JL(M) + JR(M)) + E09
ISN 0022
                                                                                                            2300
                             JMAX9 = JR(MS)
ISN 0023
                                                                                                            2400
                       PRINT 89
TSN 2224
                                                                                                            2500
ISN 0025
                      PRINT 92
                                                                                                            2600
ISN 0026
                                       LM1 = LMA - 1
                                                                                                            2700
                      DO 3 L=1,LM1
                    DO 3 L=1,LM1
PRINT 100, L
DO 3 I=1,IMAX
ISN 0027
                                                                                                            2800
ISN 0028
                                                                                                            2900
ISN 0029
                                                                                                            3000
                    CALL BL...
3 CONTINUE
N=2, NMAX
                       CALL BLENDE ( I , L )
ISN 0030
                                                                                                            3100
ISN 0031
                                                                                                            3200
ISN 2232
                                                                                                            3300
                     PRINT 202, N, T(N-1) , T(N)

DTN = T(N) - T(N-1)
ISN 0033
                                                                                                            3400
ISN 0034
                                                                                                            3500
                       PRINT 99
TSN 2035
                                                                                                            3600
                       READ 112, ( NE(L), L=1,LM1)
PRINT 113, ( NE(L), L=1,LM1)
ISN 0036
                                                                                                            3700
1 SN 0037
                                                                                                            3800
ISN 0038
                       PRINT 95
                                                                                                            3900
                       READ 112, ( P(L), L=1,LMA)
PRINT 112, ( P(L), L=1,LMA)
ISN 0039
                                                                                                            4000
ISN 0047
                                                                                                            4100
ISN 0041
                     00 4 L=1,LM1
                                                                                                            4200
                        PLOG(L) = ALCG(1.-(P(L)/P(LMA))**2)
ISN 0042
                                                                                                            4300
                    4 CALL OVLAP ( L . N )
ISN 0043
                                                                                                            4400
                      CALL SESNIC ( NGLA , NABEL )
ISN 0044
                                                                                                            4500
TSN 0045
                    6 CONTINUE
                                                                                                            4600
                      GO TO 10
TSN 0046
                                                                                                            4700
                   89 FORMAT(/33H FILTER- UND BLENDEN-PARAMETER: )
1 SN 0047
                                                                                                            4800
                   90 FORMAT(/32H === H A U P T P R C G R A M ===)
91 FORMAT(/70H IMAX LMA M1 MS
ISN 2248
                                                                                                            4900
                                                                               NGLA
                                                                                        NABEL
TSN 0049
                                                                                                 NM AX
                                                                                                            5000
                      1 DE9 E09)
                                                                                                            5100
                                                                     R 2
                    92 FORMAT(/113H
                                       I L
X1 X2 R
EL M=1 ER
                                                          L JMA
R1
ISN 0050
                                                                                            D
                                                                                                            5200
                     1E E0
                                                                               R3
                                                                                         0500)
                                                                                                            5300
                    93 FORMAT ( / 76H
                                                                        M=2 ER
                                                                                                M=3 E
                                                                                                            5400
ISN 0051
                                                                                         EL
                     .1R
                                       M=4 ER)
                                                                                                            5500
                                EL
                    94 FORMAT (/6H
                                        TI
                                                                                                            5600
ISN 0052
                                       PH)
ISN 0053
                   95 FORMAT (/6H
                                                                                                            5700
                  99 FORMAT (/38H NE ELECTRON DENSITY 10**13 CM-3)
100 FORMAT ( 1000 , 10H L=, 11)
110 FORMAT ( 54 )
TSN 0054
                                                                                                            5900
ISN 0055
                                                                                                            6000
ISN 0056
                  110 FORMAT ( F6.1 , 10F10.1)
112 FORMAT ( 12F6.1)
ISN 0057
                                                                                                            6100
ISN 0058
                                                                                                            6200
                                      TIME
                                                    N=, I2, 12H T(N-1)=, 1PE9.2
ISN 0059
                  202 FORMAT(/16H
                                                                                                            6300
                                                        , 12H
                                                                     T(N) = , 1PE9.2)
                                                                                                            6400
                  709 FORMAT ( 718 , 5F8.2)
710 FORMAT ( 714 , 5F4.1)
ISN 0060
                                                                                                            6500
                                                                                                            6600
ISN 0061
                                                                                                            6700
ISN 0062
```

```
SUBROUTINE BLENDE ( I , L )
COMMON /BLE/ DE(3,5) ,EO(3,5) , UO(3,5,301) , JMAX(3,5)
COMMON /OVL/ T(20) , DTN, IMAX
                                                                                                  100
TSN 0002
ISN 0003
                                                                                                  200
ISN 0004
                                                                                                  300
ISN 0005
                    READ 213, JMAX(I,L), A,B,D, DE(I,L), EO(I,L), X1, X2, R1, R2, R3
                                                                                                  400
                                                                                                  500
              C X1 = ABSTAND DER BLENDE 1 VOM DETEKTOR; DAHER X2 << X1
                                                                                                  600
                                                                                                  700
TSN 0006
                                                                                                  800
                         S1 = 3.1416 * R1**2
ISN 0007
                         S2 = 3.1416 * R2**2
                                                                                                  900
ISN 0008
                         S3 = 3.1416 * R3**2
                                                                                                 1000
ISN 0009
                         R4 = X1* (R2 -R1)/(X1 -X2) + R1
                                                                                                 1100
                         R5 = X1* (R2 +R1)/(X1 -X2) - R1
                                                                                                 1200
ISN 0010
ISN 0011
                         D2 = (X1 - X2) * * 2
                                                                                                 1300
                                            GO TO 34
ISN 2212
                    IF ( R3. LE. R4)
                                                                                                 1400
                    IF ( R3. GE. R5)
                                            GO TO 35
                                                                                                 1500
ISN 0014
                         SD = S3/X1**2 *(R5-R3)/(R5-R4) + S2/D2 *(R3-R4)/(R5-R4)
ISN 0016
                                                                                                 1600
                    GO TO 1
ISN 0017
                                                                                                 1700
ISN 0018
                 34
                        SD = S3/X1**2
                                                                                                 1800
ISN -0019
                    GO TO 1
                                                                                                 1900
ISN 0022
                 35
                        SD = S2/D2
                                                                                                 2000
                                                             DSDO = S1 * SD
ISN 0021
                  1
                                                                                                 2100
                            JMA = JMAX(I,L)
ISN 0022
                                                                                                 2200
                     00 5
ISN 0023
                              JI=1,JMA
                                                                                                 2300
ISN 0024
                    U0(1,L,JI) = ).
                                                                                                 2400
                             EN = JI * DE(I,L) + EO(I,L)
                                                                                                 2500
ISN 0225
                     IF ( EN. LE. 0.1)
                                                 GO TO 5
ISN 0026
                                                                                                 2600
                        FILTER = D*A / EN**8
ISN 0028
                                                                                                  2700
                     IF (FILTER. GE. 13.)
                                                GO TO 5
ISN 0029
                                                                                                 2800
                     UO(I,L,JI) = 12.5664 * EN *EXP(FILTER) / (DE(I,L) * DSDO)
ISN 0031
                                                                                                 2900
                                                                                                 3000
ISN 0032
                   5 CONTINUE
ISN 0033
                     PRINT 310, I,L,JMA, A,B,D, DE([,L],EO([,L], X1,X2, R1,R2,R3, DSDO
                                                                                                 3100
                                                                                                 3200
ISN 0034
                     RETURN
                310 FORMAT ( 112,216, 2F8.3, 5F8.2, 3F8.3, 1P2E10.2)
                                                                                                 3300
ISN 0035
                213 FORMAT ( 14 , 11F6.3)
                                                                                                 3400
1-SN 0036
                     END
                                                                                                 3500
ISN 0037
ISN 0002
                     SUBROUTINE SORTIR ( Q, M, LMA)
                                                                                                  100
                    DIMENSION C(6), M(6)
LM1 = LMA - 1
ISN 0003
                                                                                                  200
ISN 0004
                                                                                                  300
ISN 0005
                    00 2
                               L=1,LMA
                                                                                                  400
ISN 0006
                           M(L) = L
                                                                                                  500
ISN 0007
                    00 4
                               L=1,LM1
                                                                                                  600
ISN 0008
                              1 = L
                                                                                                  700
1SN 0009
                    00 3
                               K=L,LMA
                                                                                                  800
ISN 0010
                             MK = M(K)
                                                                                                  900
                             MI = M(I)
ISN 0011
                                                                                                 1000
                    IF ( Q(MK). LT. Q(MI))
ISN 0012
                                                                                                 1100
TSN 0014
                  3 CONTINUE
                                                                                                 1200
TSN 0015
                             ML = M(L)
                                                                                                 1300
ISN 0016
                           M(L) = M(I)
                                                                                                 1400
ISN 0017
                           M(I) = M\Gamma
                                                                                                 1500
ISN DOIS
                  4 CONTINUE
                                                                                                 1600
ISN 0019
                    RETURN
                                                                                                 1700
ISN 0020
                    END
                                                                                                 1800
```

```
ISN 0002
                    SUBROUTINE CYLAP ( L . N )
                                                                                                  100
                                  R(3,256) , RIJ , R2J , R3J
                                                                                                  200
ISN 0003
                    INTEGER #2
ISN 0004
                    RFAI #4
                                                                                                  300
ISN 0005
                    DIMENSION
                                                                                                  400
                                          UB (3,256)
                    COMMON EID(47), GEW(5,12), P(6), PLOG(47), U(5,301), ULG(5,12)
ISN 0006
                                                                                                  500
                    COMMON /GLA/ JL(12), JR(12)

COMMON /GLA/ JL(12), JR(12)

COMMON /OVL/ T(20), DTN, IMAX
                                                                                                  600
ISN 0007
                                                                                                  700
                                                                                                  800
ISN 0008
                                                                                                  900
TSN 0009
                        JWRITE = 6
                                                                                                 1000
ISN 0010
                    DO 5
                               I=1,IMAX
                                                                                                 1100
ISN 0011
                    JMA = JMAX(I,L)
READ 130, ( R(I,J) , J=1,JMA)
                                                                                                 1200
ISN 0012
ISN 0013
                                                                                                 1300
                          NWNG = 1.
ISN 0014
                                                                                                 1400
ISN 0015
                    DO 5
                               J=1,JMA
                                                                                                 1500
ISN 0016
                      UB(I,J) = UO(I,L,J) * R(I,J) * NWNG / DTN
                                                                                                1600
ISN 2217
                    00 7
                              J=1,JMAX9
                                                                                                 1700
ISN 0018
                             E9 = DE9 *J + E09
                                                                                                 1800
ISN 0019
                             SQ = 0.
                                                                                                 1900
ISN 222
                             SR = 0.
                                                                                                 2000
                             SU = 0.
ISN 0021
                                                                                                 2100
ISN 0022
                    00 6
                               I=1, IMAX
                                                                                                 2200
                            EOI = EO(I,L)
ISN 0023
                                                                                                 2300
                            DEI = DE([,L)
JI = (E9 - E)[] / DEI
ISN 0024
                                                                                                 2400
ISN 2225
                                                                                                 2500
                            JMA = JMAX(I,L)
ISN 0026
                                                                                                2600
                            JM1 = JMA - 1
                                                                                                 2700
ISN 0027
ISN 2228
                    IF ( JI. GE. JMI)
                                                                         GO TO 6
                                                                                                 2800
ISN 0030
                    IF ( JI. LE. 0)
                                                                         GO TO 6
                                                                                                 2900
                    IF ( R(I,JI). LE. O. AND. R(I,JI+1). LE. O.)

EI = DEI *JI + EOI

VR = (E9 -EI) / DEI
ISN 0032
                                                                         GO TO 6
                                                                                                3000
ISN 0034
                                                                                                3100
ISN 0035
                                                                                                 3200
TSN 0036
                             VL = 1. - VR
                                                                                                 3300
                                              R(I,JI) *VL + R(I,JI+1) *VR
                            . R T =
                                                                                                3400
ISN 0037
                             SU = SU + R[* (UB(I,JI) *VL + UB(I,JI+1) *VR)
SR = SR + RI
ISN 0038
                                                                                                 3500
ISN 0039
                                                                                                3600
                             SQ = SQ + R[ ** 2
ISN 0040
                                                                                                 3700
                    IF (JWRITE. LE. 7) GO TO 6
ISN 0241
                                                                                                 3800
                    IF ( L. NE. 1)
IF ( N. NE. 2)
ISN 0043
                                          GO TO 6
                                                                                                 3900
ISN 0045
                                          GO TO 6
                                                                                                 4000
                    IF ( J. GE. 8)
PRINT 90
ISN 2247
                                          GO TO 6
                                                                                                 4100
ISN 0049
                                                                                                 4200
ISN 0050
                    PRINT 81
                                                                                                 4300
                    ISN 0051
                                                                                                 4400
                                                                                                 4500
1 SN 0052
                  81 FORMAT(/127H
                                                                                                 4600
                    1 E09
                              RI
                                                                                                 4700
                     J[+1]
                                                                                                 4800
                 712 FORMAT ( 110, 513, F10.2, 8F8.2, 1P3E10.3)
ISN 0053
                                                                                                 4900
                  6 CONTINUE
                                                                                                 5000
ISN 0054
ISN 0055
                        U(L,J) = ).
                                                                                                 5100
ISN 0056
                       ( SR. LE. 0.)
                                            GO TO 7
                                                                                                 5200
                     IF ( SU. LE. 0.)
                                            GO TO 7
                                                                                                 5300
ISN 0058
                            RL = SQ / SR
                                                                                                 5400
1 SN 0060
$SN 0061
                     IF ( RL. LE. 0.1)
                                             GC TO 7
                                                                                                 5500
ISN 0063
                         U(L_*J) = SU / SR
                                                                                                 5600
                   7 CONTINUE
                                                                                                 5700
ISN 0064
                                                                                                 5800
              C PRINT
                     IF ( JWRITE. LE. 5)
                                               GO TO 80
                                                                                                5900
ISN 0065
                                                                                                 6000
15N 0067
                    PRINT 101, N ,L
                     PRINT 91
                                                                                                6100
ISN 0068
                                                                                                 6200
                                J=1,JMAX9
ISN 0069
                    DO 79
                            R1J = 0.
                                                                                                6300
15N 2272
                                                                                                6400
                            R2J = 0
ISN 0071
                                                                                                 6500
                            R3J = 0
ISN 0072
                           UB1J = 0.
                                                                                                6600
ISN 0073
                                                                                                 6700
                           UB2J = 0.
ISN 0074
                           UB3J = 0.
                                                                                                 6800
TSN 0075
                                                                                                6900
                             E1 = DE(1,L) *J
                                                  E0(1,L)
ISN 0076
                             E2 = DE(2,L) *J
                                                                                                 7000
                                                   E0(2,L)
ISN 0077
                             E3 = DE(3,L) *J
                                                   E0(3,L)
                                                                                                 7100
ISN 2278
                              E9 = DE9
                                           *1
                                                   E09
                                                                                                 7200
ISN 0079
                     IF ( J. GT. JMAX(1,L))
                                                   GO TO 71
                                                                                                 7300
ISN 0080
                            RIJ = R(1,J)
                                                                                                 7400
ISN 0082
                           UBIJ = UB(1,J)
                                                                                                 7500
ISN OOR3
                  71 [F ( J. GT. JMAX(2,L))
                                                   GO FO 72
                                                                                                 7600
ISN 2084
                            R2J = R(2,J)
                                                                                                 7700
ISN 0086
                           UB2J = UB(2,J)
                                                                                                 7800
ISN 0087
                                                   GO TO 79
                                                                                                 7900
ISN 2088
                  72 IF ( J. GT. JMAX(3,L))
                            R3J = R(3,J)
                                                                                                 8000
ISN 0090
                                                                                                 8100
                           UB3J = UB(3,J)
ISN 0091
                  79 PRINT 606, N,J, RLJ, E1, UB1J, R2J, E2, UB2J, R3J, E3, UB3J, E9
                                                                                                 8200
ISN 0092
                                                                                                 8300
                   1
                               , U(L,J)
                  90 FORMAT( /15H === 0 V L A P/)
                                                                                                 8400
ISN 2093
                  91 FORMAT(/122H
                                                            R(1,J)
                                                                              UB(1.J)
                                                                                          R(
                                                                                                 8500
ISN 0094
                                          N
                                                                        E1
                                   UB(2,J)
                                                 R(3,J)
                                                                  UB(3,J)
                                                                                 E9
                                                                                        U(J,
                              E2
                                                                                                 8600
                    12,J1
                                                              E3
                                                                                                 8700
                    2N1)
                                                                                                 8800
                 101 FORMAT (/21H == 0 V L A P == N=, [2, 4H L=, [1]
ISN 0095
                                                                                                 8900
ISN 0096
                 130 FORMAT ( 2413)
                 606 FORMAT ( 3110 , F8.2 , 1PE10.2 , I10 , OPF8.2 , 1PE10.2
                                                                                                 9000
 ISN 0097
                                                               OPF8.2 , 1PE10.2)
                                                                                                 9100
                   1
                                110,0PF8.2 , 1PE10.2 ,
                                                                                                 9200
                  80 RETURN
15N 0098
```

15N 0099

END

9300

```
SUBROUTINE SESNIC ( NGLA , NABEL )
                                                                                                              100
TSN 0002
                                 N1. NR, N22, N24, N26, N28, NE
                                                                                                              200
TSN 0003
                       RFAI #4
                      DIMENSION E(47), G(47), V(47), ZMEL(5), ZME2(5)
COMMON EID(47), GEW(5,12), P(6), PLOG(47), U(5,301), ULG(5,12)
                                                                                                              300
TEN 0004
                                                                                                              400
TSN 0005
                                 DE9, E09, JMAX9, LM1, LMA, M1, MS
                                                                                                              500
                       COMMON /SES/ AL1(5), BE1(5), N1(5), N24(5), S1(5), T1(5), Z1(5), AL2(5), BE2(5), N8(5), N26(5), S2(5), T2(5), Z2(5)
ISN 0006
                                                                                                              600
                                                                                                              700
                      COMMON /MET/ P1(5), P8(5), P22(5), P24(5), P26(5), P28(5)

COMMON /IMP/ NE(5), TE(5)

DO 1 L=1.1 M1
                                                                                                              800
                                                                                                              900
                                                                                                             1000
ISN 0007
ISN 2008
                                                                                                             1100
                       DO 1
ISN 0009
ISN 0010
                     1 CALL GLATT ( L , NGLA )
                                                                                                             1300
ISN 2211
                                                                    M2 = M1 + 1
                                                                                                             1400
                       CALL ALPBET( AL1 , BE1 , 1 , M1 , NABEL)
CALL ALPBET( AL2 , BE2 , M2, MS , NABEL)
                                                                                                             1500
ISN 0012
                                                                                                             1600
ISN 0013
                       CALL ALPRET( AL3 , BE3 , 1 , MS , NABEL)
                                                                                                             1700
ISN 0014
ISN 0015
                       00 3
                                  L=1,LM1
                                                                                                             1800
                             TE(L) = - 1./ BE3(L)
ISN 2216
                                                                                                             1900
ISN 0017
                     3 CONTINUE
                                                                                                             2000
ISN 0018
                       CALL IMPUR ( 4.5 , N22 , P22 , 22. , NABEL)
                                                                                                             2100
ISN 0019
                       CALL IMPUR ( 5.5 , N24 , P24 , 24. , NABEL)
                                                                                                             2200
                       CALL IMPUR ( 6.5 , N26 , P26 , 26. , NABEL)
                                                                                                             2300
ISN 0020
ISN 0021
                       CALL IMPUR ( 7.5 , N28 , P28 , 28. , NABEL)
                                                                                                             2400
                              L=1,LM1
                                                                                                             2500
ISN 0022
                             Z1(L) = -11.

Z2(L) = -22.
ISN 0023
                                                                                                             2600
                                                                                                             2700
ISN 2224
                                R1 = 1.- 20.*P22(L) - 22.*P24(L) - 24.*P26(L) - 26.*P28(L)
                                                                                                             2800
ISN 0025
                             P8(L) = 0.
                                                                                                             2900
TSN 0026
                                                                                                             3000
ISN 0027
                             D8(1) = C.
ISN 0028
                             N8(L) = 0.
                                                                                                             3100
ISN 0029
                             P1(L) = R1
                                                                                                             3200
                       IF ( BEI(L). GE. -0.001)
                                                                                                             3300
ISN 0032
                       TEMP = -1. / BE1(L)

IF ( BE2(L). GE. -C.001) GO TO 4

TEMP = -2. / ( BE1(L) + BE2(L))
ISN 0032
                                                                                                             3400
ISN 2233
                                                                                                             3500
                                                                                                             3600
ISN 0035
                                 SH = 3.03E+11 * NE(L)**2 / SQRT( TEMP)
                                                                                                             3700
ISN 0036
                             Z1(L) = EXP( AL1(L)) / SH
Z2(L) = EXP( AL2(L)) / SH
                                                                                                             3800
ISN 0037
                                                                                                             3900
1 SN 0038
                       CALL METAL ( TEMP , ZMEI(L), ZMEZ(L), L )
X1 = 3. / TEMP
                                                                                                             4000
15N 2039
                                                                                                             4100
15N 0040
                                X2 = 11. / TEMP

GH1 = 1.2 * (0.5 + X1)**(-0.45) * TEMP**(-0.07 -0.01* X1)

GH2 = 1.2 * (0.5 + X2)**(-0.45) * TEMP**(-0.07 -0.01* X2)
                                                                                                             4200
TSN 0041
                                                                                                             4300
ISN 0242
                                                                                                             4400
TSN 0043
                                Z81 = Z1(L) - ZME1(L) - GHI
                                                                                                             4500
15N 0044
                                282 = Z2(L) - ZME2(L) - GH2
                                                                                                             4600
 ISN 0045
                                P12 = R1
                                                                                                             4700
ISN 0046
                       IF ( Z81. LE. 7.)
IF ( Z82. LE. 0.)
                                                                                                             48C0
 ISN 2247
                                                   GC TO 5
                                                   GO TO 5
                                                                                                             4900
 ISN 0049
                                 X0 = 0.87 / TEMP
                                                                                                             5000
 ISN 0051
                                RO = 120.* \times O * EXP( \times O)
GO1 = 1.38 * (0.5 + \times 1) **(-0.16 * TEMP**0.35)
GO2 = 1.38 * (0.5 + \times 2) **(-0.16 * TEMP**0.35)
                                                                                                             5100
 ISN 0052
                                                                                                             5200
 ISN 0053
 ISN 0754
                                                                                                             5300
ISN 0055
                             P8(L) = ZA1 / (64.*GO1 + RO)
                                                                                                             5400
                               P82 = Z82 / (64.*G02 + RO)
                                                                                                             5500
ISN 0056
                             P1(L) = r1 - 8.*P8(L)

P12 = R1 - 8.*P82
                                                                                                             5600
ISN 0057
ISN OUSR
                                                                                                             5700
                             N8(L) = P8(L) * NE(L)
                                                                                                             5800
ISN 0059
                             D8(L) = P82
                                             * NE(L)
                                                                                                             5900
ISN 0060
                             N1(L) = P1(L) * NE(L)
                                                                                                             6000
ISN 0061
ISN 0062
                             D1(L) = P12
                                              * NE(L)
                                                                                                             6100
 ISN 0263
                     6
                             TE(L) = TEMP
                                                                                                             620C
                C PRINT
                                                                                                             6300
                     PRINT 98
                                                                                                             6400
ISN 0064
                                                                                                             6500
 ISN 0065
                        PRINT 90
ISN 0.066
                        PRINT 83
                                                                                                             6600
ISN 2267
                       PRINT 113,
                                       ( P(L) , L=1,LMA)
                                                                                                             6700
                       PRINT 84
                                                                                                             6800
 ISN 0068
                                                                                                             6900
 ISN 0069
                      PRINT 113,
                                       (TE(L) , L=1,LM1)
                       PRINT 85
                                                                                                             7000
 ISN 2272
                        PRINT 113,
                                       (NE(L) , L=1,LM1)
                                                                                                             7100
 ISN 0071
                        PRINT 87
                                                                                                             7200
 ISN 0072
                        PRINT 901.
                                                                                                             7300
                                       ( N1(L), L=1,LM1)
 ISN 0073
                                       ( D1(L), L=1,LM1)
                        PRINT 901,
                                                                                                             7400
 ISN 0074
                                       ( N8(L), L=1,LM1)
                       PRINT 908.
                                                                                                             7500
 TSN 2275
                                                                                                             7600
 ISN 0076
                        PRINT 908.
                                       ( D8(L), L=1,LM1)
                        PRINT 908,
                                        ( D8(L), L=1,L41)
                                                                                                             7700
 ISN 0077
                                       (N22(L), L=1,LM1)
                                                                                                             7800
                       PRINT 922.
 ISN 2278
                                                                                                             7900
                        PRINT 924.
                                        (N24(L), L=1,LM1)
 ISN 0079
                        PRINT 926.
                                                                                                             8000
 ISN 0080
                                        (N26(L), L=1,LM1)
                                                                                                             8100
                        PRINT 928,
                                       (N28(L), L=1,LM1)
 ISN 0081
                                                                                                             8200
                        PRINT 89
 ISN 0082
                                   M=1, MS
                                                                                                             8300
 ISN 0083
                        DO 11
                   11 PRINT 110, EID(M), ( ULG(L,M) , L=1,LM1)
                                                                                                             8400
 TSN 0084
```

```
ISN 0085
                              PRINT 91
                                                                                                                                                  8500
ISN 0086
                              PRINT 113,
                                                   (AL1(L), L=1,LM1)
                                                                                                                                                  8600
                               PRINT 113,
                                                    (AL2(L), L=1,LM1)
                                                                                                                                                  8700
ISN 0088
                              PRINT 113,
                                                   (AL3(L), L=1,LM1)
                                                                                                                                                  8800
                              PRINT 92
ISN 0089
                                                                                                                                                  8900
ISN 0090
                              PRINT 113,
                                                   (BE1(L), L=1,LM1)
                                                                                                                                                  9000
                                                   (BE2(L), L=1,LM1)
ISN 0091
                              PRINT 113,
                                                                                                                                                  9100
                                                 (BE3(L), L=1,LM1)
ISN 0092
                              PRINT 113,
                                                                                                                                                 9200
                              PRINT 93
PRINT 113,
PRINT 113,
TSN 0093
                                                                                                                                                  9300
                                                 ( Z1(L), L=1,LM1)
( Z2(L), L=1,LM1)
15N 0094
                                                                                                                                                  9400
ISN 0095
                                                                                                                                                  9500
ISN 0096
                              PRINT 94
                                                                                                                                                  9600
                              PRINT 113, (ZME1(L), L=1,LM1)
PRINT 113, (ZME2(L), L=1,LM1)
ISN 0097
                                                                                                                                                  9700
ISN 0098
                                                                                                                                                 9800
ISN 0099
                              RETURN
                                                                                                                                                 9900
                                                                                   POSITIONS
ISN 0100
                         83 FORMAT (/50H
                                                                              P
                                                                                                                                               10000
ISN 0101
                          84 FORMAT(/57H
                                                                            TE
                                                                                    ELECTRON TEMPERATURE
                                                                                                                                                10100
                          95 FORMAT(/50H
                                                                                    ELECTRON DENSITY
                                                                                                                                               10200
ISN 0102
                                                                            NE
                                                                                     ION DENSITIES (10**13 CM-31)
ISN 0103
                          87 FORMAT(/50H
                                                                             NI
                                                                                                                                                10300
                          87 FORMAT(/50H
89 FORMAT(/38H EID
ISN 2124
ISN 0105
                          90 FORMAT (/18H ===== S E S N I C)
                          91 FORMAT (/42H
ISN 0106
                                                                             AL
                          92 FORMAT ( / 42H
TSN 0107
                                                                            BE
                                                                                                                     )
                                                                                   ZETA-FACTOR
TSN 0108
                          93 FORMAT (/42H
                                                                             7
                         94 FORMAT(/50H
                                                                            ZME ZETA-FACTOR, METAL PART
                                                                                                                                                10900
ISN 0109
                          98 FORMAT( 1H1)
                                                                                                                                                11000
TSN 0110
                       110 FORMAT( 12F10.3)
                                                                                                                                                11100
ISN 0111
                                                                                                                                                11200
                        113 FORMAT( F20.3 , 10F10.3)
ISN 0112
                       901 FORMAT( 10H 1 ,10F10.3)
908 FORMAT( 10H 8 .10F10.3)
                                                                                                                                                11300
ISN 0113
                                                              8 ,10F10.3)
                                                                                                                                                11400
                        908 FORMATI 10H
ISN 0114
                        922 FORMAT( 10H 22 :10F10.3)
924 FORMAT( 10H 24 :10F10.3)
926 FORMAT( 10H 26 :10F10.3)
928 FORMAT( 10H 28 :10F10.3)
FNN
ISN 0115
ISN 0116
                                                                                                                                                11700
ISN 0117
                                                                                                                                                11800
ISN 2118
                                                                                                                                                11900
                                END
ISN 0119
                               SUBROUTINE METAL ( TEMP, ZME1, ZME2, L)

COMMON /MET/ P1(5), P8(5), P22(5), P24(5), P26(5), P28(5)

RTI1 = 5700. * TEMP**2.5 / (1. + TEMP**3.88)

RTI2 = 58C0. * TEMP**2.5 / (1. + TEMP**2.9)

RCR1 = 5700. * TEMP**2.5 / (1. + TEMP**3.88)

RCR2 = 5800. * TEMP**2.5 / (1. + TEMP**3.88)

RFE1 = 5700. * TEMP**2.5 / (1. + TEMP**3.88)

RFE2 = 5800. * TEMP**2.5 / (1. + TEMP**3.88)

RNI1 = 5700. * TEMP**2.5 / (1. + TEMP**3.88)

RNI2 = 5800. * TEMP**2.5 / (1. + TEMP**3.88)

RNI2 = 5800. * TEMP**2.5 / (1. + TEMP**3.88)

RNI2 = 5800. * TEMP**2.5 / (1. + TEMP**3.88)

RNI2 = 5800. * TEMP**2.5 / (1. + TEMP**3.88)

RNI2 = 5800. * TEMP**2.5 / (1. + TEMP**3.88)

RNI2 = 7800. * TEMP**2.5 / (1. + TEMP**2.9)

ZTI1 = P22(L) * (500. + RTI1)

ZTI2 = P24(L) * (550. + RCR1)

ZCR2 = P24(L) * (550. + RCR2)

ZFE1 = P26(L) * (600. + RFE1)

ZFE2 = P26(L) * (600. + RFE1)

ZNI1 = P28(L) * (620. + RNI1)

ZNI2 = P28(L) * (620. + RNI1)

ZME1 = ZTI1 + ZCR1 + ZFE1 + ZNI1

ZME2 = Z*I2 + ZCR2 + ZFE2 + ZNI2
                                                                                                                                                   100
                                SUBROUTINE METAL ( TEMP, ZME1, ZME2, L)
 ISN 0002
                                                                                                                                                   200
 ISN 0003
                                                                                                                                                   300
 TSN 0004
                                                                                                                                                   400
 ISN 0005
                                                                                                                                                   500
 ISN 0006
                                                                                                                                                   600
 ISN 0007
                                                                                                                                                   700
 ISN 0228
 ISN 0009
                                                                                                                                                   800
                                                                                                                                                    900
 TSN 0010
                                                                                                                                                  1000
 ISN 9911
                                                                                                                                                  1100
 TSN 0012
                                                                                                                                                  1200
 ISN 0013
                                                                                                                                                  1300
 ISN 0014
                                                                                                                                                  1400
 15N 0015
                                                                                                                                                  1500
 15N 2216
                                                                                                                                                  1600
 TSN 0017
                                                                                                                                                  1700
 15N 0018
                                                                                                                                                  1800
 ISN 2219
                                                                                                                                                  1900
 TSN 0020
                                                                                                                                                  2000
 1SN 2021
                                                                                                                                                  2100
                               RETURN
 ISN 0022
                                                                                                                                                  2200
 ISN 0023
                                FND
                                                                                                                                                   100
                               SUBROUTINE LSTSC ( AL, BE, E, G, V, JMA)
ISN 0002
                               DIMENSION E(47) , G(47) , V(47)
ISN 0003
                                         A11 = 0.
                                                                                                                                                   300
I'SN 0004
                                           A12 = 0.
                                                                                                                                                   400
ISN 0005
                                           A22 = 0.
                                                                                                                                                   500
ISN 0006
                                            B1 = 0.
ISN 0007
                                            B2 = 0.
                                                                                                                                                   700
ISN 0008
                              DO 4 J=1,JMA

IF ( G(J). LE. 0.001)

IF ( V(J). LE. -700.)
ISN 0009
                                                                      GO TO 4
                                                                                                                                                   900
ISN 0010
                                                                        GO TO 4
                                                                                                                                                  1000
ISN 2012
                                           A11 = A11 + G(J)
                                                                                                                                                 1100
ISN 0014
                                           A12 = A12 + G(J) + E(J)
                                                                                                                                                 1200
ISN 0015
                                           A22 = A22 + G(J) * E(J)**2

B1 = B1 + G(J) * V(J)

B2 = B2 + G(J) * V(J) * E(J)
                                                                                                                                                 1300
ISN 0016
                                                                                                                                                 1400
ISN 0017
                                                                                                                                                  1500
ISN 0018
                                                                                                                                                  1600
 ISN 0019
                           4 CONTINUE
                              D = A11 *A22 - A12**2

IF ( A8S(D). LT. 1.E-6) GO TO 7

BE = (82 *A11 - 81*A12) / D

AL = (81 *A22 - 82*A12) / D
                                                                                                                                                  1700
ISN 0020
                                                                                                                                                  1800
 ISN 2221
                                                                                                                                                  1900
 ISN 0023
                                                                                                                                                  2000
 ISN 0024
                                                                                                                                                  2100
                              RETURN
 ISN 0025
                                            AL = - 444.
BE = 222.
                                                                                                                                                  2200
ISN 0026
                                                                                                                                                  2300
ISN 0027
                                                                                                                                                  2400
                              RETURN
 ISN 0028
                                                                                                                                                  2500
                            END
ISN 0029
```

```
SUBROUTINE ALPBET ( AL, BE, ML, MR, NABEL)
DIMENSION AL(5), BE(5), D(6), E(47), F(6), F[D(5,12),G(47), V(47)
COMMON EID(47), GEW(5,12), P(6), PLOG(47), U(5,301), ULG(5,12)

1 , DE9, EC9, JMAX9, LM1, LMA, M1, MS
COMMON /ITE/ ALP(5), BET(5), C, H
COMMON /ALB/ FP(5,12), UP(5,12)
ISN 0002
                                                                                                                100
ISN 0003
                                                                                                                200
ISN 0004
                                                                                                                300
                                                                                                                400
ISN 0005
                                                                                                                500
TSN 2006
                                                                                                                600
                          JWRITE = 0
ISN 0007
                                                                                                                700
                       IF (JWRITE. LE. 1)
                                                 GO TO 2
T SN 0008
                                                                                                                800
ISN 0012
                       PRINT 90
                                                                                                                900
                       PRINT 89
ISN 0011
                                                                                                              1000
ISN 0012
                       DO 1
                                   M=ML,MR
                                                                                                               1100
ISN 2213
                     1 PRINT 113, EID(M), ( ULG(L,M) , L=1,LM1)
                                                                                                               1200
                    2 DO 3 L=1,LM1
DO 3 M=ML,MR
ISN 0014
                                                                                                               1300
                                                                                                               1400
ISN 0015
                        FP(L_{\phi}M) = 0.
UP(L_{\phi}M) = 0.
ISN 0016
                                                                                                               1500
ISN 0017
                                                                                                               1600
                      IF (NABEL. GE. 3) GO TO 7

CALL ITERAT ( ML , MR )

IF ( JWRITE. LE. 1) GO TO 5
ISN 0018
                                                                                                               1700
ISN 0020
ISN 0021
                                                                                                               1900
                       PRINT 86
                                                                                                              2000
ISN 0023
                       DO 4
                                   M=ML, MR
                                                                                                              2100
15N 0024
                     4 PRINT 109, EIC(M), (FP(L,M), L=1,LM1)
5 DO 6 L=1,LM1
AL(L) = ALP(L)
6 BE(L) = BET(L)
IF (NABEL LE 1) RETURN
                                                                                                               2200
ISN 2225
ISN 2026
                                                                                                              2300
ISN 0027
                                                                                                               2400
                                                                                                               2500
TSN 0028
                                                                                                               2600
ISN 0029
                     7 DO 9 M=ML,MR
DO 8 L=1,LM1
D(L) = 0.
                                                                                                               2700
ISN 0031
ISN 0032
                                                                                                               2800
                                                                                                               2900
ISN 0033
                     IF ( ULG(L,M). LE. -100.) GO TO 8
                                                                                                               3000
15N 2234
                               D(L) = EXP(ULG(L,M)) - UP(L,M)
ISN 0036
                                                                                                              3100
ISN 0037
                     8 CONTINUE
                                                                                                               3200
                     ISN DOBR
                                                                                                               3300
I'SN 0039
                                                                                                               3400
ISN 0040
                                                                                                               3500
                       IF (
                               FD = F(L) + FP(L,M)
FD. LE. 1.E-7)
ISN 0041
                                                                                                               3600
                                                    GO TO 9
ISN 0042
                                                                                                               3700
ISN 0044
                         FID(L,M) = ALCG( FD)
                                                                                                               3800
                     9 CONTINUE
                                                                                                              3900
ISN 0045
                                                                                                               4000
ISN 0046
                       00 11
                                    L=1,LM1
                                  MC = 0
NS = MR - ML + 1
ISN 2247
                                                                                                               4100
ISN 0048
                                                                                                              4200
                                M=ML, MR
N = M - ML + 1
                        DO 10
                                                                                                               4300
ISN 0049
                                                                                                               4400
15N 0050
                               E(N) = EID(M)
                                                                                                               4500
ISN 0051
                               G(N) = 0.
                                                                                                               4600
ISN 2252
ISN 0053
                               V(N) = FID(L,M)
                                                                                                               4700
                        [F ( FID(L, M) . LE. -100.) GO TO 10
                                                                                                               4800
ISN 0054
                                  MC = MC + 1
                                                                                                               4900
 ISN 0056
                               G(N) = 1.
                                                                                                               5000
ISN 0057
15N 0058
                    10 CONTINUE
                                                                                                               5100
 ISN 0059
                              AL(L) = - 99.
                                                                                                               5200
                              BE(L) = -555.
                                                                                                               5300
ISN 0060
                                                                                                               5400
                                                 GC TO 11
                        IF ( MC. LE. 1)
ISN 0061
                                                                                                               5500
                        CALL LSTSQL ALPHA , BETA , E , G , V , NS)
 ISN 0063
                              AL(L) = ALPHA
                                                                                                               5600
 15N 0064
                              BE(L) = BETA
                                                                                                               5700
 TSN 0045
                                                                                                               5800
                    11 CONTINUE
 ISN 0266
                        IF ( JWRITE. LE. 1) RETURN
                                                                                                               5900
 ISN 0067
                        PRINT 101, MC
                                                                                                               6000
 ISN 0069
                        PRINT 94
                                                                                                               6100
 ISN 0072
                        PRINT 109, ( AL(L), L=1,LM1)
PRINT 95
                                                                                                               6200
 ISN 0071
                                                                                                               6300
 ISN 2072
                    PRINT 95
PRINT 109, ( BE(L), L=1,LM1)
86 FORMAT(/38H EID
                                                                                                               6400
 ISN 0073
                                                              FC
                                                                                                               6807
 ISN 0074
                                                                                                               6900
                     89 FORMATI/38H
                                                 EID
                                                              ULG
 ISN 0275
                     90 FORMAT (/16H === A L P B E T)
                                                                                                               7000
 ISN 0076
                                                                                                               7001
                     94 FOR MATE (/12H ALPHA)
 ISN 0077
                                             BETAI
                                                                                                               7007
                     95 FORMATI/12H
 ISN 0078
                                                                                                               7013
                   101 FORMAT(/12H
                                                MC = . [3]
 ISN 0079
                   109 FORMAT( F12.2 , 1P10E10.2)
113 FORMAT( F12.2 , 11F10.2)
                                                                                                               7100
 ISN 2082
                                                                                                               7200
 ISN 0081
                                                                                                               7300
                        RETURN
 ISN 0082
                                                                                                               7400
 ISN 0083
                        END
```

```
SUBROUTINE ABEL ( F, P, U, N, NABEL)
ISN 0002
                                                                                                   100
                     DIMENSION F(6), FS(6), P(6), Q(6), QS(6), U(6), US(6), MA(6)
ISN 0003
                                                                                                   200
                             L=1,N
ISN 0004
                                                                                                   300
                          F(L) = 0.

FS(L) = 0.
TSN 0005
                                                                                                    400
ISN 0006
                                                                                                   500
ISN 0007
                            Q(L) = P(L)**2
                  1
                                                                                                   600
                            U(N) = 0.
TSN 0008
                                                                                                    700
                     CALL SORTIR ( Q, MA, N)
ISN 0009
                                                                                                   800
ISN 0010
                             NG = 0
                                                                                                   900
ISN 0011
                     DO 2
                              L=1,N
                                                                                                   1000
ISN 0012
                               J = MA(L)
                                                                                                   1100
ISN 0013
                     IF ( ABS( U(J)). GE. 1.E-5)
                                                              NG = NG + 1
                                                                                                   1200
ISN 0015
                          US(L) = U(J)
                                                                                                   1300
ISN 0016
                          QS(L) = Q(J)
                                                                                                   1400
ISN 0017
                     IF ( NG. LE. 1)
                                               RETURN
                                                                                                   1500
                               K=1,NG
ISN 0019
                     00 6
                                                                                                   1600
                              SU = 0.
ISN 0020
                                                                                                   1700
ISN 0021
                     00 5
                               L=K,NG
                                                                                                   1800
                     IF ( NABEL.
                                    GE.
ISN 0022
                                            51
                                                      GO TO 3
                                                                                                  1900
                    IF ( US(L).
                                    LE. 1.E-8)
                                                      GO TO 3
                                                                                                  2000
ISN 0024
ISN 0026
                                                                                                  2100
ISN 0028
                                                                                                  2200
ISN 0030
                                                                                                   2300
ISN 0031
                                                                                                  2400
ISN 0032
                                                                                                  2500
ISN 0033
                                                                                                  2600
                                                                                                  2700
ISN 0034
ISN 0035
                                                                                                  2800
                              DF = 0.56419 * WE * (ERFC( A2) - ERFC( A1))
ISN 0036
                                                                                                  2900
                     GO TO 5
ISN 0037
                                                                                                  3000
                              QL = (US(L+1) - US(L)) / (CS(L+1) - QS(L))
ISN 0038
                   3
                                                                                                  31CC
                              W2 = SQRT(QS(L) - QS(K))
W1 = SQRT(QS(L+1) - QS(K))
15N 0039
                                                                                                  3200
ISN 0'040
                                                                                                  3300
                              DF = 0.63662 * QL * (W2 -W1)
ISN 0041
                                                                                                  3400
                          SU = SU + DF

FS(K) = SU
ISN 0042
                                                                                                  3500
ISN 0043
                                                                                                  3600
                     00 7 L=1,N
15N 0044
                                                                                                  3700
ISN 0045
                               J = MA(L)
                                                                                                  3800
ISN 0046
                           F(J) = FS(L)
                                                                                                  3900
ISN 0047
                          JWRITE = 0
                                                                                                  4000
                IF (JWRITE. LE. 1) RETURN
PRINT 111, ( U(L), L=1,5) , ( F(L), L=1,5)
111 FORMAT ( 1P11E10.2)
ISN 0048
                                                                                                  4100
ISN 0050
                                                                                                  4200
1SN 0051
                                                                                                  4300
ISN 2252
                     RETURN
                                                                                                  4400
ISN 0053
                     END
                                                                                                  4500
                                                                                                   100
ISN 0002
                     SUBROUTINE AZRUT ( AZ, C, H, X)
                                                                                                   200
ISN 0003
                              AA = C+ H*X
                              E = 0.5 + G.46/(1.+H) + 0.03*C

XA = 1.8 * X**E * H**2 / (1.+ 0.83*H)

Z = H / (1.+ (C+H)/XA)
                                                                                                   300
ISN 0004
                                                                                                   400
ISN 0005
                                                                                                   500
ISN 0006
                                                                                                   600
                              AZ = 1.+ (1.+ 0.273*(AA+1.)/(AA+1.17)) *AA + Z
ISN 0007
                                                                                                   700
ISN 0008
                     RETURN
                                                                                                   800
1SN 0009
                     END
```

```
ISN 0002
                                                                                               100
ISN 0003
                                                                                               200
ISN 0004
                                                                                               300
                   1
                                                                                               400
ISN 0005
                                                                                               500
ISN 0006
                                                                                               600
                            H = 2.
ISN 0007
                                                                                               700
ISN 0008
                             C = 2.
                                                                                               800
ISN 0009
                           ALG = 0.693 + ALOG(P(LMA))
                                                                                               900
ISN 0017
                    00 1
                             L=1,LM1
                                                                                              1000
                         TL(L) = -714.
AL(L) = -714.
ISN 0011
                                                                                              1100
ISN 0012
                                                                                              1200
ISN 0013
                         GE(L) = 0.
                                                                                              1300
ISN 0014
                       BET(L) = - 1.
                                                                                              1400
ISN 0015
                    DO 6
                            IT=1.3
                                                                                              1500
ISN 0016
                            LC = 0
                                                                                              1600
ISN 0017
                    DO 4
                              L=1, LM1
                                                                                              1700
ISN 0018
                        GE(L) = 0.
                                                                                              1800
ISN 0019
                            MC = 0
                                                                                              1900
                            NS = MR - ML + 1
ISN 0020
                                                                                              2000
                           M=ML,MR
N = M - ML + 1
ISN 2221
                    DO 2
                                                                                              2100
TSN 0022
                                                                                              2200
                          E(N) = EID(M)
ISN 0023
                                                                                              2300
                          W(N) = -700.
ISN 0024
                                                                                              2400
                          G(N) = 0.
ISN 0025
                                                                                              2500
                    IF ( ULG(L,M). LE. -400.)
15N 2226
                                                   GO TO 2
                                                                                              2600
                            MC = MC + 1

X = - EID(M) * BET(L)
ISN 0028
                                                                                              2700
TSN 0029
                                                                                              2800
                   IF ( X. LE. G.CO1).
CALL AZRUT ( AZ, C, H, X)
                                                    GO TO 2
ISN 2232
                                                                                              2900
ISN 0032
                                                                                              3000
                         G(N) = GEW(L_*M)

GE(L) = GE(L) + G(N)
ISN 0033
                                                                                              3100
ISN 0034
                                                                                              3200
                          W(N) = ULG(L,M) + 0.5*( ALOG( AZ) - PLOG(L)) - ALG
ISN 0035
                                                                                              3300
ISN 2236
                  2 CONTINUE
                                                                                              3400
                            LC = LC + 1
ISN .0037
                    IF ( MC. LE. 1)
                                                                                              3500
ISN 0039
                                                                                              3600
                    CALL LSTSQ ( ALPHA, BETA, E, G, W, NS)

IF ( BETA, GE, O.) GO TO 3
15N 9242
                                                                                              3700
ISN 0041
                                                                                              3800
                         TL(L) = - ALOG( - BETA)
ISN 0043
                                                                                              3900
ISN 0044
                         AL(L) = ALPHA
                                                                                              4000
ISN 0045
                        BET(L) = BETA
                                                                                              4100
ISN 2046
                    GO TO 4
                                                                                              4200
                    BET(L) = -44.44
                                                                                              4300
ISN 0047
ISN 0048
                         GE(L) = 0.
                                                                                              4400
                  4 CONTINUE
                                                                                              4500
ISN 2249
ISN 0050
                                                                                              4600
                             H = 2.
ISN 0051
                   IF ( LC. LE. 1) GO TO 6

CALL LSTSQ ( TLOG , H , PLOG , GE, TL , LM1 )

CALL LSTSQ ( SLOG , C , PLOG , GE, AL , LM1 )
ISN 0052
                                                                                              4800
ISN 0054
ISN 2055
                                                                                              5000
                    IF ( H. LE. 0.)
                                             H = 2.
ISN 0056
                                                                                              5100
                    IF ( C. LE. 0.)
ISN 0058
                                                                                              5200
                  6 CONTINUE
ISN 0060
                                                                                              5300
                    00 7
                              L=1,LM1
                                                                                              5400
ISN 0061
                        ALP(L) = AL(L)
                                                                                              5500
ISN 0062
                            ER = 0.
                                                                                              5600
ISN 2263
                            SU = C.
                                                                                              5700
ISN 0064
                            M=ML,MR
                                                                                              5800
TSN 0065
                    B D0
                    DO 8
                              L=1,L41
                                                                                              5900
ISN 2266
                    · FP(L,M) = EXP( ALP(L) + BET(L) *EID(M))
                                                                                              6000
ISN 0067
                            X = - EID(4) * BET(L)
                                                                                              6100
ISN 0068
                    ISN 0069
ISN 0070
                    6500
ISN 0071
ISN 0073
ISN 0075
                            SU = SU + 1.
                                                                                              6800
ISN 0076
                                                                                              6900
                  8 CONTINUE
ISN 0077
                                                                                              7000
                        JWRITE = 0
ISN 0078
                    IF ( JWRITE - LE - 1 ) RETU
ERROR = - 77.
IF ( SU - LE - 0 ) GO TO 9
                                             RETURN
                                                                                              7100
ISN 0079
                                                                                              7200
ISN 0081
                  IF ( SU. LE. 0)

ERROR = ER / SU

9 PRINT 101, ERROR
                                                                                              7300
ISN 0082
                                                                                              7400
ISN 0084
                                                                                              7500
ISN 2285
                101 FORMAT (/27H === I T E R A T: ERROR =, 1PE9.2)
                                                                                              7600
ISN 0086
                                                                                              7700
ISN 0087
                    RETURN
                                                                                              7800
ISN 0088
                    END
```

```
SUBROUTINE IMPUR ( EI , NI , PI , Z , NABEL)
ISN 0002
                                                                                                             100
                      REAL*4 K(6), NI(5), NE
DIMENSION .PI(5), UK(6)
COMMON EID(47), GEW(5,12), P(6), PLOG(47), U(5,301), ULG(5,12)
ISN 0003
                                                                                                             200
ISN 0004
                                                                                                             300
ISN 0005
                                                                                                             400
                      COMMON /ITE/ AL3(5) , TE(5) . C, H

COMMON /ITE/ NE(5) , TE(5) . C, H

COMMON /ITE/ NE(5) , TE(5) . C, H
                                                                                                             500
                     1
ISN 0006
                                                                                                             600
ISN 0007
                                                                                                             700
                               JLI = ( EI - 0.4 - E09) / DE9

JRE = ( EI + 0.4 - E09) / DE9

N = 0.21 / DE9 + 1
I SN 0008
                                                                                                             800
ISN 0009
                                                                                                             900
ISN 0010
                                                                                                            1000
ISN 0011
                           JWRITE = 7
                                                                                                            1100
                       IF ( JWRITE. LE. 1)
ISN 0012
                                                  GO TO 1
                                                                                                            1200
ISN 0014
                       PRINT 90
                                                                                                            1300
ISN 0015
                       PRINT 91
                                                                                                            1400
                                  L=1,LM1
                                                                                                            1500
ISN 0016
                    1 00 4
                             NI(L) = 0.
                                                                                                            1600
ISN 0017
ISN 0018
                             PI(L) = 0.
                                                                                                            1700
                                UL = 0.
UR = 0.
ISN 0019
                                                                                                            1800
                                                                                                            1900
ISN 0020
ISN 0021
                      DO 2
                                  M=1,N
                                                                                                            2000
                               JLN = JLI - M + 1
                                                                                                            2100
ISN 0022
                               JRN = JRE + N - 1
                                                                                                            2200
TSN 0023
                                UL = UL + U(L,JLN)

UR = UR + U(L,JRN)

UC - SQRT( UL*UR) / FLOAT( N)
                                                                                                            2300
ISN 0024
                                                                                                            2400
15N 0025
                    2
                                                                                                            2500
ISN 0026
                                 SU = 0.
                                                                                                            2600
ISN 0027
                                                                                                            2700
                                  J=JLI,JRE
                       00 3
ISN 0028
                          SU = SU .
UK(L) = SU * DE9
                                                                                                            2800
                    3
                                                  + U(L,J) - UC
TSN 0029
                                                                                                            2900
ISN 0030
                       IF ( JWRITE. LE. 1) GO T
JM = 0.5*( JLI +JRE)
                                                   GO TO 4
                                                                                                            3000
ISN 2231
                                                                                                            3100
ISN 0033
                       PRINT 310, L, JLI, JRE, JM, N, EI, UL, UR , UC, UK(L), U(L,JLI)
                                                                                                            3200
ISN 0034
                                                                            , U(L,JM) , U(L,JRE)
                                                                                                            3300
                      1
                     4 CONTINUE
ISN 0035
                                                                                                            3400
                       IF ( NABEL. LE. 2 ) GO TO 6
                                                                                                            3500
ISN 0036
                       CALL ABEL( K, P, UK, LMA, NABEL)
                                                                                                            3600
ISN 0038
ISN 0039
                       GO TO 8
                                                                                                            3700
                                                                                                            3800
154 0047
                     6 DO 7
                                   L=1,LP1
                       X = EI / TE(L)

CALL AZRUT ( AZ, C, H, X)

P2 = 1. - ( P(L) / P(LMA))**2
TSN 0041
                                                                                                            3900
ISN 0042
                                                                                                            4000
ISN 2043
                                                                                                            4100
                              K(L) = UK(L) * SQRT( AZ / P2) / (2.* P(LMA))
ISN 0044
                                                                                                            4200
ISN 0.045
                     8 DO 9
                                  L=1.LM1
                                                                                                            4300
ISN 0046
                       [F ( K(L), LE. C.)
                                                        GO TO 9
                                                                                                            4400
ISN 0048
                                 XX = 0.0077 * Z**2 / TE(L)
                                                                                                            4500
                                 A = 48000. * Z**(-2.5)
SV = A* EXP( - XX / (1.+ A/ XX**2))
ISN 2049
                                                                                                            4600
                                                                                                            4700
ISN 0050
                             NI(L) = K(L) / (NE(L) *SV *EI)
ISN 0051
                                                                                          * 1.E-13
                                                                                                            4800
                             PI(L) = NI(L) / NE(L)
                                                                                                            4900
ISN 0052
                     9 CONTINUE
                                                                                                            5000
ISN 0053
                       IF ( JWRITE. LE. 1)
                                                    RETURN
                                                                                                            5100
ISN 0054
                       PRINT 93
                                                                                                            5200
ISN 0056
                                                                                                            5300
5400
1 SN 0057
                       00 10
                                   L=1.LM1
                                 XX = 3.0077 * Z**2 / TE(L)
ISN 0058
                                 A = 48000. * Z**(-2.5)
SV = A* EXP( - XX / (1.+ A/ XX**2))
                                                                                                            5500
ISN 0059
                                                                                                            5600
TSN 0060
                                       L, TE(L), K(L), XX, A, SV, NI(L)
                                                                                                            5700
                    10 PRINT 210,
ISN 0061
                                                                                                            5800
ISN 0062
                      RETURN
                                                                                                            5900
                    90. FORMAT (/14H === [ M P U R)
ISN 0063
                    91 FCRMAT(/99H L JLI JRE JM N EI
1 UC UK U(L,JLI) U(L,JM) U(L,JRE))
                                                                                                            6000
                                                                                  UL
                                                                                           UR
ISN 0064
                                                                                                            6100
                    93 FORMAT (/80H L
1 SV NI PI)
                                                                                  XX
                                                                                                            6200
                                                          TE
ISN 0065
                  1 SV NI PI)
210 FORMAT( I10, F10.2, 1P10E10.2)
                                                                                                            6300
                                                                                                            6400
ISN 0066
                   310 FORMAT( 19, 414, F7.2, 1P2E9.2, 1P6E10.2)
                                                                                                            6500
ISN 0067
                                                                                                            6600
 ISN 2268
                       FND
```

```
ISN 0002
                     SUBROUTINE GLATT ( L . NGLA )
                     COMMON EID(47), GEW(5,12), P(6), PLOG(47), U(5,301), ULG(5,12), DE9, E09, JMAX9, LM1, LMA, M1, MS
ISN 0003
                                                                                                     100
                                                                                                    200
ISN 0004
                                                                                                    300
                     COMMCN /GLA/ JL(12), JR(12)
IF ( NGLA. GE. 2)
ISN 0005
                                                                                                     400
                                                           GO TO 3
                                                                                                    500
ISN 0007
                                M=1, MS
                                                                                                    600
ISN 0008
                       GEW(L,M) = 0.
                                                                                                    700
ISN 0009
                       ULG(L,M) = - 712.
                                                                                                    800
ISN 0010
                             J8 = JL(M)
                                                                                                    900
                          J9 = JR(M)
EID(M) = 0.5* DE9* (J8 + J9) + E09
ISN 0011
                                                                                                   1000
ISN 0012
                                                                                                   1100
ISN 0013
                              KM = J9 - J8 + 1
                                                                                                   1200
ISN 0014
                              50 = 0.
                                                                                                   1300
ISN 0015
                              S1 = 0.
                                                                                                   1400
ISN 0016
                              SU = 0.
                                                                                                   1500
ISN 0017
                              E8 = DE9* (J8 -0.5) + E09
                                                                                                   1600
ISN 0018
                              E9 = DE9* (J9 +0.5) + E09
                                                                                                   1700
ISN 0019
                     DO 1
                               J=J8,J9
                                                                                                   1800
ISN 0020
                     IF ( U(L, J). LE. 1.E-7)
                                                    GO TO 1
                                                                                                   1900
ISN 0022
                              SU = SU + 1.
                                                                                                   2000
ISN 0023
                               E = DE9*J + E09
                                                                                                   2100
ISN 0024
                              50 = 50 + U(L,J)
                                                                                                   2200
ISN 0025
                              S1 = S1 + U(L,J) * E
                                                                                                   2300
ISN 0026
                   1 CONTINUE
                                                                                                   2400
ISN 0027
                     IF ( SU. LE. 2.)
                                                  GO TO 2
ISN 2229
                               Q = S1 / SC
                                                                                                   2600
ISN 0030
                               C = (Q - E9) / (E8 - Q)
                                                                                                   2700
ISN 0031
                              C2 = C**2
                                                                                                   2800
ISN 0032
                               F = (C-1.)/( C- C2/SQRT( 1.- 0.8*C +C2*(8.6 -0.8*C +C2)))
                                                                                                   2900
ISN 0033
                              88 = F / (Q- E8)
                                                                                                   3000
ISN 0034
                              Z2 = (B8*(E9 -E8))**2
                                                                                                   3100
                           GEOM = SO / ((J9-JR+1) *(1.+ 0.04167 *Z2 *(1.+ 0.0125 *Z2)))
ISN 0035
                                                                                                   3200
ISN 0036
                       ULG(L,M) = ALCG( GEOM)
                                                                                                   3300
ISN 2237
                       GEW(L.M) = SU
                                                                                                   3400
ISN 0038
                   2 CONTINUE
                                                                                                   3500
ISN 0039
                     RETURN
                                                                                                   3600
ISN 0040
                   3 00 9
                                M=1,MS
                                                                                                   3700
                       GEW(L,M) = 0.
ULG(L,M) = - 712.
ISN 0041
                                                                                                   3800
ISN 0742
                                                                                                   3900
ISN 0043
                             J8 = JL(M)
                         J9 = JR(M)
EID(M) = 0.5* DE9* (J8 + J9) + E09
                                                                                                   4000
ISN 0044
                                                                                                   4100
ISN 0045
                                                                                                   42C0
ISN 0046
                             KM = J9 - J8 + 1
                                                                                                   4300
ISN 0047
                              SU = 0.
                                                                                                   4400
ISN 0048
                             SV = 0.
                                                                                                  4500
ISN 0049
                     00 8
                               J=J8,J9
                                                                                                  46 CO
ISN 0050
                             UG = U(L,J)
                                                                                                   4700
ISN 0051
                     IF ( UG. LE. 1.E-9)
                                                GO TO 8
                                                                                                  4800
ISN 0053
                              SU = SU + 1.
                                                                                                  4900
ISN 0054
                             SV = SV + ALOG( UG)
                                                                                                  5000
ISN 0055
                  8 CONTINUE
                                                                                                  5100
ISN 0056
                     IF ( SU. LE. 0.)
                                             GO TO 9
                                                                                                  5200
ISN 0058
                       GEW(L,M) = SU
                                                                                                  5300
ISN 0059
                       ULG(L,M) = SV / SU + 1.1 * ALOG( SU / FLOAT( KM))
                                                                                                  5400
ISN 0060
                  9 CONTINUE
                                                                                                  5500
ISN 2061
                     RETURN
                                                                                                  5600
ISN 0062
                     END
                                                                                                  5700
```