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X-ray Pulse Height Analysis

Abstract

This report gives a detailed description of a com-
puter program for pulse height analysis (PHA) in tokamak
experiments. The program yields the electron temperature and
the S —-factor in two energy intervals which have to be free
of impurity lines and recombination steps. In such intervals

the logarithm of the emissivity F is a linear function of

the quantum enerqgy E hv:

In F=d + B E

Information from numerous experimental data is used for
rather exact determination of the two coefficients of and B.
For this purpose the experimental values are first smoothed.
The user of the program then has the option of performing the
Abel inversion first. He may, however, also call an iteration
procedure in which & and B are obtained direct from the
experimental data. The accuracy of this iteration method is
in some cases much better than that of conventional Abel
inversion.

Furthermore, the densities of the metal ions Ti, Cr,
Fe, Ni are estimated from the electron temperature, electron
density and the K, 1lines. It should be noted, however, that
this estimate is very rough because the necessary data, e.g.

{Gv)» , are not very exactly known.
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1. INTRODUCTION

The report describes a computer program for pulse
height analysis (PHA) in tokamak experiments. Data such as
raw spectra, aperture parameters etc. are used to determine
the electron temperature and the f -factor with a good degree
of accuracy and also the order of magnitude of the densities
of the impurities Ti, Cr, Fe, Ni. It is not possible to

estimate the oxvgen ion density, as shown at the end of Sec.23.

The report is in three parts:

Part A (Secs. 2 and 3) describes how the spectral
function U is produced from the detector signals (eq. (2.4)).

In Part B (Secs. 4 to 11) information on the plasma
parameters (e.g. electron temperature) is derived from the
spectral function U.

Part C (Secs. 12 to 23) describes the individual sub-
routines and also details either not treated in Parts A and B

or else not fully enough.

The experimental layout is shown schematically in Sec.Z2.
The X-ray quanta emerge from the plasma along the line of sight,
pass through the two apertures 1 and 2 (Fig. 1) and the filter
and enter the detector. Not only are the photons detected in
the detector, their energy is also measured. The resulting
pulses are sorted in the analog-digital convertor (ADC)

according to height or photon energy E = hv; the result is



the raw spectrum R of the detector. If the raw spectrum R
is multiplied by an appropriate normalization factor (see
egs. (2.5) and (2.6)), one obtains the normalized spectrum

U which only differs from the ideal spectral function U by

R’
statistical errors. In order to obtain the spectral function

U in a wide energy interval, we superpose in ed. (2.4) the
spectra of several detectors. This superpositioning is per-
formed in the OVLAP subroutine (Sec. 14). This yields the

spectral function U(L,J) at given "reference" energy mesh

points (eg. (14.1)) and probe positions PL. This result is
transferred to the SESNIC subroutine for further processing.

First the function is smoothed (GLATT subroutine,

Sec. 15) because the number of parameters sought (within a
clean energy window there are two, namely &« and B) is much
smaller than the number of mesh points (a few dozen).

The problem of finding the emissivity F or «& and B8 from
the spectral function U by ABEL-Inversion (eq. 4.1) is mathe-
matically not well posed, if U is given only at a few mesh points.
In order to regularize the problem, we have to introduce an an-
satz for U or for T, and S etc. This can be done by various
methods. The choice of this method is a matter of taste. We
describe in Secs. 4, 5, 17, 18 and 19 several methods which the
user can call by choosing a parameter (NABEL; see Sec. 18).

In Secs. 7 and 8 collection of formulae describe how the

X-ray emissivity F depends on the plasma parameters.

Equation (7.2) is mostly used in the form

1n Fc =X + R E (1.1)
st E§ =g (1.2)
Te = - 1./8 {1+3)

E = hv .




It is hoped here that there are large E-intervals
without lines or recombination edges in which & and B are
independent of E; these intervals are called "clean energy
windows" (see Sec. 5, Fig. 4). It should be noted that the
linearity (1.1) is often satisfied very well, but that the
interpretation (1.2 and 1.3) is wrong: e.g. with pure hydrogen
plasma owing to the E dependence of the Gaunt factor (7.10),
but possibly also when, for instance, there are metal im-
purities whose f factor for E < 2 keV strongly depends on E;
see Sec. 9, Fig. 11 for Fe. 1In Sec. 9 the contribution of
the iron to the f factor is calculated on the basis of the
curves given in Ref. /2/ for the partial densities in corona
equilibrium. At the end of the section we discuss how question-
able these curves are and what errors are to be expected owing
to the absence of corona equilibrium in the tokamak. It is
not known whether similar curves are available for other
metals. Under the circumstances we have given approximation
formulae for the recombination part be of the iron (eq. (9.7))
and used them for the other metals Ti, Cr and Ni as well
(Sec. 22, METAL subroutine). When better data become avail-
able, the numerical coefficients involved will then just have
to be replaced in the METAL routine by others. The cross-section
{6v) for the K, line radiation is only known within a
factor of 2 to 4; see, for example, the two curves of LOTZ
and GRIEM in Sec. 11, Fig. 13. Accordingly, the values given
for the ion densities by our IMPUR subroutine are also only

known within a factor of 2 to 3. Here, too, better values have



to be awaited. Under these circumstances Sec. 10 on oxygen

recombination radiation is superfluous; it has only been re-
tained for the sake of completeness, and in Sec. 23 we give
a method (egs. (23.4 and 23.5)) by which the oxygen density
may yet perhaps be estimated if the metal ion densities are

known. Only the following ion species are considered in our

program:
hydrogen (z =1
oxygen (z = 8 )
titanium (z = 22) (1.4)
chromium (2 = 24)
iron (2 = 26)
nickel (2 = 28)

It should be noted that, for example, a strong cobalt line at
7.0 keV can spoil the method of determining the continuum
part that is described in Sec. 21, Fig. 24. - As already
mentioned, the METAL subroutine is used to determine or, to
be more correct, estimate the contribution of the metals Ti,
Cr, Fe and Ni, listed in (1.4), to the ‘3 factor. The differ-
ence between the ¥ factor and the contribution of the metals
is ascribed to the oxygen and hydrogen. This conclusion is,
of course, wrong when, for example, carbon is present, but
also when tungsten or molybdenum is present, because their
density cannot be determined by IMPUR according to the method
described in Sec. 11. But even if only the ion species listed
in (1.4) are present oxygen determination is mostly im-

possible at the present time: if, for example, the contri-




bution of the metals is about 5 to 10 and the total j’ factor
is 11, any value between 1 and 6 is possible for the differ-
ence and hence for the oxygen density. Finally, the para-
meters calculated with our program and the inaccuracy roughly

expected are presented below:

By o, S -10% electron temperature

s, ¥ 10 - 20 % § -factor

Nyseelyg factor 2 - 3 metal ion densities

ZME factor 3 ? contribution of metal ions to
3 factor

ng factor 10 ? oxygen ion density

The j factors are calculated for two separate clean energy
windows which should be free of impurities so that eq. (1.1)
is valid there. It is hoped to obtain the recombination edge

from the difference of the j’ factors.



2. SPECTRA

Here we define the terms "raw spectrum", "normalized
spectrum", "spectral function" etc. as used in the description
of the computer program. We start with the scheme of the

experimental setup.

Figure 1 shows the

plasma cross-section
and a detector

comprising two aper-
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tures, a filter and

A
S
N
S
Q
]
X
[\”’
P
|
|
t
l
r

a counter. The two
apertures 1 and 2

define a narrow cone

whose axis we call

the "line of sight"
of the detector. l+ apetture 1
The distance p of
the line of sight
from the plasma
centre is called
aperture 2

the "position" of '

fitter
the detector. Behind PHA system

the aperture 2 is a
filter which is more F: 4
Lg-
or less opaque to
soft X-radiation, but admits hard X-radiation (see Sec. 13).
The radiation which has passed through the two apertures and

the filter enters the PHA system.



The PHA system contains an energy scale divided into
equal intervals which we call "energy channels" (see
eq. (14.2)). The counter records the number of X-ray quanta
E = hv per energy channel. One can imagine a counter behind
each energy channel. (When, for example, a quantum arrives
and its energy is incident on channel J = 57, counter No. 57

is advanced by 1.). This yields the following result:

Channel No. 1 recorded O guanta
Channel No. 2 recorded 1 gquanta (2.1a)
Channel No. 3 recorded 3 gquanta

etc.

Figure 1a shows a PHA system with six energy channels;
in actual fact such systems have 256 energy channels. The
energy channels are counted or designated by the channel

number J, the channel width

being denoted by DE. When F{3.1Q

a gquantum with an energy hv

arrives from the interval

1 1
- ) < w—
E +DE(J- 5) £ hv £ E_+DE(J+ 3)
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counter No. J is advanced
by 1. We now define "raw

spectrum" as the number of
quanta in the energy 2 -
channel.

Figure 1b shows the raw
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spectrum for the case
treated in Fig. 1a. The

dashed line is the

idealized raw spectrum.



Figure 1b already shows the essential properties of
the raw spectra: they vanish for low energies E = hv as a
result of filtering exp (FILTER) (see Sec. 13, eq. (13.2)).
Furthermore, they vanish for high energies hv because of the
Saha factor exp (-hv:kTé) (see Sec. 7, egs. (7.2) and (7.3)).
The intervening energy interval - in Fig. 1b channels 3 and 4-
are called the "sensitive regime" of the detector. This is
usually a few keV. This is not much compared with the total
regime of about 2 £ hv £ 20 keV to be recorded or measured.
Several detectors with different sensitivity regimes are
therefore used: detector 1, for example, is sensitive to low
energies, this being achieved with small aperture radii and
weak filtering, while detector 2 is sensitive to high energies,
this being achieved with strong filtering and large aperture

vadii

Such control of the photon flux by the choice of aper-
ture radius is necessary because the PHA system can only handle
a limited maximum photon flux. Each detector thus yields a

raw spectrum, denoted by R(I)

, where I is the detector number.
In the foregoing example I = 1 thus stands for the detector
sensitive to low energies, and I = 2 for the one sensitive to
high energies. Each of these detectors has its own energy

channels, channel width DEI and zero displacement EOI' and so

these quantities have the index I; see Sec. 14.




The spectral function U emitted by the plasma - to be
defined later in eq. (2.4) - depends on the position p in
addition to the plasma parameters such as temperature,
density etc. If the plasma spectrum is to be measured over a
wide energy range with several detectors, we thus have to
locate the detectors at the same position p. It is shown in

Figs. c and d how this is done.

Figs. ¢ and d
Plasma torus and lines of sight

of three detectors with the same

position p

Detector 1

Detector 2

Detector 3

Fig. c

View from above

r—_.,__
—
—
T —

P = Detectors 1, 2, 3

e Fig. d

Side view




The idealized raw spectra and the spectral function
U differ by an instrument function, which will be treated
later in egs. (2.5) and (2.6). When the raw spectra

actually measured are multiplied by this instrument function,

(I)
B .
to obtain the spectral function U from the U

one obtains the normalized spectra U We now consider how

B(I). For this

purpose we draw in a schematic example Fig. e.

Abb. e

(1)
VB

(I)

Raw spectra R and )

normalized spectra

(D)

B of three de-

tectors located at

the same position p.

In this example we
have no other in-

formation on the

-

vicinity of c
hv = 2 keV than
the spectrum of

detector 1. We therefore set

v=u D

B for hv 2% 2.keV, (24+1)

The situation is different in the vicinity of 7 keV, where
two spectra are available. We form

(2) (3)
B + G UB

L {252)




and now ask how best to select the weighting factors

G(2) and G(B).

We now put forward the following rather sloppy and
arbitrary argument: the raw spectra as photon numbers per
energy interval are the more exact and informative the
larger they are. The raw spectra themselves are therefore the

appropriate weighting function, e.g.

(2)
(2) R
G = (2.3)
22, R(3)

The objection will now be raised that the relative in-
accuracy of a raw spectrum is 1/ VEZ and so weighting should be
done with R. We nevertheless stick to eqg. (2.3), not because
the objection is unjustified, but because taking the root re-

quires a lot of computing time (see Sec. 14 on OVLAP routine).

If the foregoing is generalized, one obtains

> (1) (1)
U= == Al (2.4
= . )

The summation covers all detectors I located at the same
position p. In Secs. 4 and 13 we call these detectors "probe",
and the U formed from their spectra "probe signal" or
"spectral function". We regard eq. (2.4) as the definition

of the spectral function U from the spectra of the detector

of a probe.




- 12 -

We now describe the instrument function by means of
which the normalized spectrum UB is obtained from the raw

spectrum R of a detector. One has

_ NW/NG
Up = U T - eN-17 1 o
where g - ar E exp (FILTER) {2.6)
. DE S .

We now explain the individual factors.

We start with Uo' which contains all time-independent
factors. For this purpose we define the emissivity F as the
radiation power per plasma volume element and energy inter-
val (see Sec. 3, eq. (3.6)). F thus has the dimension g 2 g7,
In addition, according to eqg. (3.11) one has U = S F dx,
where dx stands for a line element of the line of sight

of the detector. U has the dimension s—1 cm 2. Comparing

the two defintions:

U = radiation energy per energy interval per cm2 per s

R = quantum number per energy channel,
i i - E_ _ guantum _energy
it is seen that UO must be proportional to OE ~ channel width

The proportionality to 47T / ASAfQ is thoroughly justi-

fied in Sec. 3. Furthermore, it should be noted that
R prop. exp (-FILTER)
from which it follows that

U, Prop. exp (+FILTER) . (see sec.13)



In addition, R must be proportional to the observation

time t(N) - t(N-1): the longer the observation time the larger
are the raw spectra. To study the time development of an

ASDEX discharge, the user reads in times t(N), N = 1,..NMAX,
the meaning of which can be schematically described as follows:
at the time t = t(N-1) all counters from Fig. la are set to
zero. During the time t(N-1) to t(N) the detector is exposed
to X-radiation, thus producing a raw spectrum. This is read
off at time t(N) and put into the computer (see OVLAP

routine, statement ISN 0013). The counters are then returned

to O and the game starts all over again.

Finally, it should be mentioned that not all quanta
reaching the counter in Fig. 1 are recorded. Consequently,
the "true" number NW of quanta is larger than the number NG
of quanta recorded. But we do not pay any attention to this

and in the OVLAP routine we set in ISN 0014

NW/NG = 1. (2:7)

In practical applications this statement will be replaced
by another in which NW/NG is either read in or calculated

in a subroutine.




3. SOLID ANGLE FORMULA FOR ASASL

Here the quantity ASASL from Secs. 2 and 13 (BLENDE

subroutine) is calculated.

dV

plasmad

-l

Figure 2 shows

at x = O the detector,

at x = x1,x2 apertures with radius r,l,r2 -

the axis through the aperture centres (dahsed),

a plasma volume element dV at a distance r from the axis.

Assumptions

1) The detector is equally sensitive everywhere.

2) The plasma emissivity F only depends on x, thus not on r.
In visual terms, this means that the straight lines
drawn in Fig. 2 are so close together (a few mm) that in
a figure like Fig. 1 they merge into one straight line,

namely the line of sight of the detector.



Reguired

To determine the radiation power which passes through the

apertures and enters the detector.

First we deal with the radiation power arriving at the
detector from the volume element dV.
Viewed from dV, the two apertures appear as circles with

apparent radius1 (in units of angle):

Ve = Ty /[ (xmxg) (3.4)

and v2 =T, / (x—xz)

whose centres are at the apparent distance

r (x,-x.)
q = 1 72

(%=%,) (x-%,) (3iw2)

from one another (see Fig. 3).

Fig. 3

The two aperture
cross—-sections,

viewed from dV

As an example from astronomy it is mentioned that the sun
and moon, viewed from the earth, both have the same apparent
radius of about 15'. In partial eclipses overlapping areas
similar to those in Fig. 3 can often be seen.
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The two circles have in common the overlapping area

A = vf [0(1 - sina(.ICOStx’,]J
2 ~ (Aif vo-v, £d £ v, tv,)
+ v2 [0(2 - sinorzcoso(ZJ
where
_ 2 2 2
cos a1 = (d +v1 VZ) / 2v1d
42,22
Cos &, = (d +v2 v.l) / 2v2d
If d = VTV
it holds that
A=T v%.

The radiation power of 4V is

dP = F dV (erg sec—1 erg“1)

This radiation power is emitted uniformly in all directions.
All directions together form the solid angle 4T . Only the

fraction

2 A

d’p = i F av (3.6)

passes through both apertures and reaches the detector.

The next question is what radiation power do all volume
elements at distance x transmit to the detector. These volume

elements together form a disc. The contribution of the disc is
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r

2fC max
- A
Px-jdqjdr rz—ﬁ—Fdx
o fo)
where
dv = éx dq dr T

According to the assumption 2) F dx may be put in
front of the integral. L — is obtained by putting the

largest possible value V4 + v, for d in eq. (3.2})%

r1(x-x2) -+ rz(x—x1)

r =

max (x1-x2)
Integration yields
2 2
"r, Mr
szde 1 22 =d);R_F ASAMN (3.9)
% (x,-X,)
1 72
where
T(r? 'tl'r%
ASAfL = 5 (3.10)
(x,-%,)

(solid angle formula)

The total contribution of all volume elements
located on the line of sight, i.e. visible from the detector

through the two apertures, is

AsAf

L = ijdx= T

{F ax. (3.11)

According to Ref. /3/, Sec. 1 one has

a

dr r F
~}'F dx = 2 \r‘——g——z =8 = see (4.5)

r -p
P
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One thus gets

L= Asafh (3.12)

47T

Relation to the raw spectra

According to egs. (2.1) - (2.5) one has
B = | dE L/E

t(N) =t (N-1)
~ AL
_ Asan AE
= 5 U (3.13)

4T
TR - (3.14)

o ASASQ E

without taking filtering and NW/NG into account,
L being the power per energy interval, and L/E the photon

number per energy interval per s.




4. ABEL INVERSION FACTOR AZ

In the first part of this report (Secs. 2 and 3)
the spectral function U was obtained from the raw spectra
and other parameters. The second part (Secs. 4 to 11) deals

with the evaluation of the spectral function U.

If the plasma is transparent to X-radiation and U
is a symmetric function of the probe position p, it can be
assumed that the plasma is circularly symmetric. The
emigsivity F then only depends on the space via r, the latter
being the distance from the plasma centre. In this case

Abel's integral equation in the form

ulp) = J gz F(r’ , (4.1)

is valid, where a is the plasma radius. U and F depend not
only on p or r but also on the photon energy E = hv (see
Sec. 7). Now under certain conditions there are intervals,

already referred to as clean energy windows, in which
In F(r,E) = o (r) + B(r) E (4.2)

is wvalid, i.e. in which 1ln F is at least approximately a
linear function of the photon energy E = hv. & and B may
depend in which of the energy windows they are calculated;
see Sec. 12, Fig. 14. One of the most important tasks of

the programs in this report is to determine & and B from
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the spectral function U. For this purpose we offer several
methods which the user can select by the choice of the para-
meter NABEL; see Sec. 18 on ALPBET subroutine. The simplest
concept is to solve Abel's integral equation (4.1) for F

and then determine o and B by a least square fit (see

Secs. 16 and 19). For this purpose one has to introduce for
U an interpolation ansatz between two mesh points (probe

positions) P What is then obtained from the Abel inversion

L°
for F often drastically depends on the choice of the inter-
polation ansatz, particularly in the plasma boundary regions.
We have therefore developed a completely different method in
which F is not calculated at all, oo and B being determined

direct from the spectral function U. For this purpose we

define a function Az(p) by means of the equation

X2
-
U(p) = 2a F(p) \| —5— (4.3)
Az(p)
where P = p/a . (4.4)

Substituting eq. (4.3) in eq. (4.2) yields

\{ 2
o (r) + B(r) E=an-ln{2a ;—‘% (4.5)
Z

This is the initial equation for the iteration method
described in Sec. 17. The disadvantage of this method is
that, basically, one does not know anything about AZ and has
to introduce arbitrary assumptions. Numerical tests have
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shown, however, that the method is quite insensitive to

wrong determination of A

Zo

If,

for example, one sets A

Z

1,

this makes B(r) about approx. 10 to 20 % inaccurate. If AZ

is carefully determined, the inaccuracy in determining ¢

and B can be reduced to just a few per cent. We therefore

now determine AZ for a few special cases in which the Abel

integration (4.1) can be performed exactly or as an analytic

approximation.

The simplest case is

with integer n and

It follows that

where

and hence

F(r) = (1-8%)P (4.6)
£ = r/a (4.7)
5 n+1/2
u(p) = U_(1-p%) (4.8)
U= a S (<) (D) =2 (4.9)
o :E: m’ 2m+1 "
m=0
2a
U »
“ n+1 A
1.+(1.40.273 E:T—Tﬁ)n
_ n+1
A, = 1.+ (1.4 0.273 E—)n

In this case AZ thus does not depend on p at all. The

(4.10)

(4.11)

approximation (4.10) is valid for all real n3 - 0.6; test

calculations showed that the inaccuracy of eq. (4.10) is

for n> - 0.5

for n=>2 3

at most

at most

3 x 10

1 x 10

4

4
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Now it is known from laser scattering measurements
that the temperature is a profile function of type (4.6) in
good approximation. We therefore calculated AZ for the

following case (see Sec. 7):

P (4.12)
where _ _

= E/KT_ = x(r) (4.13)

& = 50(1—f2)c (4.14)

kr_ = T (1-£%) (4.15)

In this case Azonly depends on C, H, and x = x(p). So and

TO do not appear. The numerical results can be described by

the approximation formula

B n+1.
A, = 1.+ (1.4 0.273 Bt)n + 2 (4.16a)
where = Q4+ 8 % b)
H
7z = c)
‘]..{. g+_H
y
1.8 x& B2 a0
Y = 1T.¥0.83 H
E = 0.5 + 0.03 C + =48 e)

1.+H
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The inaccuracy is mostly less than 1 %. Errors of >
1 % occur almost only at very small H values (H £ 0.01). We
program this formula in the AZRUT subroutine. One therefore
just has to modify the AZRUT routine if a better method of
determining AZ is wanted later; all other programs remain

unchanged.

Testing was done by determining the profile number n
by a least square fit from given data U, where U(p) was not

of the profile type. We then determined A, according to

Z
eq. (4.11) and finally & and B from eq. (4.5) by a least

square fit. The inaccuracy in determining o« and B was about

10 % «




5. CALCULATION OF ¢ AND B

The X-ray emissivity F of a contaminated plasma con-

sists of a continuum component FC and a line component FL:
F=F,+F {5.1)

If oxygen, carbon, Ti, Cr, Fe, and Ni are the only im-

purities and, in particular, heavy metals such as tungsten,
molybdenum etc. are absent, there are two ranges, namely

2< E £ 4 keV and 104 E (keV) (see Fig. 4 ) in which (5.2)
the impurity lines and edges are absent, and hence it holds

that
F. =0 F=F, . (5:3)

Furthermore, in these regions (5.2) 1ln F is approximately

a linear function of the quantum energy E = hv:

in F (r,E) = &(r) + B(r) E (5.4)

(see eq. (7.2) and Fig. 4 ).

In Fig. 4 1ln F is plotted versus E schematically

for a plasma containing Ti, Cr, Fe and Ni.

Intervals in which 1ln F depends linerarly on the pho-
ton energy E = hv are called "clean energy windows". & and B
can assume different values in different energy windows and
must therefore have a window index. This is dealt with in
Sec. 12, Fig. 14. Here we confine ourselves to mesh points

located in the same window and omit the window index.
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We now outline how o and B arise from the spectral

function U of a clean energy window.
When the OVLAP routine is called the spectral
function U(L,J) is given for each probe L at equidistant

Ll

mesh points, called "reference mesh points"

E9(J) = DE9 J + EO9 (5«a)

see Sec. 14, eq. (14.1). The number of these mesh points

of the order

is



window length ., 2.keV ~
channel width ~ 0.1 kev *~

20 (5.6)

and may possibly be as high as 100.

From these 10 to 100 U values two parameters, namely
@ and B, have to be determined. For this purpose few mesh
points with relatively exact U values are more suitable than
many mesh points with relatively large statistical error
fluctuations because the Abel inversion methods take less
computing time the fewer mesh points there are present and
work the better the more exactly U is given. We therefore
smooth the spectral function U first of all. For this pur-

pose we read in smoothing intervals
EL(M) € E £ ER(M) (5.7)

whose centres are located roughly at EID(M); see Sec. 15,
eq. (15.1). The GLATT smoothing routine produces from all

U(L,J) in the smoothing interval M a mean value

ULG(L,M) = 1In U at EID(M) . (5.7a)

The way in which this is done is described in Sec. 15. The
ALPBET subroutine then yields the parameters &« and B8 from

the smoothed ULG (see Sec. 18).

We offer various methods which the user can call by
choosing the parameter NABEL. The ITERAT subroutine starts
from eq. (4.5) and uses eq. (4.16) for AZ. The method also
works when, for example, Te is not of the profile type at all.



In order to outline the next method, we give the

following definitions:

x calculated by the ITERAT subroutine,

R
Il

=
]

8 calculated by the ITERAT subroutine

Fp = exp Lup + BPE]

\f -l X
b 2a Fp (1-p )/AZ AZ according to eq. (4.16),

D =U - U - 5.8
b (5.8)

(=]
Il

I1f, for example, the user chooses NABEL = 2, the Abel in-
version for D is performed by the ABEL subroutine; the result
is G; and then we set I = Fp + G. o and B are then determined

from F by a least square fit from eq. (4.2).

The other two methods dispense with the ITERAT routine
and differ only in the choice of the interpolation function
for U. Finally, we trace the path from the experimental data

to o and B in the form of a diagram:

raw spectra =
number of photons
per energy channel

¥
OVLAP

¥

spectral function U
at the reference
mesh points E9

A ]
GLATT

¥

smoothed and logarithmic spectral function 1ln U
at the centres EID of the smoothing intervals

U
ALPBET

o and B

L




6. POSITIONS

In this program the positions p are read in, i.e. they
have to be given. The reader who considers this obvious can
skip this section. We can, however, test whether any given
positions are reasonable because the positions are related to
the angles of sight of the probes, which are known very

exactly.

The probes are arranged 1in such a way that their lines

of sight intersect at one point, the aperture B (see Fig. 5).

Fig. 5
Plasma cross-section, aperture B

three probes and their lines of sight.



The aperture B corresponds to aperture 1 in Fig. 1 and

is common to all probes and detectors.

We now arbitrarily give an origin O of coordinates
inside the vessel. The plasma centre M then has relative to
O the coordinates x and y, the straight line OB being the
X axis. In Fig. 6 the line of sight of the probe L is drawn.
It passes the plasma centre M at a distance P, and forms
the angle ¢L with the x axis. We refer to ch as the

angle of sight of the probe.

0

Figure 6 shows

the aperture B,

the line of sight of the probe L with angle of sight (tL'
the plasma centre M, the position Py, and

the plasma shift x, y

with reference to an arbitrary point O inside the vessel;

The drawing plane of Fig. 6 is the same as that of

Fig. 1 at the beginning of Sec. 2.
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From the geometry it follows (see Fig. 6) that

pp = (RG—x) sin ¢L - y cos ¢L (6.1)

If we define

tan Qo y/(RG-x) (642)

Py (R.-x) cos QO (6.3)

G

it then follows that

Py, = P, sin (@ - @) (6.4)

This relation can be used for testing because in ASDEX
there are five probes (L = 1, 2, 3, 4 and 5) whose positions
are expressed in eq. (6.4) by just two poorly known quan-

tities, namely X, y or p_, qbo.

We now investigate whether the positions can be
taken from the experimental data ULG to afford the user
the possibility of replacing the reading in of the positions

by calculation in a suitable subroutine.

The parameter B,y = BM, the distance of the plasma
centre from the aperture is indeterminable because a plasma
with small Py yvields exactly the same X-ray spectra as a
plasma with large Py if the other parameters are appropriately

chosen: a giant may look just like a dwarf standing closer.

To determine (¢o we use the fact that for E = hv Z 2 kTe

can mostly be approximately represented by a Gaussian function,

and 1ln U by a parabola:
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ln U = a  + a2(¢—¢0)2 (6.5)

(1n U], = a + az(gaL-qzo)z (6.5a)

Thus, when 1n U is present at at least three different values
of L, then ¢o is the extremum of this parabola. This is only
valid, however, when the temperature is approximately of

the profile type; if, on the other hand, the temperature has,
for example, a crater and two extrema, ln U also has two ex-

trema and is not even approximately parabolic.

Another difficulty is that the plasma is not always
of circular cross-section. It is true that the case
U(p) = U(-p) cannot be distinguished from a circularly
symmetric plasma because only one aperture B is available;
cf. Ref. /3/, Sec. 4 on quasi-circularly symmetric emission.
But with D-shaped plasmas the case
illustrated alongside, in which 1n U
| _ strongly deviates from the parabolic

| shape (6.5), can also occur.

the positions depend on the motion

[
l | Finally, it should be noted that
I of the plasma and hence on the time,

MhU

or read in for every time step.

] and hence have to be recalculated
|
|




7. X-RADIATION AND PLASMA PARAMETERS

Here we list the equations describing the relation bet-
ween the X-ray emissivity F and the plasma parameters Te’
ngr Dy etc., the determination of these from the X-ray

spectra being the objective of our programs. According to

Ref. /1/ it holds that

-3 _-1

Emissivity F = Fc + FL (dimension: cm s ) (7.1)
FC = continuum component
FL = line component
_ ~%
FC =S e (7:::2)
X = E/kTe (7.3)
E = hv = quantum energy (7.4)
s =5, {7:5)
s. = F_ n°/ \[kT (7.6)
H a e e :
_ =15 . .
Fa = 3.03 10 if Te in keV
and ng in cm_3 (7.7)
n .
_ if,2 (i) (1)]
S ‘Z n_ [Ziff fee * Bep (=8
i
ng = electron density
Te = electron temperature
i = ion species index = nucleus charge
n, = density of ions of species i




Ziff o 1=2 to i

gé;) = GAUNT factor. From ref. /1/, fig. 4a it follows that
(1) -0.45 -0.07-0.01x

9eg = 1.2 (0.5+x) Te (hydrogen)
- -0.16 T2'35

Jeg = 1.38 (0.5+x) (oxygen)
(1) _ .

9deg = 1.2 for 1 = 22

be = recombination component; see sec. 8 .
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RECOMBINATION RADIATION

According to egs. (1) and (3) from Ref.

combination term from eq. (7.8) is

2 n

W_.S M, 2 |5, o B
Rey —Zni Igp 217 r13xoe + B8

where

/1/ the re-

(8.1)

J=1 v=1
— = \ -2
X ?CiJ/Te X5, 13 (8.2)
x =g, @ /[(n+v)2T ] = x_ . (8.3)
\Y% iJd H e v,1id
i = ion species index, e.g. i1 = 26 stands for Fe,
=J = ionization stage index = ion charge before

recombination,

n = principale quantum number of the ground state,

E = number of electrons missing in the ground state.

In the example: i = 26

The

the

for

(8.3)

J = 20

26 denotes Fe and
20 means that before recombination there are 26 - 20

= 6 electrons present. Of these 6 electrons there are

It

2 electrons in the K shell (n

1)
2).

L4 electrons in the L shell (n

K shell is completely populated ( f = 0);

L shell is not completely populated till it has 8 electrons;

complete population there are thus §==8 -4 = 4 electrons

missing. see fig. 7.
/

From i = 26 and J = 20 it thus follows that‘g==4 and n = 2.
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The other notations are:

(7)

26 n =2

20 g=4

example (8.3)

EYiJ = enerdy required to wrest an electron from the J - 1

times ionized ion,

¥y

n

iJ

13.6 eV = ionization energy of the hydrogen,

density of the ions of species i and charge J.

It should be noted that in Ref. /1/, eq. (3) th%ion charge

(i.e. our J) is denoted by i and the species index (i.e.

our i) is completely omitted.

Equation (8.1) requires explanation.
of E = hv and Te. The latter appears in the

x, (see egs. (8.2)) and Xo i furthermore,

sities n,./n, are functions of T ; see, for
id" i )
The x, are step functions of E = hv, e.q.
X5/, B >Uyy

o) E(:;xiJ

(1)
Rey

denominator of

is a function

the partial den-

example, Fig. 9.

(8.4)
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xO(E) Fig. 8

XO versus E

' 4
=
Il
2

&5

(1)
Reys

type (8.4); hence the stair-step-like appearance in, for

is mostly composed from a number of step functions of

example, Fig. 11.
For the GAUNT factor we set

Ifp . (8:5)
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Here we give a detailed calculation of R(l) for iron

fb
(i = 26). In the interval
0.5 keV < hv € 10.keV (9.1)
it holds that Iep = 1 independently of E (9.2)

with an inaccuracy of approximately 10 % (cf. Ref. /1/,
Fig. 4b).
According to Ref. / / the ionization potentials for iron are

at the energies xiJ (in keV):

J &, v = 1 v = 2
26 9.3 a3 1.02
25 8.8 2471 0.94
24 2,04 0.87
23 1.95 0.80
29 1.80 Table 1
21 1.69
20 1.58
19 1..45
18 1.35
17 1.26
16 0.49

. 2 2
The 3rd and 4th columns contain x T = ZiJ’XH/n+v)

where
Gig =49
XH = 0.0136 keV
n=1 for J = 25 oder 26

n=2 for 17s J = 24,
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The partial densities are plotted in Ref. /2/, Fig. 6. This

figure is reproduced in Fig. 9.

Let
AJ = niJ/ni (9.3)
One then has
. oo
1) <= 2 %5 |% %o 2 Xy w
be = % gfb ZiJ E-l—- n3 xo e i ; e Kv e B
6 2 oS 9. 2. 29
R:(fi )= 4 s 26 A26 [:2 5 EXP("-T—B') + 1 '—T2 exp(-—T—) +aow ]
e e e e
2 8.8 .8 2.1 21
+ 25 A 1 222 exp(=27) + 1 S exp(S5) +
25 [ Te Te Te Te :]
2 ¢ 2.0k 2.0k 2 0.87 0.87
+ 24 Ay L1 T_ ( 0o )+ 3 Te exp( T_ Y+.. }
2 7 1.95__ ,1.95, 2 0.8 0.8
+ 23 A [ exp ( )+ = —— expl( ¥ 4
23 | 8 A T, 3 T, T, ]
2 | 6 1.8 1.8
4+ 227 A —— exp(——) +. ]
22 |8 T, T,
% o

This summation is arranged according to descending ionization

potentials. For this purpose we define

T9 3 (read "term with ionization potential 9.3 keV"),

2 9.3 9.3

T9.3 = 26 A26 2 T exp(-,l-,—-—) (9.5)
e e
2 2.3 2.3
T, 5 26 Ase 1 = exp(ﬁf-)
e e
_ 2 8.8 8.8
T8.8 = 25 A25 1 T exp(a——)

e e
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According to eq. (8.4) it then holds that

(26)

Rep, " = Tg,3 ¥ Tg gt Ty 3+ Ty 4+ Ty g .. for E > 9.3
R26) _ 0 4 b 4o + for 8.8< E< 9.3
b 8.8 2.3 T Taq 2.04 T . .
(26) _

be —T2.3+T2.1 +T2.O4 +.. for 2.3 € E < 8.8
(26)~_

be — T2.1 + T2.04 = for 2.1 € E & 2.3

® o o o0 s

The numerical results obtained by programming this equation
can be described by the following approximation formula with

about 10 to 20 % inaccuracy:

(26) _ 2.5 2.9

Rep”' = 5800. T / (1.4 T"7) E > 9.3 (9.7a)
(26) _ 2.5 3.88 @

Rep”' = 5700. T / (1.+472°°%) 2.3 < E < 8.8 (9.7b)
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10 1 I T T 1 !24 T I ! |
0.8~ _ 16 -
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' 29
8 4011
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0AYf ; .
0.08 ; |
0.06}- ‘ _
003 | i
002} \ i
\ | |
oot L LIA LAV i Al Ny
01 02 0304 06 081 2 34 o 81
Fig. 9
niJ/ni versus T in corona equilibrium; for i = 26 (Fe)

reproduction of Ref. /2/, Fig. 6.
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(26)

Rep
A
L4000 -
I
I
|
3000 [ E >9.5 keV
|
Tecombination
step
2000 - '
|
‘ |
I
|
4000+ |
(2.3 <€ <38.8 keV
0 ¥ f t ¥ i t $ i
o 4 2 3 4 5 [ 9 8
Fig. 10
o (26)

fb versus Te
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(26)
be
2.keV
l'ooo i r-—..5.ke\’
—I___I____—_ - 1.keV
2000 | -
4000 o
1.keV
C00 - 5 = s
2.keV
200 s.kev
400 + + +— t = + + - ! } >E
A.0 AL M4 46 18 2.0 L2 8.8 9,0 92 94 [kev]

Fig. 11

(26)
Rep

for three different

versus E hv

kTe 1.keV 2.keV

.
I

The interval

(26)
fb

In the inter

sequently, R is

K

A

2.1 & E €4,

is left over for the energy window No.

There are no steps for E

E > 9.2 keV

is the energy window No.

temperatures:

and 5 keV

2.1 < E £ 8.8 is free of steps;

Con—~
independent of E in this interval.

val 4 € E £ 8 keV, however, we have the

lines of Ti, Cr, Fe, Ni. Consequently, the interval

keV

1,

>

e

9.2 keVv, and so

2.
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Appendix to Sec. 6

Calculation of RéEG) for 8.8 < E <-9.3 keV
(i) 2 € Xo
R = E: J A — b'q e
[—fb = J n3 o J cf.(9.4)
2 }_ xo
Te J J AJ n3 x, e T @, 85)
2o 25 625 0.01 1 L.L 81.45 2242
2k 576 .70 1 1.02 2.77 112 g _
23 529 .18 .875 0.98 2.66 217 }be =21 3634
22 L8L .08 .75 0.9 2.46 6l
27 22 484 0.01 0.75 2.57 13.08 122 -
21 Liq .03 .625 2.43 11.34 236
20 Loo .07 .5 2.28 9.83 318
19 381 .21 .375 2.07 7.9% L9z be =ZT = 1540
18 324 .24 .25 1.93 6.88 258
17 289 .25 .125 1.8 6.05 98
16 256 L2 3 0.7 2.01 23

5. 25 625 0.34 1 1.76 5.81 2173
625 0.34 0.42 1.52 %X 136

625 0.34 .667 0.19 1.21 ¥ 33 (., _%nq

24 576 0.59 1 0.41 1.50 210 b ‘Z
576 .59 .667 0.17 1.19 x 46
23 529 0.03 .875 0.39 1.47 8

-

2600

1

*'This terms come from ;25::; in this case we write xv in-
v =

stead of Xq in the 6. column.
This shows that although the partial density of Fe(25) at
Te = 2 keV is only 1 %, Fe(25) makes the largest contri-

bution to be.

At high temperatures (Te > 3 keV) one should not neglect ;EE: .
v = 1




Comparing (for Te = 5 keV) the following three values

be (E = hv > 8.8) = 2600
R, (E = hv < 8.8) = 400 with e
v=1
= < = i
be (E hv 8.8) 200 without Ei:
v=1
it is seen that R "left" of the step at 8.8 keV is enhanced

fb

by the :E:—terms by a factor of at least 2.
v=1

Error sources

1)

2)

Example: In a plasma boundary layer of Te = 1 keV the density of

J

A

25

In eg. (8.1) the definition of E' as the number of

electrons missing in the n shell is only an approximation.

The ionization potentials E{iJ are not very well known;
the data differ by up to 0.5 keV. This can lead to errors
of over 30 % in calculating be; see example (9.8a) for
Te = 2 keV; contribution J = 25,

The assumption of corona equilibrium is not satisfied.

For example, J = 25 ions diffuse from hot plasma regions to

colder ones without first recombining. The consequence is

explained in an example:

25 ions is 0.1 %, i.e.
= 0,001. One then has

(26) 2 Xe

£b =J A Xo ©

J
625 0.001 8.8 e8'8 (9.84)

R

Il

36000«




4)
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i.e. about ten times as large as would be expected from corona
equilibrium. We therefore expect in the hot plasma centre a
normal recombination step such as is shown in Fig. 10, but

in the cool boundary layer a pronounced recombination step.

To represent this in Fig. 10, one would have to top curve

E > 9.5 at T, &~ 1 keV with a peak several meters high.

According to D. Dlichs one requires for calculating the partial
densities in Fig. 9 coefficients which are not accurately known.
The error is:

for the ionization coefficient ~s factor 2

~S

for the recombination coefficient factor 5.
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10. RY)  POR STRIPPED NUCLET

fb

At plasma temperatures of Ié S 0.8 keV oxygen is almost

completely stripped of its electrons. The plasma consists

almost exclusively of stripped nuclei. In such a case one has

n,
n = *
w{

From eq. (8.1) it then follows that

with

g =

>
’_l-
'_l.

I

if J =1

if <1

Xii/Te

2

i™ 0.
0.49 for carbon (i

0.87 for oxygen (i

0136 keV

(10.1)

(10.2)

(10.3)

(10.4)

6),
8).

There are only recombination steps below 1 keV; consequently,

1
R:B)is independent of E

hv if i € 8.

10,02

0,2

t 0,01
0,6 A,

Fig. 11

Rig

— versus T
ni e

in corona equilibrium
for i = 8.
Reproduction of Ref. /2/,

Fig. 4.




1% Kﬁ LINE RADIATION

The metals Ti, Cr, Fe and Ni, which we consider in
this report, have their Ky 1lines in the range 4 keV < hv
< 8 keV. Let Ei be the energy at which the ion species i has

its K, line. We then define
Ki=fFL dE = n_ n, {6V} E, (11.1)

where the integral is taken over
the line; Ki is thus the hatched
region in Fig. (42). & is the cross

section for K« emission.

t >E  rig. 12
B

F versus E = hv and Ki

(6V) is taken from Ref. /4/, Fig. 10, which we reproduce

in Fig. 13.
-1 .
) : 7 i I 3
; ) 3
- Ar ( Griem ) 3
-2

Fig. 13

{6V} for k,
emission versus

Te

<)
LI llll‘]

Lol llll[

Fe (Griem)

SaOV>
em? sec™!

Fe {Lotz)

rrrrrg
1 llllli'

T
1




These curves can be approximated by the following formulae:

=4 P
2 10 exp(-4.4 T ) for Fe (8.2a)
&v) - 12 T
4 10 exp (0.8 Te *") for Ar (8.2b)
S. von Goeler considers the values shown in Fig. 13

to be too small: at the bottom left by a factor of about
2 or 3, and at the right by about 20 %. We, therefore, choose

for our program rather arbitrarily

= 10 a ex - ———— cm” s .
<sv> 10713 p = 371 (11.3)
1.+ —=
2
X
where 2.5 / 'I‘e for Ar
x:
52 Te for Fe (11.4)
35. for Ar
a = (11.5)
14, for Fe .

We require <6‘V>not only for Fe and Ar, but also for other
elements, e.g. titanium. For this purpose we arbitrarily

generalize egs. (11.4) and (11.5) as follows:

. 2
x = 0.0077 1" / T_ (keV) (11.6)
a=4.8 10 1723 (11.7)
where
{ 18 for Ar
i = 26 for Fe = ordinal number,

see IMPUR routine . The coefficient 0.0077 12 denotes
approximately (in keV) the excitation energy for dielectronic

K“ emission, which occurs primarily at low temperatures of

1 to 2 keV.
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12. STRUCTURE OF ONESHOT PROGRAM

As the name ONESHOT suggests, the program is designed
to determine a number of plasma parameters from the data of
one shot - although it is also possible to superpose the
results of several shots, e.g. by adding up raw spectra of
different shots, averaging, introducing more than five probes,
i.e. probes No. 1 to 5 yield results from shot No. 1, probes
No. 6 to 10 results from shot No. 2, etc. This is not dealt
with here.

The plasma parameters determined with ONESHOT are:

Electron temperature TE(L) ;

Ion densities N1(L) ; N8(L) ; N22(L) ; N24(L) ;
N26 (L) ; N28(L) ;

S factors Z1(L) ; z2(L) ;

and AL1(L); AL2(L); AL3(L) ;

BE1(L); BE2(L); BE3(L);
The notations are as follows:

N1(L) the hydrogen density at r = Py
N8 (L) the oxygen density (Z = 8) |
N22 (L) +the titanium density (2 = 22), etc.

To explain AL1, AL2, AL3, BE1, BE2, BE3, we reproduce Fig. 4:

ALty
[ Fe Fig, Al

Al3t..

AL2 + BEZ*E]

- J&z + BE3-E|

| | '
window 4 window 2
...u—o_J ik dd }E:hv

Oo
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Here the recombination step is grossly exaggerated to make

the principle clear:

In energy window 1 one has F = AL1 + BE1 E; (41'1)
in energy window 2 one has F = AL2 + BE2 E;

if a straight line is drawn through the F values from the

two energy windows, one obtains

F = AL3 + BE3 E.

Input data

The input data are stored in the AMOS segment DATA; an
example is shown below. The meanings of these parameters
are presented in the form of a list. Columns 2 and 3 list
the line number and numerical value of the respective para-
meter in the exampleﬁ column 4 states the section in which

the parameter is introduced or more accurately described.

Para- 4 .

HEtET Line Value Sec. Meaning

IMAX 100 3 13 No. of detectors in a probe

IMA 100 4 18 No. of prabes + 1

M1 100 3 No. of smoothing intervals in window 1
MS 100 6 15 No. of all smoothing intervals

NABEL 100 0 18 For choosing the Abel inversion method
NGLA 100 0] 15 For choosing the smoothing method
NMAX 100 4 2 No. of observation time intervals

DE9 100 227 14 Channel width of reference scale in keV
EO9 100 0. 14 Zero displacement

T (N) 200 QOrainre 2 Observation times in sec

ELR% 300 1.4.. 15  Smoothing intervals in keV

on puge 53



*®
The lines 400 - 1200 are read in the BLENDE sub-

routine. The latter is called in the main program in the

DO-3 loop a total of IMAX.Lml times; in our examplé‘we have
LM1=LMA-1=3 and IMAX=3; there therefore have to be 3 x 3 = 9
lines available. In our example the filter parameter A has the

value 1317 and the filter thickness D has the wvalue 0.00075.

A and D only occur in the combination A+<D; consequently,

A*D is not changed when A is divided by 1000, and D multi-
plied by 1000, thus making A and D of the order 1 and there-
fore allowing them to be read in with F format (see BLENDE,

statement No, 3300).

As an example we treat line 700, which contains the data

of detector I = 1 of probe L = 2

Para-

B Value Sec. Meaning

IMAX(I,L) 19 13 No. of energy channels of detector I, L
A 1.317 13 Filter parameter

B 3.276 13 Filter parameter

D 0.75 13 Filter thickness

DE(I,L) 0.45 2 Channel width of detector I, L in keV
EO(I,L) 0.04 2 Zero displacement

X1 100. 3 Aperture position in cm; see Fig. 2
X2 2. 3 = " % "

Rq o1 3 Aperture radius in am; see Fig. 2

Ry .017 3 " " " "

R3 .11 13 Sensitivity radius of detector

X
In our example the time loop, i.e. the DO-6 loop of the main program,

starts fram line 1300. First we read in:

X on pﬁﬂe 53
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Parameter Line Value Sec. Meaning
Ne (L) 1300 10 ws Electron density
P (L) 1400 0. & 5 Aperture position (L=1,2,3)

and plasma radius (L=4)

Then the raw spectra are read in the OVLAP subroutine. The
latter is located in the DO-4 loop of the main program, the
loop running from 1 to LM1; the READ command for the raw
spectra in the OVLAP routine is located in the DO-5 loop,
which runs from 1 to IMAX. For each time step we thus have
to read in LM1-IMAX = 9 raw spectra; for the 1st time step
(N = 1) these are lines 1500 - 2300.

In our example we manage with one line per raw

spectrum. The reason is the choice JMAX 19 in lines

400 - 1200, and that there is room in one line for 24 inte-
gers. If, for example, we had chosen JMAX = 27, we should
need 2 lines per raw spectrum.

In line 2400 we have the electron density for the

next time step - and the game starts all over again.



Sample input data

100 3 4 3 6 0 0 4 .21 Q.

200 0. -1l -l 3

300 l.4 2.5 2.0 3.6 2.8 4,2 Lo T.2 663 8.3 8.
400 19 1.3217 3.276 8.75 9.57 C.13 130. 2. ol «J1 11

500 19 1,217 3.276 20. 2.55 €.05 190. 2. " | .016 .11
ﬁco lq 1.3l7 30276 200- 0053 C. 100- Z- -l -04 e .ll
700 19 1.317 3.276 0.75 0.45 0.04¢ 100. 2. ol 017 .11
.800 19 1,317 3.276 20. 0.31 C€.09 100. 2. el .03. .11
900 19 1317 3.276 290. 0.52 C.26 130. 2. 1 09 W1l
1000 19 L1317 3.216 0.75- 0.57 0.06 120. 0.2 ‘.l .C8 «11
1100 19 1.217 3.276 5. 0.48 0.15 10C. 0.2 ol 52 .11

1200 19 1.317 3.276 50. 0.51 C. 10C. C.2 -1 1. «11
13C0 10. &. 2. J.

14C0 0. o4 . 1e

1500 5 23 1811 6 4 2 5 1 1

16C0 1 5 8 75 8 2 2 1 3 1

17C0 1 5 8 4 4 9 5 2 2 1 1 1
1800 25 26 16 9 5 3 2 1 3

19C0 5 7 6 5 5 5 1 1 2

2000 1 2 75 3 2 1111

2100 10 88 32 10 3 1

2200 9 713562712 5 2 2 1

2300 6 48 65 45 34 21 5 2 3

Main program (MAINPR)

The main program includes read-in and print-out of
the input data and conversion of the smoothing intervals in

the DO-2 loop:

In Sec. 15 the smoothing intervals are not required
in keV but in units of the channel width DE9. Conversion is
done as follows:

JL
JR

(EL - EO9) / DE9 + 1
(ER - EO9) / DE9 (12.2)

so that the JL, JR interval is somewhat shorter than the
corresponding EL, ER interval. This is illustrated by an

example with EO9 = O , DE9 = 0.1 in fig. 415 :

L4
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The energy window parameter M1 decides which M intervals belong

to energy window 1:

In
=
("N

The intervals 1 M1 belong to energy window 1

The intervals M1 + 1 € M € MS belong to energy window 2,

The program flow

After read-in of the filter, aperture and other
parameters in MAINPR statement No. 1200 etc. and in BLENDE
routine the time independent component UO (see eq. (2.3))
of the normalization factor is calculated in the BLENDE

routine. Then the time (DO-6) loop commences:

The raw spectra are read in normalized and super-
posed in the OVLAP routine, yielding the spectral function
U(L, J); the SESNIC routine computes the parameters collected

at the beginning of this section.

Altogether, the following subroutines are required:
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Routine Input Output Description
BLENDE aperture and U Sec. 2; 3; 13
filter parameters &
OVLAP UO; raw spectra U(L,J) Sec. 2; 14
GLATT U(L,J); JL(M);
JR (M) ULG(L,M) ;EID(M) Sec. 15
SESNIC U; ULG TE; N26 etc. Sec. 23
ALPBET ULG AL; BE Sec. 18
ABEL U F Sec. 19
AZRUT Cy Hy x AZ eq. (4.16a-e)
ITERAT ULG ALP; BET Sec. 17
LSTSQ i.e. E; In U & ; B Sec. 16
SORTIR Q (L) MA (L) Sec. 20
IMPUR U; TE; i.e.Z2=26 i.e.N26; P26 Sec. 21
METAL TE ZME1; ZME?2 Sec. 22

In addition, most routines require the positions P

L-

We now discuss the COMMON blocks and the meaning

of the variables stored in them.

1) Blank COMMON (blk)

EID
GEW
P

PLOG

ULG

DE9
EO9

JMAX9
LM1
LMA
M1

Ms

smoothing interval centres
weighting factors

L=1,..LM1: probe positions
L=LMA : plasma radius

= 1n (1-p2)

spectral function at the reference
grid points (14.1)

In U at EID

reference grid points

TRference
number of Y grid points

number of probes
= LM1 + 1

number of M grid points in the energy
window 1

number of M grid points in the energy

Sec.
15 Fig. 17
15 eqg. (15.5a)
2 Fig.1;Sec.6
4
17
15 Fig. 17
14 eqg. (14.1)
=JR(MS)

windows 1 + 2 % M grid peint = smoothing interval centre




2)

3)

4)

2)

7)
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COMMON /BLE/

Sec.
DE(I,L)= channel width of detector No. 1 2 Fig. 1b
of probe No. L 13
EO(I,L)= zero displacement 2 Fig. 1b
uo normalization factor 2 eq. (2.5-6)
JMAX(I,L) number of energy channels
for detector I, probe L
COMMON /OVL/
T (N) observation times t(N) 2 eq.(2.5)
DTN = T(N) - T(N-1)
IMAX = number of detectors of a probe
COMMON /GLA/
JL (M) . . ;
JR (M) smoothing interval No. M 15 Fig. 17

12 Fig. 15

COMMON /ALB/
FP profile F

UP profile y See Sec.5, just before eq. (5.8)

COMMON /ITE/

ALP =

BET -3 P } see Sec. 5, just before eq. (5.8)
P

g profile numbers; egs. (4.14) to (4.16)

COMMON /IMP/

NE (L) density

TE (L) } EleCtrontemperature at r = PL
COMMON /MET/
N22 _ , ; . ; _
P22 = NEo C partial density of titanium (Z = 22);

similar to the rest
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9) COMMON /SES/

Sec.
AL1 = & in energy window 1
ALL2 = & in energy window 2 12 Fig. 14
AL3 = & in energy windows 1+2
BE3 = B in energy windows 1+2
N8 = oxygen density in energy window 1
D8 = oxygen density in energy window 2

analogous: N1 and D1 for hydrogen

N22 = titanium density (Z = 22); analogous: N24,

N26, N28
z1 = ¥ factor in energy window 1
z2 = ¥ factor in energy window 2

s1, s2, 83, T1, T2, T3 are not needed in the present version.

The parameters listed in COMMON /SES/ only feature in the
SESNIC routine. We have collected them in a COMMON block in
case later users write an input/output routine in which

COMMON/SES/ would appear.

Precision parameters

The routines of this program contain inquiries
with "built-in parameters". An example of such a parameter
is the number 0.1 in the test  IF(RL. LE.O1) .. in the
OVLAP routine, ISN 0061, which is discussed in detail at the
end of Sec. 14. The user may now want to replace the number

test
0.1 by another and do the same in other statements. We there-

fore present at the end of this section a list of all test state-

memtS containing built-in parameters:
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Routine  Statement Discussion
BLENDE ISN 0026 If hv< 0.1 , then set U =0
BLENDE ISN 0029 If FILTER > 13. , then set U =0
OVLAP ISN 0061 If R< 0.1 , then set U =0 (Sec. 14)
LSTSQ ISN 0010 In eq. (16.2) sum terms are ignored,
LSTSQ ISN 0012 if G<€ 0.001 or V€ =700
LSTSQ ISN 0021 IED< 100 , absurd values are set for of and B
SESNIC ISN 0030 TE 131 < -0.001, then set Ny = 0
(or if Te = 1.MeV or negative)
ABEL ISN 0022-28 Sec. 18 and 19
ALPRET ISN 0034 If ULG £ -100. then set D=U=0
ALPBET ISN 0061 If MC < 1 then set « , B absurd
ITERAT ISN 0037
ITERAT ISN 0052 If IC €1 , then set H=C=2 (see Sec. 17, Fig.22).
ITERAT ISN 0056 1" H <€ 0., " Iy H =2
ITERAT  ISN Q0S8 W €S0, @ W €32 ; step profile not permifted
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13. BLENDE SUBROUTINE

The BLENDExsubroutine is for calculating the time in-
dependent normalization factor UO from Sec. 2, egs. (2.2) -
(2.5). In the ASDEX experiment there arg_five probes with
three detectors each. In our program éach detector therefore

has a probe index L and a detector index I:

The probe index L goes from 1 to LM1 (in ASDEX LM]1

5)i;

the detector " I goes from 1 to IMA (in ASDEX IMA

I

3).

Those characteristics of a detector which are also used out-
side the BLENDE routine (mostly in OVLAP) are therefore given

the indicesh and L. The characteristics of a detector are }

aperture radii R1 and R2

aperture positions X4 and X, (see Sec.3, Fig.2),
sensitivity radius X3

filter constants a, b, d

energy channel width DE

zero displacement EO

number of energy channels JMAX,

These parameters are read in statement ISN 0005.

BLENDE (German) = apetture (Engfish)
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The first part of the routine is for calculating DSDO = ASASL
according to eq. (3.10). Here the following change was made
compared with Sec. 3: the detector has a finite sensitivity

radius x3.

If X32> Xy then eq. (3.10) is wvalid.

If x3<z x2, then x3 has to be substituted for x2 in eq. (3.10).
If Xy X Xyr We interpolate, see ISN 0016.

The second part of the routine consists of the DO-5 loop. The
loop index JI counts the energy channels of the detector:;

EN is the energy in the centre of the energy channel JI. We set
U, = O if the energy is too small (EN < 0.1) or if the filter

function is too large (FILTER > 13). In the normal case (state-

ment ISN 0031) eq. (2.3) is valid.

Finally, we discuss the filter function. From the filter
constants a, b, d we form
FILTER = P(E) d (13.2)
p(E)= a E7P (13.3)
where E = hv.
For most materials one has b &2 3; for this special case

we therefore plot FILTER versus x = E(d-a) /3 in Figs 16
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X

-Fig. 16
Filtering for
b =3,

E =x - d-a

= FILTER




14. OVLAP SUBROUTINE

The OVLAP subroutine is used for
1) reading in the raw spectra (in statement ISN 0013),
2) normalization (statement ISN 0016),

3) superposing the normalized spectra (ISN 0038, ISN 0063).

The user reads in the numbers DE9 and EO9 in the main program,

and from these one forms the energy mesh points (ISN 0018)
E9(J) = DE9 J + EO9 (14.1)

This energy scale is called the reference scale. The purpose
of OVLAP is to calculate the spectral function U(L,J) =
U(pL; E9) according to eq. (2.4). Before describing the pro-
gram, we define the necessary concepts "energy channel",

"channel width" and "zero displacement".

A detector can be schematically described by energy
mesh points

EI(JI) = DEI JI + EOI (14.2)

located in the centre of intervals of length DEI'

These intervals are called "energy channels",

the interval length DEI is called "channel width", and

the quantity EOI is called "zero displacement".

When a quantum with an energy in the interval

- < <
E;(J;) - 0.5 DE; € hv € E{(J ) + 0.5 DE,

enters the detector, the counter with the number JI is ad-
vanced by 1. We illustrate the situation with an example: let

EOI = 0.7 keV
DEI = 0.06 keV .



_63_

The first energy channel is then located in the interval
0.73 < E £ 0.79 keV. A quantum with the energy 0.71 is not
recorded. A quantum with the energy 0.74 is recorded as a
guantum in the energy channel JI = 1, causing the raw

spectrum RI(JI = 1) to be increased by 1.

We now describe the program.

The OVLAP routine gets the parameters DE9 and EO09 via
the unlabeled COMMON, and the zero displacements EO(I,L) and
channel widths DE(I,L) of the detectors via COMMON /BLE/;
here L = probe index and I = detector index.

The raw spectra are read in the DO-5 loop and normalized;
the result is UB(I,J). The index L is not needed at this point
because it appears in the argument list of OVLAP.

Superpositioning of the normalized spectra according

to eq. (2.4) takes place in the DO-7 loop. In this loop we form

=X (1)

Sy = denominator of eq. (2.4) = >_ R, (14.3)
I=1

S, = numerator of eq. (2.p) = = (D UB(I)

at the reference energy E9. For this purpose we require R(I)

(1)

and UB at E9. For this purpose we look for the channel

number JI for which
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£ <
EI(JI) =EFE9 % EI(JI+1)

is valid. The solution is

E9 - EOI
J. = ——————— (statement ISN 0025).

DEI

We then check whether Jg is reasonable. This is done by means

of the IF-statements ISN 0028-32: J_. is not reasonable and

I
therefore does not make any contribution to SR and SU if
1) JI does not occur among the channel numbers of detector I,
or

2) R =0 for JI and JI + 1.

If JI is reasonable, a linear interpolation is performed:

_ p(I) -
RI = R (E9) = VL Ry + VR R_. . (ISN 0037).

The quantity RL calculated in ISN 0060 is the raw spectrum

at E9 and according to sec. 2 the inaccuracy in calculating

the spectral function U is about 1/RL. Therefore it is tested
in statement ISN 0061, whether RL is sufficiently large. In

ISN 0061 we compare RL with 0.1; in this case practically every
quantum is taken into account, but it may also lead to large
statistical errors. If the user does not need the rare high-
-energy quanta, but good statistics instead, he may replace the

number 0.1 by a larger one.




15. GLATT SUBROUTINE

In the GLATT subroutine we smooth the specﬁral function
within the clean energy windows. For this purpose we read in
several smoothing intervals (see Sec. 12, eq. (12.2)) and de-
termine ULG = 1n U in the centre EID(M) of these smoothing
intervals. This is done because for application in the ALPBET
routine U or 1ln U should be available with a good degree of
accuracy at a few mesh points. After OVLAP (MAINPR, statement
ISN 0043) is called, however, the spectral function U(L,J)
is present at very many mesh points, viz. the reference mesh

points (14.1), and is subject to large statistical errors.

Such a smoothing interval is shown in Fig. 17.

ULG (M)
B la S E=h
EL(M) EID(M) ER(M) > BE=hy
JL(M) JR(M) J

Fig. 17

The spectral function U(L,J) at the reference mesh points

E9 = DE9 J + EO9 within the smoothing interval JL(M) £ J £ JR(M).
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The GLATT routine works as follows:

Given: U(L,J) ;7 DE9 ; E09 ; JL(M) H JR (M)
J=1; JMAX9 energy channels,
L=1, .. LMA-1 probe positions
M=1, MS smoothing intervals.

Required: ULG In U at EID (M),

where EID(M)

0.5 DE9 [JL(M) % JR(M)J + E09. (15.1)

Method: The GLATT routine should only be used within clean
energy windows, where
In F=&+ 8 E , see (54)
is valid. Substituting this equation in eqg. (4.16),
it is seen that, if the smoothing intervals are properly
chosen (in window 1 approx, up tq 1 keV long, in window

2 in Fig. 4 up to 4 keV long), 1ln U is also a linear

function of E:

Loy G = «éb’” " BéM) E (15.2)

where unlike eq. (5.4), of course, the coefficients
dB and 38 may be different from one smoothing inter-

val to the next and therefore have the index M.

“é1)+ B§1)E

L

JL(4) JL(2) JRrR(4) JR(2)
Fig. 18

Clean energy window with two smoothing intervals.



From eq.
ULG

U
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(15.2) it follows that at EID(M) ¢

arithmetic average value of 1n U(L,J);

geometric average value of U(L,J).

But this way of taking the average value raises problems

when so few quanta are available that one gets U(L,J) = O

at a few mesh points. An example is given in Fig. 19.

7

N :

% Z ZZ

4 2 24 u 5 6 “# _35number of channels
Fig. 19

Distribution of 10 guanta on 12 energy channels.

We offer two methods of taking the average value, which

the user can select by the choice of the parameter NGLA:

NGLA = O

We take the geometric average value from the

arithmetic average value of U(L,J) by means of
the correction factor (15.4). For this purpose
we determine 38 in Appendix A (eq. (15.8)) and

use it to form
Z = BS(E8 - Eg), (15.3)

which is the dimensionless length of the
smoothing interval. The index M has been omitted.
By means of z one can calculate the ratio of the

arithmetic to the geometric mean: it holds that



NGLA

>
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(see Appendix B)

arithmet. dver. _ e0-32_ 70.52
geomet. aver. z

(15.4)

22 22 22
1+ 5@'[1' + 2 (1'*"'T€8>] :
The advantage of this method is that it also
works if a large number of U = O mesh points (s m?seng
and, furthermore, requires only two transcendental
functions to produce ULG, viz. the root in

eq. (15.8f) and the logarithm for obtaining 1ln U.

The influence of the U = O mesh points are taken

into account by a correction term:

ULG = +— JR‘l UL, T) 4 In 2o (15.5)

T SU :E n ! KM '
J=JL

where

KM = JR - JL + 1 = number of all mesh points,

SuU

Il

number of mesh points with U # O.
Summation is only performed over those J for
which U(L,J) # O is valid, hence the prime at
the summation symbol. The Mmethed
NGLA ¥ 2 requires much more computing time than
method NGLA = O because when, for example,

SU = 20, the logarithm is called 20 times to

produce ULG. An advantage of the method NGLA =Z 2
is the stronger smoothing, which is discussed

in Appendix A for a particular example.
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For subsequent least squares fitting the mesh points EID (M) ;

ULG(L,M) are given the weighting GEW(L,M) = SU. (15.5a)

APPENDIX A

Calculation of BS

From the U(L,J) of the interval (15.1) we perform the two

summations

s = >  Uu(L,J)
J=JL

JR
>  U(L,J) E
J=JL

wn
1

where E DE9 J + EO09,

1l

We now consider SO and S1 as approximations for the integrals

E
1 59dE g (15.6a)
S0 = DS 4,
8
and
E
B o e 59dE U E
17 DEJ }
8 (15.6b)
where 3
Eg = DE9 (JL -0.5) + EO09 (15.7a)
E9 = DE9 (JR +0.5) + EO09 ,

(15.7b)



Fig. 19a

U versus E;
SO (hatched area),

ES and E9
Substituting U prop. exp(BsE) (15.2)
in eg. (15.6) and defining Q = 81/50
C = (Q-Eg)/(Eg-Q)
F = 38 (EB—Q) (15.8)

one obtains the transcendental equation

1+CF

exp [(1+C)F] Sk

for thekimensionless unknown F; the solution is approximated by

c -1
F& — (15.8f)

c-c2/\1.-o0.8c+8.6c%-o0.8c>+c

The inaccuracy of the approximation (15.8) is approx. 1 %, and

it applicable for all 88.

Finally, we discuss the advantages and disadvantages of
the two methods. Method (15.4 + 8) or NGLA = O is recommended
when there are a large number of U = O mesh points present. The
disadvantage of using an approximation formula is more of a

theoretical nature. Much more important in practice is what



happens when there are "wild points", i.e. mesh points with U

values which for some reason become too large. We use both

methods in the following example:

JL=1
JR=7

38=0
KM="7
sU=7
S0=406

NGLA

I
(@)

NGLA > 2

& wild. point

N oW W S
y
(@]

- el =t DS

ULG = 1n [SD/KM]

= 1n(106/?) = 2.7
ULG = gﬁ zz 1n U

- -% 1n 100 = 0.66

Wild points are thus more strongly damped by eg. (15.5) than

by eq. (15.4). With "ordinary" errors, on the other hand, this

effect is not very pronounced: substituting U(J=4) = 2 in the

above example yields

ULG =
ULG =

0.13 for NGLA
0.10 for NGLA

If it is to be feared that

0
3.

the spectrum of the clean, or

rather presumably clean, energy windows will be distorted by

wild points, method NGLA =17 is to be recommended instead.
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APPENDIX B

Relation between the arithmetic and the geometric averaged

value of the spectral function U in the smoothing interval.

Introducing the dimension-less variables

XxX=-8 E_EB)

8(

and zZ = BS(ES_E9)

one has U = e X (normalized to 1 at E = EB)'

The arithmetic averaged value is
g = —g,
A= — S dx U = = [1.- e ]
2 Z ™ )
o

The geometric averaged value is

A
G = exp {%J’ dx 1ln U} = g7 0432
o

and, consequently,




16. LSTSQ SUBROUTINE

We are given pairs of values E V. and their weighting GJ.

af Ya
The purpose of the LSTSQ subroutine is to calculate two numbers

&, B so that
V.= + BE (16:1)

is satisfied as well as possible or that the square of the error

JMA

~ _ _ 2
S -E GJ[_o.-t» BE VJJ (16.2)

becomes minimal. The system of equations

aa—i=:—§=o (16.3)

can be reduced to the form

A& * &y, B =B, (16.3a)

Aya * iy B = By b)

where A, =2 G (16.4a)
A"E = EGJE‘;L b)

A22 :ZGJLJ C)

B, =S GV, d)

B, = =GV E , s

IF-statements

If v< -700. , the respective sum term is not taken into account.
When this is applied to V = 1ln U the "trivial" cases U = 0O are
not counted.

If the determinant is D = O, absurd values & = -444 and

R = 222 are set.
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17. ITERAT SUBROUTINE

The ITERAT subroutine calculates the quantities o and R
and the emissivity F for a given spectral function U. It performs
Abel inversion by means of eq. (4.16), AZ being calculated on
the assumption that S and kTe are of the profile type (egs.
4.14 and 4.15). Since this assumption need not always be

correct, we do not call the result  , B but up, B_.

P

Given:
Energy mesh points E = EID(M), M = ML, MR
Probe positions ?L = P(L) , L =1, LMA
Spectral function In U= ULG(L,M);
Required: ap = ALP

B = BET

P

Up = UP(L,M).
Method:

It is assumed that the energy mesh points are located in a
clean energy window so that eq. (5.4) is valid.

The basis equation is eg. (4.5) in the form

O(p(r) + B (r) E = (17 .71)

A2
where W= 1n U - 1ln {Za \/ } (17 .2)

The idea is now to choose tfp and Bp for fixed r such that

eq. (17.1) is satisfied as well as possible (see Fig. 20).
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To determine AZ we use eq. (4.16a-e), i.e. we assume
that the quantities S and Te are of the profile type (eq.
(4.14)-(4.15)). If S and T are not of the profile type, there
are errors which experience shows to be small because W only
depends logarithmically on AZ. Another difficulty is that the
variational problem (egs.(17.1)-(17.2)) is not linear because W
depends on dp and Bp via AZ. Under these circumstances we cal-

culate & and B by the following iteration method:

o)
0]
o+
b=
]

&
P
Jlafter the n-th iteration step;

B_ =B
n p

we then make the ansatz

o« q Bn+1E = W(cxn;ﬁn;E;..) (17.3)

and determine o and Bn so that eq. (17.3) is satisfied

n+1 ¥

as well as possible (least square fit; see Sec. 16 on LSTSQ

routine) . Here (!n and Bn and hence W are known from the
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previous iteration step. As already mentioned above, the
left-hand side of eq. (17.1) depends much more strongly on
oy Bp than the right-hand side W; the method therefore al-

P
ready converges after 2 to 3 iteration steps.

To calculate Az, we need the profile numbers C and H.
These are determined by a least squares fit from the re-
arranged equations (4.14)-(4.15):

2

qn(r) = 1n SO + C 1In(1.-%7) (17.4)

-In(-8,(r))= 1n T_ + H 1n(1.-2%) (17.5)

Fig. 21

Determination
of the pro-
file number C

We start the method by arbitrarily giving

c=H=2, B8 _,=-1 (17.6)

Each iteration step consists of the parts given in the

table below:



Table Tl_I

Calculation according T parag:;ir? line
of to equation: €: mnece v

AZ (4.76a-e) AZRUT c, H, 8 X

W (17.2) AZ, 1n U II

O i 17Beq (17 x3) LSTSQ W L1.L

S c|n+1 (17.4) LSTSQ - IV

T, Hln+1 (17.5) LSTSQ B 47 v

Line III is a least squares fit in the E direction:

ol and Bn are chosen for fixed r=p; SO that eq. (17.3)

n+1 +1

is satisfied as well as possible. Lines IV and V are least
square fits in the r or p direction: So and C are chosen such
that eqg. (17.4) is satisfied as well as possible. The analogy
is as follows:

In line III W is approximated by a linear function of E and

in line IV “n+1 is approximated by a linear function of
ln(1~f2). We have thus determined |up and Bp from U. This also

yields Fp from eq. (5.4) (see DO-8 loop at the end of ITERAT)

and Up from egs. (4.16) and (4.3).

Furthermore, an error square

1> [ln UP - ULG]2

ER =
SU L,M ULG

(17.7)

is formed rather arbitrarily at the end of the DO-8 loop,

SU being the number of sum terms.



Meaning of variables appearing in ITERAT

ML < M£ MR energy mesh points used for calculating p’Bp

ALP =d

p
BET = B

P

Fp = Fp from Sec. 5

UP =10
p

ULG = 1In U

P =p

C, H profile numbers from egs., (4.14) - (4.16)

LMA = number of p mesh points (probes and plasma radius)
MS = number of EID " " ( smoothing intervals)

GE, GEW, G weighting factors for the least square fit
(see Sec. 16)

PLOG(L)= 1n (1.—@%)
AL = ALP =op

TL(L)= 1n(f 1/BL} From this the profile number H is
determined in statement ISN 0054 by a
least square fit.

W see eq. (17.2).

Structure

The first lines up to the DO-1 loop describe the start of the
iteration method (eq. (17.6)). In addition, the quantities

TL and AL are given absurd values so that they are defined if
for any reason the mesh point has to be missed later. Later we

also have the same basic structure in most DO loops:

Weighting factor made zero

)

) Absurd value for the variable (e.g. W or TL)

) Test: if, for example, ULG absurd, then GO TO CONTINUE
)

ULG reasonable: then calculate the variable.



The DO-6 loop contains the iteration scheme described in Table
III; the result is ALP(L), BET(L), C and H. The ULG are supplied
together with the weighting factors GEW by the calling pro-

gram; G is calculated in statement ISN 0033 from the GEW.

Our next task is to discuss the meaning of the variables
LC and MC. For this purpose we have to know that in the high-
-energy regime there are many "trivial" mesh points, i.e. pairs

of numbers L, M for which
U(L,M) = 0 or ULG(L,M) = -711

is valid. This is because the quantum density decreases as
exp(-%%— for high energies hv. But trivial mesh points may
also exist for very low energies if the filters are too imperme-
able. On the whole, there is then, in principle, a distribution

of the trivial (o) and non-trivial (x) mesh points, as shown in

Fig. 22,
Fig. 22 E=hv
A X o] o o o --- MR
Distribution of
X X o o} o
trivial (o) < % o o o
and non-trivial (x)
X X X o o
mesh points in the g - - " -
p-E plane - « o % % —-——— ML
MC =5 5 2 2 2
A,p

MC denotes the number of non-trivial mesh points of a column.

|F — statement ISN 0037 means: ALP and BET are only calculated




when MC> 2; this condition is met in our example (Fig.22)

in all five columns. LC denotes the number of columns for which
ALP and BET are calculated; in the example in Fig. 22 one

thus has LC = 5. The if statement ISN 0052 means: C and H are
only calculated when LC 2 2. Otherwise C = H = 2 is set. In

the case of Fig. 22 one has LC = 5.



18. ALPBET SUBROUTINE

The ALPBET subroutine calculates

Given:

Energy mesh points E = EID(M) , M
probe positions p = P(L) . ik
Plasma radius a = P(LMA)
Spectral function ln U = ULG(L,M)
Required: a(pr = RL(L)
R(p;) = BE(L)

the quantities o and 8.

ML, MR
1, LMA-1

The variable NABEL specifies the method used:

NABEL = O Use of ITERAT routine.
o = dp AL, = ALP
B =20 BE = BET
p

and thus consider the
ITERAT in Sec. 5 to be

for & and R.

NABEL = 2 Use of ITERAT and ABEL

We set

X and B ielded b
p p Y Y

the best approximations

routines. In addition to

X and B_ ITERAT yields U_ and F_ (see ITERAT,
P P p P

DO-8 loop); for the difference D = U - U we do

the ABEL inversion in the ABEL routine. The

result is G. We form

etc., see Sec. 5.




NABEL = 3 We skip ITERAT and calculate F solely by means
of ABEL. To allow this, se set Up = 0 in the

DO-3 loop.

NABEL = 4 In the ABEL routine Gaussian interpolation is
used - if possible.
NABEL = 6 In the ABEL routine only parabolic interpolation

is used.

In the DO-9 loop F is put in log form. In tne DC-11 loop & and
B are calculated by a least squares fit according to eq. (5.4).
If the parameter JWRITE =2 2 is chosen, intermediate results

are printed out.

Fi% 22 a

Parabolic Interpolatisn
and

Gaussian Infte*r“po lation




._83..

19. SUBROUTINE ABEL

The ABEL subroutine is used to perform ABEL inversion, i.e.

Given:

Positions Py,

Mesh points ry ol = L2 emell
and Up = Ulpy):

Required: FK = F(rK) for 'y = Py

The formal solution to Abel's integral equation (4.5) is

a
4 d au
F(r):-»——g__l'i._____
% 2 2 9
r p -r
I; follows that
Ir
. " ng L+1 dU
X~ 1N I-X \/ I . (19.1)
ry P -r

In the ABEL subroutine we provide two interpolation ansatzes

for 1:

1y EE

U > U, 4 >0 Z, (19.2)

and NABEL = 4

B -

is satisfied, we use Gaussian interpolation:

} 2
PnU: BL'CL'P for TLEP ST 44 (12.3)




- B =

It follows that

{ o= ' > o TLH
= = > VC—? exp(B -C.r A [erf VCL(p -r°)
T =X Py,
where

erf(z) =
(19.4)

(o

. ‘ﬁ|m

In the program we use, instead of erf, the complementary

function

erfc(z) = 1.- erf(z). (19.5)

If condition (19.2) is not satisfied, we use the parabolic

interpretation:

2 s
U = QO * QLp for p;, € P < Pr41 (19.6)

It follows that

N-1 ~ >
2 22 2 _2
S ST Lz=1c QL[ PR '\ﬁ’Lm"rK ] 12w

In both cases (Gaussian and parabolic interpolation) it is

assumed that

U, =F_. =0 (19.8).



As can be seen from Sec. 6, negative positions can also
occur, e.g. when some of the lines of sight of the probes pass
the plasma centre on the right and some on the left. The few
mesh points that we have are thus distributed over an interval

A
—1.5 p$+1

As circular symmetry was assumed in eq. (4.1), U only depends
on U via p2; we therefore sort the mesh pecints according to
increasing pi by calling the SORTIR routine, which yields an

index function
J = MA(L)

with the following property:

QS (L+1) > QS (L)

sk 0S (L) = Q(J)=p§ )

In the DO-7 loop at the end of the ABEL routine the sequence

originally presented is restored.

The variable NG denotes the number of non-trivial mesh
points. A mesh point is said to be "trivial" when U = O there.
Trivial mesh points are particularly abundant for high quantum
energies, especially for relatively large positions p. If there
is only one non-trivial mesh point, no statement is possible
by means of F; because we had set F = O in the DO-1 loop we
can give RETURN in this case (statement ISN 004%).

The variable NABEL selects the interpolation method:

NABEL € 4 if at all possible, Gaussian interpolation
(eg: £19.3) = (19.58))

NABEL = 5 parabolic interpolation (eq. (19.6)-(19.7)).




20. SORTIR SUBROUTINE

SORTIR orders the components Q(L) of a vector according to
magnitude. The notations are as follows:
LMA = number of components of the vector Q;

M(L)= an index function with the property

Q(M(I)) > Q(M(K)) if I > K, (20.1)

First we consider an example:

Q(1) = 23. M(1) =1
LMA=3 Q(2) = 67. Then M(2) = 3 (20.2)
Q(3) = 34 M(3) = 2

The SORTIR routine is for calculating the index function
M(L) . For this purpose we start in statement ISN 0006 with
an arbitrary function,

M(L) = L.
If we find a pair of indices I, K for which condition (20.1)

is not satisfied, we set

(20.3)

and



21. IMPUR SUBROUTINE

The IMPUR subroutine calculates for the metal impurity
with nucleus charge number Z and K, - line at EI the ion density

NI and the ratio PI = NI/NE according to the formulae of Sec.11.

iven:
Spectral function U(L,J) ; DE9 ; EO9
Electron density NE (L)
Electron temperature TE (L)
Atomic number Z
Kx energy EI
Required:
. _ NI(L)
Ion density NI(L) and PI(L) = NE (L)
Method:

First we determine the continuum component according to the

principle in Fig. 23a: it is assumed that in the intervals

JLI-N € J £ JLI (21.1)
and

JRE+N > J = JRE (21.2)
we have U = UC (21.3)

i.e. there is no line

radiation present. The

mean values of U in

T

U, Ue these intervals are
. |
i : : —> J U. and U_ respectively.
JU-N- Ji JRE JRE+N L R Y
Q E
0,2 Eq 0.2 From these we take
0,5 keV the mean value

UC = VULUR. (21.4)

Fig. 23a




Here we have assumed

DE9 (JRE-JLI) = 0.8 keV (21.5)
as a measure of the extent of the Ky spectrum and

DE9 N = 0.2 keV (21..6)
for the line-free boundary continuum.
We now form

UK=JdE (U - uc),

DES Z [U(L,J) = UC] (21«7)
J

It is allowed to take for the continuum component UC the mean

UK

value from eq. (21.4) because UC is approximately a linear
function of E. UK and K from Sec. 11 are related by Abel's

integral equation:

dr r K

-3
Uk = 2] o= 2.9
FF

Depending on the choice of NABEL (see Sec. 18), K is calculated
from UK either by ABEL inversion (CALL ABEL) or from AZ by means
of eq. (4.3) (CALL AZRUT). As soon as K is known, the formulae
from Sec. 11 are used in the DO-9 loop to calculate the im-

purity density.



> E

Fig. 24

Schematic representation of U and Uc versus E if the
IMPUR routine is called four times to determine the densities
of Ti, Cr, Fe and Ni. The dashed line represents the continuum

component Uc'




22. METAL SUBROUTINE

The METAL subroutine calculates for a given temperature
the contribution of the metals Ti, Cr, Fe and Ni to the j
factor (eq. 7.8). According to Sec. 5, Fig. 4, we have two clean
energy windows in which be can assume various values. These
values were calcqlated for iron in eq. (9.7). We repeat eq.(9.7)

here in the form

RFﬁ1 =" 5700 TZ'5 /'(1.+T2‘88) for energy window 1
2. < E< 4, keV
~ 2.5 2.9
REEZ = BH0G g ./ [ e 1 for energy window 2

E > 10.keV

For the other metals there are no curves like those in
Fig. 9 for the partial densities of the individual ionization
stages. Calculation is therefore not yet possible; the same

values are taken for Ti, Cr, and Ni as for Fe.

The second part of the routine is concerned with the
contributions of the individual metals. For example, according

to eq. (7.8)

n
N 1 - (i) (i)
AERA = ne[ziff Err + Ry ] (22.2)
= P26(J) [600. ¥ RFE1] (22.3)

is the contribution of iron to the f factor in the energy

window 1. Here we have roughly estimated

2 (1)

155 Bep 2 600, (22.4)

Z



which according to Fig. 9 is probably best satisfied at

3 keV. The contributions of the other metals were similarly
estimated.

The partial densities (e.g. P26) were calculated in the

IMPUR routine before calling the METAL routine.




23. SESNIC SUBROUTINE

The SESNIC subroutine determines the plasma parameters
from the spectral function U; see beginning of Sec. 12. The
spectral function U(L,J) is obtained at the reference mesh
points

E9(J) = DE9 + EOQO9

from Sec. 14, eq. (14.1). From it we obtain the smoothed

ULG = 1ln U at the centres EID(M) of the smoothing intervals
by calling the GLATT routine . By calling the
ALPBET routine we then get the plasma parameters AL1 ... BE3,
the meanings of which are shown in Sec. 12, Fig. 14. The

DO-3 loop contains a temperature definition

Te = - 1/BE3 , ISN 0016

which we use because it is calculated from all available

energy mesh points. It is not clear, however, whether this

is the best temperature definition; perhaps only energy window 1
should be enlisted, i.e. Te = -1/BE1 should be used, if, for
example, BE2 is distorted by any effects (e.g. runaway

electrons) .

After the DO-3 loop the IMPUR routine determines the
density of the metal ions Ti, Cr, Fe, Ni. For this purpose we
require the electron density, which is stored therefore in
COMMON /IMP/. The DO-6 loop now following is essentially for
calculating the density of the oxygen ions. At the beginning
the temperature TEMP is somewhat differently defined than in

the DO-3 loop.



Furthermore we have

according to eq. (7.6) SH = 3 x 1O11 ni/ Te ISN 0036
and according to eq. (7.5) Z1 = exp(“1)/SH ISN 0037
and, similarly, for window 2 22 = exp(az)/SH ISN 0038

Z1 is the T factor in the energy window 1;

Z2 is the j factor in the energy window 2.

The METAL routine then yields the contribution of the
metals Ti, Cr, Fe, Ni to the f factor. As was shown in Sec. 9
for the example of Fe, the f factor in the energy window 1 is

smaller than in energy window 2. The METAL routine therefore

yields
ZME1 = metal contribution to the f factor in the energy
window 1
and ZME2 = metal contribution to the f factor in the energy

window 2.

While ZME may be about 5 to 10 for 1 to 2 o/oo Fe, the
contribution of hydrogen to the f factor is equal to the Gaunt
factor and is of the order 0.5. The Gaunt factor depends on x
(see eq. (7.10)); but we do not deal with this here. For each
energy window we calculate with a mean x: for energy window 1
we set X, = 3/TEMP because E = 3 keV is about the centre of

energy window 1. Ignoring the x dependence of the Gaunt factor

can distort the temperature by up to 10 %. FUTtHQTTnOT?,

Z81 is the contribution of oxygen to the r factor
in energy window 1

and Z82 is the contribution of oxygen to the T factor
in energy window 2.



RO is the recombination term according to Sec. 10 (ISN
0052) . Strictly speaking, the statements for Z81 and Z82 should
include the Gaunt factor for the hydrogen multiplied by the
(unknown) partial density of the hydrogen. This has been
neglected for convenience because either there are no impuri-
ties present and the partial density is then 1, or there are
impurities and the error in determining f is mostly larger

than the Gaunt factor Iy itself.

R1 in ISN 0025 is the partial density of the hydrogen
without taking oxygen into account. Here we have rather
arbitrarily set the ion charge number of the metal ions equal

to the nucleus charge number - 2; this means that the metal

ions are predominantly in a helium-like state.

We now conclude by considering the accuracy of the
data and parameters calculated in SESNIC and elsewhere.
® and B are reliable to a certain extent, i.e. AL1 ... BE3;
the error for data with mean noise level is in Te a few % and

in S approximately 20 % or 10 %.

The metal ions are determined from the line integrals;
the inaccuracy of these is, say, 20 %. Furthermore, <¥7V>
from Sec. 11 appears in the calculation;'<5“/> is inaccurate
by a factor cf about 2 (see Fig. 13). Consequently, the metal
ion density is only known to within a factor of 2. With 1 to
2 o/oo metal the metal component ZME of the :f factor is of

the order of 5 to 10 according to Sec. 9, i.e. much larger than



the hydrogen component. It may now very well be that the

{ factor calculated from o according to f = exp(®& )/SH is
smaller than ZME. This is because so little is known about

the constants in <6“J> and also in the METAL routine.

Since & and B are reliable to a certain extent, and at least
the order of magnitude of n, is known - if i = 22, 24, 26, 28 -
no faith should be put in the oxygen calculation performed in
this section until the constants in Secs. 11 and 22 are known

exactly and reliably to within a few %.

AKNOWLEDGEMENTS

The author wishes to thank D.Diichs, S.v.Goeler and S.Sesnic

for helpful discussions.

REFERENCES

/1/ S. v.GOELER, Nucl.Fus. 15 (1975), p. 301 ff.

12/ D. DUCHS et al., Nucl.Fus. 17, 3 (1977)., p« 579, Fig. 4
p. 581, Fig. 6

/3/ F. POHL, IPP 6/173 (1978)
/4/ S. v.GOELER, Varenna Como (Italy); Course on Diagnostics

for Fusion Experiments, 4.-16. Sept. 1978,

Soft X-ray Measurements.




ISN
ISN
ISN

1SN
ISN
ISN
ISN
ISN
I SN
ISN
ISN
1SN
ISN
1SN
ISN
ISN
TSN
ISN
ISN
1SN
ISN
1SN
1SN
1SN
15N
ISN
ISM
{SN
ISN
I SN
1SN
ISN
ISN
ISN
I SN
ISN
ISN
1SN
ISN
[SN
ISN
ISN
ISN
ISN
[SN
1SN
ISN
{SN

ISN
I SN

ISN
15N
1SN
1SN
15N
ISN
I SN
TSN

ISN
ISN
1SN

Q002
0003
2704

0005
0006
0007
NNNg
1009
0010
0911
o012
nn13
09714
0015
n916
0017
0018
0019
0029
nn21
0922
0023
nNN24
0025
09246
no27
0028
n129
0039
0031
nn32
0033
0034
10135
0036
2737
0038
6039
0949
0041
0042
0043
0044
0145
0046
0n&t
nn4B
0049

0053
0051

0052
0053
0054
0055
NI56
0957
0058
2159

0062
0061
0062

C TOKOMAK X-RAYS , SEGMENT HM A [ N P R

12

92

93
94
95
98
99

109

110

112

202

719

REAL #4 NE

DIMENSION EL(12) , ER(12)

COMMON EID(47), GEW(5,12), P(6), PLOG(4T)y U(5,301)s ULG(S5,12)
1 v DE9y EO09, JMAX9, LMl, LMA, M1, MS

COMKON /GLA/  JL(l21, JR(12)

COMMON /0VL/ T(20), DTN, IMAX

COMMON /IMp/ NE(5) o TE(5)

PRINT 98

PRINT Q0

PRINT 91

READ 710, IMAX, LMA, M1, MS, NABEL, NGLA, NM#X, DE9, EOJ9
PRINT 709, [IMAX, LMA, M1, MS, NABEL, NGLA, NMAX, DES9, EO09
PRINT 94

READ 112, - ( TIN), N=1,NMAX)

PRINT 110, { TIN)y N=1,NMAX)

PRINT 93 .

READ 112, ( EL(M)y ER(M), M=1,M5)

PRINT 110, { EL(M)y ER(M), M=1,M5)

Do 2 M=1,M5
JUIM) = (EL(M) -€EN9) / DE9 + 1
JR{M} = [(FR(M) —-EJ9) / DE9
EID(M) = 0.5% DE9*( JL(M) + JR(M)) + EO9
JMAX9 = JR([NS)
PRINT B89
PRINT 92
LML = LMA -1
00 3 L=1,LH1
PRINT 100, L
DO 3 I=1,1MAX
CALL BLENDE ( T o L )
CONTINUE
DO 6 N=2 , NNAX
. PRINT 202, Ne TIN-1) , TN}
DTN = TI(N) = TIN-1)
PRINT 99
READ 112, ( NE(L)y L=1,LMD
PRINT 112, ( NE(L),y L=1,LML)
PRINT 95 :
REAC 112, ( PIL)y L=1,LMA)
PRINT 112, ( PLL)y L=1,LHMA)
00 & L=1,LM1
PLOG(L) = ALCG( le— ( P{L)/PILMA))%*%2)
CALL OVLAP [ L « N
CALL SESNIC ( NGLA , NABEL )
CONTINUE
GO TO 10
FORMAT(/33H FILTER- UND BLENDEN-PARAMETER:)
FORMAT(/32H === H A U P TPRCGRAM ==x)
FORMAT (/70H IMAX LMA Ml MS NGLA NABEL N4 AX
1 DE9 E09)
FORMAT(/113F I L JHA A B D 0
1€ EO X1 X2 R1 R2 R3 DsSDO)
FORMAT (/T6H EL M=1 ER EL M=2 ER EL K=3 E
1R EL M=4 ER)
FORMAT(/6H T)
FORMAT (/6H PH)
FORMAT (1H1)
FORMAT (/38H NE ELECTRON DENSITY 10#%13 CM-3)
FORMAT ( 127X , 10H L=,11)
FORMAY ( F6.1 5 10F10.1)
FORMAT ( 12F6.1)
FORMAT(/1&H TIME N=,12412H TIN-11=41PE9.2
1 » L2H T(N)=,1PES. 2]
FORMAT ( 718 4 5FB8.2)
FORMAT ( 714 » SF&.1)

7190

END
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SUBROUTINE BLENDE ( I -+ L )

COMMON /BLE/
COMMCN /0VL/
READ 2113,

X1 = ABSTAND

DE(3,5) +EO0(3:5) 4 UO(3,5,301), JMAX(3,5)
T(22), DTN, IMAX
JMAX{I,L)y A,8,D,y DE(I,L), EO(I,L)y Xly X2o Rly R2, R3

DER BLENDE 1 VOM DETEKTOR ; DAKER X2 << X1

S1 = 3.1416 * R1*%¥2
S2 = 3.1416 * R2%¥*2
S3 = 3.1416 * R3**2
R4 = X1* (R2 -R1)/(X1l -X2) + Rl
RS = X1l* (R2 +R1)/(X1l -Xx2) - RI1
D2 = (X1 =X2)**2
IF { R3. LE. R4} GO TO 34
IF ( R3. GE. RS5) GO TO 35
SD = S3/X1*%2 *(R5-R3)/(R5-R4) + S2/02 #*(R3-R4)/I(R5-R4)
GO 10 1
34 - SD = S3/X1%*%2
GO 10 1
35 SD = 52/D2
1 DSDO = S1 # SD
JMA = JMAX(I,L)
DO 5 JI=1,JMA
UOLI«LsJdI) = 2,
EN = JI * DE(I,L) + EO(I,L)
IF { EN. LE. 0.1) GO TO 5
FILTER = D*A / EN*%8
IF (FILTER. GE. 13.) GO 70 5
UO(T,LsJI) = 12.5664 ® EN *EXP(FILTER) / (DE(I,L) * DSDO)
5 CONTINUE
PRINT 3104 I,L,JMA, A,ByDy DE(T,L),EQO(I,yL)y X1lyX2, R1,R2,R3, DSDO
RE TURN

310 FORMAT ( I12,21¢, 2FB.3, S5F8.2, 3F8.3, 1P2E10.2)

213 FORMAT ( 1[4
END

+ 11F6.3)

SUBROUT INE SORTIR ( Q, M, LMA)

DIMENSION Cle)y M(6)
LMl = LMA - 1
Do 2 L=1,LMA
2 ML) = L
00 4 L=1,LM1
I =1L
DO 3 K=L,LMA
MK = M(K)
ML = M(1)
IF [ Q(MK). LT. Q(MI)) 1=K
3 CONTINUE
ML = ML)
HIL) = M)
MI[) = ML
4 CONTINUE
RETURN
END
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0026
0027
n1248
0030
9132
0034
0035
0936
0037
0738
0039
0049
0741
0043
0045
0747
0049
0059
0051

0252

0153
0054
9955
0056
0058
0060
anel
0063
0064

0065
09267
0ne6R
0069
27711
0071

0072
0073
0074
no75
0076
0077
nJ78
no79
00s8n
0782
00R3
NNB%4
2086
aca?
nNBR
0090
0091
noe2

2993
0094

0095
0096
0097

0798
09299

SUBRCUTINE CVLAP ( L
INTEGER®2 R( 3,25
REAL*4 NWNG
DIMENSION u
COMMON  EID(4T)s GEW(
1 + DE9, EO9,
COMMON /BLE/ DE(3,5)
COMMON /GLAS JL(12),
COMMON /0VLs TH(29),
JHRITE = 6
I=1, TMAX
JHA = JMAX(I.L
130, ( RUTI4J) »
NWNG = 1.
DO S J=1,JMA
5 UB‘I;J} = UD(TsLsJd
00 7 J=1,JHAXS
E9 = DE9 *J +
SQ 0.
SR 0.
0.
1;IMAX
EQ(T,L)
DE(T,L)
(E9 - E2
TUMAX(I.L
JMA = 1
Ju1)
JI. LE. 0)
R{I4JI). LE. Q.
EI = DEI *JI
{E9 -EI)
l. — VR

00 5

READ

DO 6 1

m
o
—
(T (T T (I T I

IF
IF
1F

SU + RI®
SR + RI
sQ SG + Rl
IF (JWRITE. LE. 7) G
IF ( L. NE. 1) G
IF { N. NE. 2) G
IF ( J. GE. 8) G
PRINT 90
PRINT 81
PRINT 712, Iy Je JI
i +RI+ SQy SR, VL,
81 FORMAT(/12TH
1 EO9 RI SQ
2 JI+1)
T12 FORMAT ( 110,
6 CONTINUE
uiL,Jl = 2.
IF ( SR. LE. 2.)
IF { SU. LE. 0.)
RL = SQ / SR

v
c
W ouony

513, F1

JHMAXT,

98 =

+ N
6) + R1J 4 R2J 4 R3Y

B(3,256)
5s12), P(6),
LM1,
+EQ(3,5)
JR(12)
DTN, IMAX

PLOG( 4TI},
LMA, M1, MS
v UD(3,5,301),

Ul5,301)s ULGI5,12)

JHAX(3,5)

)
J= 1, JMA)

) *# R(I[,J) * NWNG / DTN

EQ9

1) /7 DEIL
)

GO TO &

GO TO 6
AND. GO 10 6
+ EOI

/ DEI

R{TI,JI+1). LE. 0.)

RUI,JT) #VL + R(I,JI+1) *VR
(UB(I,JI) *VL + UB(I,JI+1) *VR)

.2

0 TC
0 TO
0T0
0 TO

occo o

s Lo RITLJI), RUTJI#1),
VRy SUs UB(TI4J1)s UB(I,JI+1)
I JJ1I L R DEIL

SR vL VR

DEI, DE9, EOI, EO3

DES EOT
SU UBI(I,JI)

0.2, BF8.2, 1P3E10.3)

GO 10 7
GO 10 7

IF ( RL. LE. 0.1) GC 10 7
UlLesJ) = SU / SR
7 CONTINUE
C PRINT
IF ( JWRITE. LE. 5) GO TO 80
PRINT 101, N »L
PRINT 91
00 79 J= 1, JHAX9
R1J = 0.
R2J = 0
R3J = 2
urlJ = 0.
ugszy = 0.
UB3J = 2.
El = DE({1l,L) =J ¢ EO(L,L)
€2 = DE(2,L) *J + EO(2,L)
E3 = DE(3,L) *J + EO(3,L)
E9 = DE9 *] 4+ EOQ9
IF { Jo. GTo J¥aX(1l,L)) GO TO 71
R1J = R(1,J)
UBLJ = UBI(1.,J)
7L IF { Jo GT. JMAX(2,L)) GO TO 72
R2J = R(2,J)
us2J = URI(2,J])
72 IF { Jo GT. JMAX(3,L)) GO T0 79
R3J = R(3,J)
UB3J = UR(3,J)

79 PRINT 6264 NsJs» RLJ, Els UBLJ, R2J, E2, UB2J, R3J, E3, UB3J, B3
1 v UL J)

97 FORMAT( /15H === 0 V L A P/)

91 FORMAT(/122H N J RE1sJ) El UBI(Ll.J) R{
12,41 E2 UB(2.:J) R{3,J) E3 uB(3,J) E9 utJ,
2H))

101 FORMAT(/21F == 0O V L AP == N=,12, 44 L=,11)
130 FORMAT ( 2413)
606 FORMAT ( 3119 , F8.2 , 1PE10.2 , I10 , OPF8.2 , LPELO.2
1 v 110,0PFB.2 ¢ LPELO.2 0PF8.2 o 1PEL10.2)
87 RETURN
END
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500
600
700
800
900
1000
1100
1200
1300
1409
1500
1600
17¢0
1800
1901
2000
2100
2209
2300
2400
2500
2600
2709
2800
2900
3000
3100
3200
3300.
3400
3590
3600
3700
3800
31900
4000
4109
4200
4309
4400
4500
4600
4700
4809
4900
5000
5199
5200
5300
5499
5500
5600
5709
5800
5900
€000
6100
6209
6300
6400
6509
6600
6700
6800
6900
7000
7199
7200
7309
7400
7500
7600
7700
7800
7900
8000
8100
8200
8300
8400
8500
8607
8700
8800
8909
9000
9109
9200
9300



iSN
ISN
ISN
ISN

ISN

ISN
TSN
1SN
ISN
ISN
ISN
ISN
ISN
ISN
1SN
ISN
ISN
ISN
ISN
1SN
ISN
1SN
ISN
ISN
I SN
ISN
ISN
ISN
1SN
ISN
ISN
1SN
ISN
1SN
ISN
ISN
ISN
I SN
1SN
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1SN
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ISN
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1SN
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ISN
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ISN
ISN
ISN
ISN
ISN
ISN

0912
0003
0004
0005

0006

oooT

7978

0009

0010
2911

0012

D013
0014
0015
7916
no17

0018
0019
0020
n921
0022
0023
1024
0025
0026

no27
0028

0129
0032
nniz
09133
0035

0036
0137
00138
nn39
0240
0N41
0942
0043
0044
0045
0046
1347
0049
0051
0052
0053
0154
nN155

0056

0057
pJsAa

0059

076"
0061

0N62
N763

0064
D065
0066
267
0068
0069
997
0071
0072
0073
0074
nars
0076
0077
178
0nT9
0089
oosl
0082
0283
0084
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SUBROUTINE SESNIC ( NGLA , NABEL )

REAL *4 N
DIMENSION

1. N8, N22, N24&,

E(47)y Gl&T

COMMON  ETD(47)s GEW(S

1 » DE
COMMON /SE

1
2
3
COMMON /ME
COMMON /1™

DO 1
1 CALL GLATT

CALL ALPBE
CALL ALPBE
CALL ALPRE
nn 3
TE(L}
3 CONTINUE
CALL IMPUR
CALL I™PUR
CALL IMPUR
CALL [MPUR
DD 6
(L)
ra2(L)
R1
PB(L)
DB8(L}
N8(L)
PL(L)
IF { BELI(L
TEMP
IF ( BE2(L
TEMP
4 SH
Z1(L)
z2(L)
CALL METAL
X1
X2
GH1
GH2
4:)1
182
P12
[F ( I81.
iF ( I82.
xn
RO
GOl
G02
Pa(L)
P82
PLIL]
P12
NB (L)
palL)
5 NL(L)
pL(L)
6 TE(L)
C PRINT
PRINT 98
PRINT 90
PRINT 83
PRINT 113,
PRINT 84
TPRINT 113,
PRINT B85
PRINT 113,
PRINT 87
PRINT 901,
PRINT 901,
PRINT 928,
PRINT 908,
PRINT 978,
PRINT 922,
PRINT 924,
PRINT 926,

PRINT 928,

PRINT 89
DO 11
11 PRINT 110,

9y ENG, JMAX
S/ ALL(5),

N26, N28,

NE

by VI4T), ZMEL(S5), IME2(5)
PLOG(&T)y U(5+301)s ULGI(5,12)

112) s PLB),
9y LM1l, LMA,

BEL1(S5)s N1(5)

¢+ AL2(5), BE2(5), NBI(S5
BE3(5), N22(5), N28(5), S3(5),

s+ AL3(S5),

T7 P1(5),
P/ NE(S)
L=1,LM]

[ L , NGLA

T( AL1 + BE1L
T( AL2 4 BE2
T( AL3 , BE3
L=1,LM1

= = l./ BE3

N22
N24
N26
NZ28

——
~ o wnE
.

Vi oo

L,LM1
- 11.
- 22.

L

0.
Ce
0.
R1
GE. -0.00
- l. / BE
GE. -C.00

LU T | | I O T 1

)

ExXP( ALILI
ExP({ AL2(
TENP , IM
3. / TEMP
11. /7 TEMP

Iy -2

L L VOO L I T T | R [ T L]

R1
e )
« 0.1

N.87 / TE
128.% X0

|
mm

IRl / (64
182 / (64
"l - A.%P
R1 - B8.%P
PR(L) * N
pA2 N
PLIL)
P12

TEMP

* % *

N

[ T T O [ A T 1}

CPIL) o
(TE(L)
(NE(L) o

( NLIL),
( DL(L),
[ NA(L),
( D8(L),
[ CBI(L),
(N22(L),
(N2&4(L),
(N26(L)y
(N28(L),

M=1,MS
EID(M),

» DLI(5
P8(51),
TE(5)

v 1 2 M1,
y M2, MS ,
v 1 o MS

(18

y P22
y P24
y P26
v P23

22.
24,
26,
28.

.-t -

)

b

P22(5),

1, MS
v N24(5), S1(5),
y N26(5)1, S21(5),

y DBI(S)
P24(5), P26(5),

M2 = Ml + 1

NABEL)
NABEL)
NABEL)

NABEL)
NABEL)
NABEL)
NABEL)

l.- 20.%P22(L) — 22.%P24(L) - 24.%P26(L)

1) GO 1O 5

1(L)

18} GO T0 4

L)) / SH
L)Y) / SH

- 2./ ( BELIL) + BE2(L))
3.03E+11 * NE(L)*%2 / SQRT( TEMP)

El(L)s ZME2(L), L )

MELI(L) - GHl1

Z2(L) - IME2(L) = GH2

GC TO S
GO T0 5
Mp

* EXP( xO0)

«*G0O1 + RO}
.*G02 + RO)
s(L)

a2

E(L)

E(L)

NE(L)

E(L)

L=1,LM4A)
L=1,LM1)
L=1,LM1)

L=1,LM1)
L=1,LM1)
L=1sLM]1)
L=1,LM1)
L=1,L41)
L=1,L41)
L=1,LM1)
L=1lsLM1)
L=1,LM1)

{ ULGIL M)

1.33 * (0.5 + X1)*%(-0.16 # TEMP=%),35)
1.38 ® (0.5 + X2)*#%(-).16 & TEMP*%0.35)

L=1,L41)

TL(S5), Z1(5)
T2(5), 22(5)
T3(5)

P28(5)

- 26.%P28(L)

1.2 % (0.5 ¢ XL)*%¥(=-0,45) % TEMP*#(-0.07 -2.91% X1)
1.2 # (0.5 # X2)%#%(-0.45) * TEMP*%(-0,07 -0.01% X2)
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309
400
500
600
700
809
900
1000
1100
1200
1309
1400
1500
16017
1700
1800
1900
2000
2101
2200
2300
2400
2500
26C0
2700
2800
2939
3000
3100
3200
3300
3400
3500
3600
3799
3800
3909
4000
4100
4200
4300
4400
4570
4600
4700
48C0
4900
5000
5100
5200
5300
5400
5500
5601
5700
5800
5900
6000
6100
620C
6300
6409
6500
6600
6700
6800
69490
7000
7100
7200
7300
7400
7500
T600
1700
7800
7900
8009
8100
8200
8300
8400




15N
ISN
ISN
ISN
ISN
15N
ISN
ISN
ISN
ISN
ISN
1SN
1SN
ISN
1SN
1SN
ISN
ISN
ISN
ISN
ISN
1SN
ISN
ISN
1SN
ISN
1SN
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1SN
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1SN
ISN
1SN
ISN
ISN

ISN
ISN
1SN
ISN
1SN
ISN
ISN
ISN
1SN
1SN
1SN
1SN
ISN
1SN
1SN
ISN
ISN
1SN
ISN
ISN
ISN
ISN

1SN
1SN
TSN
[SN
ISN
1SN
ISN
ISN
1SN
1SN
ISN
1SN
ISN
TSN
1SN
ISN
1SN
1SN
ISN
1SN
ISN
1SN
1SN
ISN
1SN

oo0s8s
0086
0087
0088
0089
0091
0n91
0092
0093
0094
0095
0096
0097
0098
0099
0100
7101
0102
0103
7124
0105
0106
o107
0108
01n9
0119
0111
olL1z
o113
0114
o115
Olleé
o117
7118
0119

0992
0003
0004
0995
0206
0197
0778
0009
0010
7911
0012
0013
2016
0015
2716
2917
0018
7919
00290
n021
0022
0023

0002
nIn3
0004
0005
02906
0007
2708
0009
noLn
nn12
0014
0015
0016
0ol17
0718
0019
002n
2921
0023
0024
0025
0026
0027
0028
0029

928

PRINT 91
PRINT 113, (ALI({L)y L=1,LM1)
PRINT 113, (AL2(L)y L=1l,LM1)
PRINT 113, (AL3(L)y L=1,LM1)
PRINT 92
PRINT 113, (BELI{L)y L=1,LM1)
PRINT 113, (BE2(L)s» L=1,LM1)
PRINT 113, (BE3(L), L=1,4LM1)
PRINT 93
PRINT 113, ( Z1(L)y L=1,LM1)
PRINT 113, { Z2(L)y L=1,LM1}
PRINT 94
PRINT 113, [ZMEL(L)y L=1,LML)
PRINT 113, (ZME2(L)s L=1,1LM1)
RETURN
FORMAT (/50H P POSITIONS
FORMAT(/57H TE ELECTRON TEMPERATURE
FORMAT({ /59H NE ELECTRON DENSITY
FORMAT (/50H NI ION DENSITIES (10%#13 CM-3)
FORMAT( /38H EID ULG ]
FORMAT(/18H ===== S E S N [ C)
FORMAT (/42H AL )
FORMAT(/42H BE )
FORMAT (/42H 4 IETA-FACTOR )
FORMAT( /52H IME ZETA-FACTOR, METAL PART
FOPMAT( LH1)
FORMAT( 12F10.3)
FORMAT( F272.3 , 19F12.3)
FORMAT( 10H 1 »10F10.3)
FORMAT( 172H 8 J10F12.3)
FORMAT( 17H 22 J12F17.3)
FORMAT( 10H 24 »,10F13.3]
FORMAT( 10R 26 410F10.2)
FORMAT( 19H 28 4192F17.3)
END
SUBROUTINE METAL ( TEMP, IMEl, IME2, L) .
COMMON /MET/ P1(5)y PB(S)y P22(5)y P24(5), P26(5), P2B(S)
RTI1 = 5707. & TENPe¢#*2.,5 / (1. + TEMP#%3.88)
RTI2 = 58CC0., * TEMP#¢2.5 / (l. + TEMP#%*2.G )
RCR1 = 5700, * TEMP*%2.5 / (l. + TEMP##3,88)
RCR2 = 5800. # TEMP*#2.5 / (1. + TEMP##2.9 )
RFEL = 5700, * TEMP*#%2.,5 / (l. + TEMP*%3,88)
RFE2 = 5800. * TEMP*%2.5 / (1. + TEMP*#%2.9 )
RNI1 = 5700, & TEMP#%2.,5 / (1. + TEMP#*#3.838)
RNI2 = 5R070. & TEYP*%2,5 / (l., + TEMP*%2.9 )
ZT1L = P22(L) * (500. + RTI1)
IT12 = P22(L) * (577, + RTI2)
ICR1 = P24(L) * (550. + RCRI1)
ICR2 = P24(L) * (550, + RCR2)
IFEL = P26(L) * (672. # RFEL)
IFE2 = P26(L) ® (600. + RFEZ2]
INIL = P28(L) * (620. + RNI1)
INI2 = P2R(L) ® (620. + RNI2)
IMELl = ITI1l + ICR1 + ZFEL + INI1
IME2 = IT12 + ICR2 + IFE2 + INI2
RETURN
END

- 100

SUBROUTINE LSTSC ( AL, BE, Ey Gy Vs, JMA)
DIMENSION E(4T) 4 GL4T) 4 V(4T
A1l = 0.
Al2 = 0.
A22 = 0,
Bl = 0.
82 = 0.
00 4 J=1, JMA
IF ¢ G(J). LE. 0.001) GO TO &
IF ( V(J). LE. -70C.) GO TO &
ALl = ALl &+ G(J)
AL2 = Al2 + G(J) * E(J)
A22 = A22 + G(J) & E{J)*%2
Bl = BL + G(J) * v(J)
B2 = B2 + G(J) & V(J) * E(J)
CONT INUE
D = ALl #A22 - Al2%%2
IF ( ABS(D). LT. 1.E-6) Go TO 7
BE = (B2 #ALl - Bl#A12) / D
AL = (Bl #A22 - B2%Al2) / D
RETURN _ :
AL = - 444,
BE = 222.
RETURN
END

)
]
)
)

)

8500
8600
8700
8800
8900
9000
9100
9200
9300
9400
9500
9609
5700
9800
9900
10000
10100
10200
10309
10400
10500
10620
10700
10800
10900
11000
11109
11200
11300
11429
11500
11600
11700
11800
11900
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200
3017
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600
700
800
900
100¢C
1100
1200
1300
1400
1500
1600
17090
18C0
1900
2001
2100
2200

109
200
300
409
500
600
700
800
900
1000
1100
1209
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
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ISN
ISN

1SN
ISN
ISN
ISN
ISN
ISN
1SN
ISN
ISN
ISN
ISN
1SN
1SN
ISN
ISN
SN
1SN
1SN
ISN
1SN
ISN
ISN
1SN
ISN
TSN
ISN
ISN
1SN
ISN
ISN
1SN
ISN
1SN
1SN
ISN
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ISN

ISN-

1SN
ISN
ISN
1SN
ISN
1SN
1SN
ISN
ISN
ISN
1SN
1SN
ISN
ISN
ISN
ISN
1SN
SN
ISN
1SN
ISN
ISN
1SN
ISN
TSN
ISN
ISN

1SN’

ISN
ISN
ISN
ISN

0072
0203
0004

0005

no0sG
0007
0003

0017
01711

0012
1113

0014

0015
0716
0017
NI18
0020
0021

0023
0024

n125
0226

0027
2728
0029

0931

0032
0033

734
nN036

0037
LLEL:!
0039
0942
no4al

0142
0744
0045

0046
N%47
0048

0049
0052
0n51

nN152
0153

0054
0056
0057

005R
0059
0061

0061

%613
0064
0055
0166
0067
0069
0079
0071
no72
0073
0074
0175
0076
9117
0oTe
0079
LLEL]
0081
nngez
0083

—

12

11

86
89
90

95
101
109
113
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SUBROUTINF ALPRET ( AL, BE, ML, MR, NABFEL)

DIMENSION AL(S), BE(S), D(6&)y E(4T)s F(6),

COMMCN  EID(47), GEW(S5,12), P(6)y PLOG(4T),
» DESG, ECS, JHYAXS9, LMl, LMA, ML, MS

1
COMMON /ITE/ ALP(S5)s BET(S), Cy H

COMMCN /ALB/ FP(5412)9 UP(5,12)

JWRITE = @
IF (JWRITE. LE. 1) GO TO 2
PRINT 99
PRINT 89
DO 1 M=ML , MR
ORINT 113, EID(M)s ( ULG(L+M) , L=1,LM1)
DO 3 L=1sLM]
Do 3 M=M| MR

FPILsM™) = 0.
UP(L,™) = 0.

IF (NABEL. GE. 3) Go 10 7
CALL ITERAT ( ML 5 ™R )

IF ( JARITE. LE. 1) GO 70 5
PRINT 86

DO 4 M=HML MR

PRINT 129, EICIM) o+ ( FP(L+™) 4, L=L,LM1)
DO & L=1,LM1

AL(L) = ALPIL}
BE(L) = BET(L)
IF ( NABEL. LE. 1) RETURN
DO 9 M=ML MR
DO 8 L=1,LM1
D(L) = 0.
IF ( ULGIL+™). LE. -122.) GO T0 8

D(L) = EXP(ULG(L,M)) — UPI(L,M)
CONTINUF
CALL ABEL ( F, P, Ds» LMA, NABEL)

DO 9 L=1,LM1
FID{LM) = - 712,
FD = FI(L) + FP(L,M)
IF FDe LE. 1.E-7) GO T0 9
FIDIL.M) = ALCG( FD)
CONT INUE
no 11 L=1,L¥M1
HMC = 0
NS = MR = ML + 1
Do 10 M=ML 4 MR
N =M - HML ¢+ 1
E(N] = EID(M)
GI(N) = 0.
VIN) = FID(L.M)
IF { FIDI(L+M)a LE. -100.) GO TO 10
MC = MC + |
GIN) = 1.
CONTINUE
AL(L) = - 99,
BE({L) = -555.
IF { MC. LE. 1) GC TDO 11
CALL LSTSQl ALPHA , BETA ¢ E 4+ G o V ¢ NS)
AL(L) = ALPHA
BE(L) = BETA
CONT INUF
IF ( JWRITE. LE. 11} RETURN
PRINT 121, MC
PRINT 94
PRINT 109, ( AL(L), L=1,LM1)
PRINT 95
PRINT 109, { BE(L)y L=1,LM1)
FORYAT( /38H EID FC
FORMAT([ /38H EID ULG
FORMAT(/16H === A L P B ETI
FORMAT(/12H ALPHA)
FORMAT (/12K RETA)
FORNAT(/12H ML =,13)

FORMAT( F12.2 s 1P10E10.2)
FORMAT( Fl2.2 » 11Fl0.2)
RETURN

END

FID(5,12),G(4T), VI4&T)
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500
601
700
800
900

1000
1100
12¢2
1300
1409
1500
1600
1700
1800
1900
2000
2100
2201
2300
2400
2501
2600
2799
2800
2900
3000
3100
3209
3300
3400
3502
3600
3790
3800
3900
4000
4109
4200
4309
4400
4500
4600
4700
4802
4900
5000
5100
5200

5300
5407

s5CC
5600
5700
5800
5900
600C
6100
6200
6300
6400
6897
6900
7000
7001
7007
7013
7100
7200
7300
7400



ISN
ISN
1SN
1SN
ISN
ISN
1SN
ISN
ISN
ISN
ISN
TSN
ISN
ISN
1SN
ISN
ISN
ISN
ISN
I SN
1SN
1SN
ISN
ISN
ISN
1SN
ISN
ISN
1SN
ISN
1SN
ISN
1SN
ISN
ISN
ISN
iSN
1SN
1SN
ISN
1SN
ISN
ISN
1SN
ISN

1SN
ISN
ISN
TSN
ISN
ISN
1SN
ISN

0002
0193
0004
0005
0006
o007
0008
0009
0010
nolt
0012
0013
0015
0016
0117
0919
0020
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SUBRCUTINE ABEL ( Fy Ps Us Ny NABEL)
DIMENSION F(6), FS(6), Pl6),s QL&) QS({6), U(6),y US(6), MALE)
00 1 L=14N

F(L) = 0.
FSIL) = 0.
QL) = P(L)**2
UIN} = 93,
CALL SORTIR ( Qy MA, N)
NG = 0
Do 2 L=1,N
J = MA(L)
IF ( ABS( U(J)). GE. Ll.E-5) NG = NG + 1
us(L) = utJ)
Qs(L) = QUJ)
IF { NG. LE. 1)} RETURN
DO 6 K=14NG
SU = 0.
0o 5 L=K NG
IF ( NABEL. GE. 5) GO TO 3
IF { uUs(L). LE. 1.E-8) GO 10 3
IF ( USIL+1). LE. 1.E-8) GO 70 3
IF ( UsS(L). LE. US(L+1)) GO T0 3
UL = ALCGI uS(L))
C = ( UL = ALOGU USIL#1)}) /7 (QS(L+1) - QS(L)}
B = uL + C#* Qs(L}
WE = SQRT({ C) = EXP( B - C* QS(K))
Al = SQRT( C * ( QS(L+1l) - QS(K)))
A2 = SCRT( C * ( QS(L) - QSs(K)))
DF = 0.%6419 * WE * (ERFC( A2) - ERFC( Al))
GO T0 5
QL = (USIL+#1) = US(L)) / (CS(L+#1) = @QS(L))
W2 = SQRT( QS(L) = QS(K})) )
Wl = SCRT( CS{L+1) = QS(K)})
DOF = 0.63662 * QL * (W2 -Wl)
SU = SU + DF
FS{K) = SU
Do 7 L=1,N
J = MA(L)
FlLJ) = FS(L)
JHRITE = 0
IF (JWRITE. LE. 1) RETURN

PRINT 111, ( U(L),y L=145) 4 ( FlL)y L=1,5)
FORMAT ( 1PL1E10.2)

RETURN

END

SUBRDUTINE AZRUT ( AZ, Cy H, X)
AA = C+ H®X
E = 0.5 ¢ C.46/(1.+H) + 2.73%C

XA = 1.8 # X#¢E * H*22 / (]1.+ 0.83%H)
Z =H / (l.t (CtH)/XA)
AZ = 1o+ (Lot 0.273%(AA+1,1/(AA+L.LT)) *AA + I

RETURN
END

100
209
300
401
500
600
700
800
900
1009
1100
1209
1300
1400
1500
1600
1700
1800
1900
2009
2100
2200
2300
2400
2500
2600
2700
28919
2900
3000
31CC
3200
33¢9
3400
3500
3600
3700
3800
3900
4000
4107
4200
4300
4400
4500

100
291
300
400
500
600
7090
800



1SN
1SN
ISN

ISN
ISN
ISN
ISN
1SN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
1SN
ISN
ISN
15N
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
1SN
ISN
ISN
ISN
ISN
I5N
ISN
ISN
ISN
1SN
ISN
ISN
ISN
TSN
1SN
ISN
ISN
ISN
ISN
1SN
1SN
ISN
ISN
ISN
1SN
ISN
ISN
1SN

ISN
1SN
1SN
ISN
ISN
ISN
1SN
ISN
ISN
1SR
ISN
ISN
ISN
ISN

0002
0003
0004

0905
0006
ocov
0708
0009
0011
0011
0012
29013
0014
0015
0016
0017
0018
0019
0020
2721
0022
0023
0024
0025
0226
0028
0029
339
0032
0033
0034
0035
1736
0037
nn39
n249
0041
0043
0044
0045
9746
0047
no4a
0749
0050
0951
09252
0054
1055
0056
0058
0169
0061
0062
2063
0064
0965
%66
0067
0068
0069
0070

0071
0073
an1s
0076
0077
0078
0079
0781
0082
00R4
2185
ooasé
0087
o088

- 103 -

SUBROUTINE ITERAT ( ML , MR )
DIMENSION
COMMON  EID(47), GEW(5412)y P(6)

£L{4T), E(4T), G(4T), GE(&4T)y TL(4T), WI(4T)

» PLOG(4T)y U(5,301)y ULGIS5,12)

1 + DES9,
COMMON /I TE/
COMMON /ALB/

EN9, JMAX9, LM1l, LMA, M1, M5
ALP(5), BET(S5)y Cy H
FP(5412), UP(5,12)

H = 2.
C = 2.
ALG = 0.693 + ALOG( P(LMA))
DO 1 L=1,LM1
TLIL) = - Tl4.
AL(L) = - Tl4.
GE(L) = 0.
1 BET(L) = - 1.
Do & 1T=1,3
LC = 0
D0 4 L=1,LM1
GE(L) = 0,
MC = 0
NS = MR = ML + 1
Do 2 HM=ML MR
N=HM - ML + 1
E(NY = EID(M)
WIN) = - 700.
G(N) = 0.
IF [ ULGIL ™). LE. -470.) GO TO 2
MC = MC + 1
X = = EID(M) * BET(L)
IF ( X. LE. 3.CO1). GO 1O 2
CALL AZRUT ( aAZ, C, Hy X)
G(N) = GEW(LM)
GE(L) = GE(L) + GIN)
HW{N) = ULGILsM) + 0.5%( ALOG( AZ) - PLOG(L)) - ALG
2 CONTINUE
IF { MC. LE. 1) GO 7O 3
LC = LC + 1
CALL LSYSQ ( ALPHA, BETA, E, Gs Ws NS)
IF ( BETA. GE., 0.) GO 10 3
TLIL) = = ALOG( - BETA)
AL(L) = ALPHA
BET(L) = BETA
GO 1O 4
3 BET(L) = -44.44
GE(L) = 0.
4 CONTINUE
c = 2.
H = 2,
IF ( LC. LE. 1) GO TO 6
CALL LSTSQ ( TLOG o H s PLDG , GE, TL 4 LM1 )
CALL LSTSQ ( SLOG o C 4 PLOG , GE, AL o LML )
IF ( Ho LE. 0.) H = 2,
IF ( C. LE. 0.) C = 2.
6 CONTINUE
0o 7 L=1,LM1
7 ALPIL) = AL.L)
ER = G.
SU = C.
DO 8 M=ML, MR
Do 8 L=1,L¥1
FP(LsM) = EXP( ALP(L) + BET(L) *EID(M™))
X = — EID(M) & BET(L}
CALL AZRUT ( AZ, C,y, H, X}
UP(Ly™) = 2.% FP(L,M) * SQRTI( (1. = (PIL)/P(LMA))*=2) / AZ)
1 *  P(LMA)
IF(UP(L,4). LE. l.E-5) GO TO 8
IF{ ABS{ ULG(L,M)). LE. 1.E-5) GO TO 8

ER = ER #{{ALCGl UP(LsM)) — ULGIL+M))/ ULGIL M) )*e2
SU = SU + 1.
8 CONTINUE
JHRITE = O
IF ( JWRITE. LE. 1) RETURN
ERROR = - T7.
IF ( SU. LE. 0) Go TO 9
ERROR = ER / SU
9 PRINT 171, ERROR

101 FORMAT (/27H
RE TURN
END

=== [ T ER A T: ERROR =, 1PE9.2)
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SUBROUTINE

REAL *4 Kt
DIMENSICN

COMMON EID
1 + DE9
COMMON /ITE
COMMON /IMP
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TMPUR ( EI , NI o, PI o I , NABEL)
6) 4 NI{S) 4 NE
PI(5) , UKI(6)

(471, GEW(S5+12)4 P(6)y PLOG(4T)s U(5,301), ULG(5,12)

y EN9, JMAX9, LM1l, LMA, M1, MS
/  AL3(5) 5 BE3(5) 4 Cy H
/ NE{5) » TE(5])

JLI = ( EI - 0.4 - EQ9) / DE9
JRE = ( EI ¢+ 0.4 - EO09) / DE9
N = 0,21 /7 DE9 + 1
JHRITE = 7
IF ( JWRITE. LE. 1) GO 10 1
PRINT 90
PRINT 91
1 00 4 L=1,LM1
NI(L) = 0.
PI(L) = 0.
uL = 0.
UR = 0.
0o 2 M=1,4N
JUIN = JLT = M + 1
JRN = JRE + N - 1
UL = UL # UlL,JLN)
2 UR = UR + U(L,JRN)
UC = SQRT( UL*UR) / FLOAT( N)
SU = 0.
00 3 J=JLT,JRE
3 SU = SuU + UlL+J) - UC
UKIL) = SU * DES
IF { JWRITE. LE. 1) GO TO 4
JH = 0.5¢( JLI #+JRE)
PRINT 310y Ly JLIy JREy JMy N, EIs ULy UR 4 UCy -UKI(L),y UlL,JLT]
1 v UlLsJM) o UI(LyJRE)
4 CONTINUE
IF ( NABEL. LE. 2 ) GO TO 6
CALL ABEL( Ky Py UK, LMA, NABEL)
GO TO 8
& DO T L=1,yLMl
X = EI / TE(L)
CALL AZRUT ( AZ, Cy H, X)
P2 = 1, = ( P(L) / PILMA))*%2
T K(L) = UK(L) * SQRT( AZ / P2) / (2.% P(LKA))
8 DO 9 L=1,LM1
[F { K(L). LE. C.) GO TO 9
XX = 0.0077 % 2¢%2 / TEI(L)
A = 481027, * Je%(-2.5)
SV = A® EXP( = XX / (l.+ A/ XX#22))
NI(L) = KI(L) / (NEI(L) *SV *EI) ¢ l.E~-13
PI(L) = NItL) / NE(L) '
9 CONTINUE
IF ( JWRITE. LE. 1) RETURN
PRINT 93
Do 10 L=1,0LM1
XX = ).0077 * I%##2 / TEI(L)
A = 487979, * I#*%(-2.5)
SV = A% EXP{ - XX / (l.+ A/ XX%#2))
10 PRINT 210, Ly TE(L)y KI(L), XX, A, SV, NI(L)
RETURN
90. FORMAT(/14H === [ M P U R)
91 FCRMAT(/99H L JLI JRE JM N ET uL UR
1 uc UK UlL,JLI) UlLyJM)  U(L,JRE))
93 FORMAT(/80H L TE K XX A
1 Sv NI PI)

210 FORMAT( 110
310 FORMATI [9,
END

+ F10.2, 1P10EL10.2)
414y F7.2, 1P2E9.2, 1P6ELOD.2]
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SUBROUTINE GLATT ( L 4 NGLA )
COMMON EID(47)s GEWIS,12), P(6), PLOG(4T)s U(5,301)y ULG(S5,12)

1 ¢+ DE9y FO09, JMAX9, LM1l, LMA, M1, MS
COMMCN /GLA/ JL(12), JR(12)
IF { NGLA, GE. 2) GO TO 3
Do 2 M=1,MS
GEW(L.¥) = 0,
ULGILsM) = - T12.
J8 = JLI(M)
J9 = JRr(™)
EID(M) = 0.5% DE9* (JB + J9) + E09
KM = J9 - JB + 1
50 = 0.
S1 = 0.
SU = 0.
E8 = DE9* (J8 -0.5) + EQ9
E9 = DE9* (J9 +0.5) + E09
DO 1 . J=J8,J9
IF { UlLyJ)e LE. 1.E=T) GO TO 1
SU = SU + 1.
E = DES*J + EOQ9
S0 = SO + UlL,J)
S1L = S1 & UlL.J) * E
CONT INUE
IF [ SU. LE. 2.) GO TO 2
@ = S1 / s¢o
C= (Q- E9) / (EB -Q)
C2 = C*%2
F = (C-1.)/0 C- C2/SQRT{ 1l.— 0.8%C +C2%(B.6 -0.8*C +C2) 1))
88 = F / (Q- E8)
12 = (BE*(EQ —-F8))**2
GEOM = SO / ((J9-JR+1) ®(l.+ 0.04167 %22 ®(l.+ 0.0125 %22)))
ULG(L+M) = ALCG( GECHM)
GEWIL«M) = SU
CONT INUE
RE TURN
0o 9 M=1,M5S
GEW(L.M™) = 0.
ULGIL,M) = - T12.
J8 = JL(M)
J9 = JR(M)
EID(M) = 0.5¢ DE9* (JB8 + J9) + EOI9
KM = J9 - Jg + 1
Su = 9,
Sv = 0.
00 8 J=J8,J9
= UlL,J)
IF ( UGs LE. 1.E=9) GO 7O 8
SU = SU + 1.
SV = SV + ALOG( UG)
CONTINUE
IF { SU. LE. 92.) GO T0 9
GEW(L M) = SU
ULGIL,¥) = SV / SU + 1.1 * ALOG( SU / FLOAT( KM))
CONTINUE
RETURN
END
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