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Abstract

The longitudinal coupling impedance matrix Zm,n is investigated
for a relativistic electron ring in a coaxial configuration
consisting of a conducting cylinder and an axially slit cylin-
der, a so-called "squirrel cage". The calculation is based on
the solution of a special Hilbert problem. Computational re-
sults showing the dependence of Zm,n on the geometry, the number

and width of the slits and on the mode number n are presented.

For n << N an approximate formula of Zm n is given.
14




I. Introduction

In order to achieve effective collective acceleration of ions
in relativistic electron ring accelerators [1]1, [2], [3], it
is necessary to avoid the negative mass instability [4]. To
obtain stable rings with high electron number and small minor
ring dimensions, the coupling impedance has to be as small as
possible. This can be attained by applying conducting walls,
i.e. coaxial cylinders, close to the ring, which keep the

coupling impedance sufficiently small [5], [6], [7].

For axial focussing of the rings axially slit conducting cylin-
ders, so-called "squirrel cages", have been successfully used
(8], [9], [10]. Concerning the negative mass instability the
question therefore arises whether and to what extent the slits

of finite width affect the impedance of the ring.

In a previous paper [11] we approximated the squirrel cage by a
cylinder of anisotropic conductivity. The advantage of that mo-
del was that by preserving the axisymmetry the calculation was
straight forward. But the results might be relevant only for
perturbation wave lengths large compared with the squirrel cage
period. We found a rather drastic increase of the impedance com-
pared with the conducting cylinder case, which was mainly due

to the presence of a TEM mode propagating undamped axially along
the cylinder.

This effect can be expected to as well be present in the squir-
rel cage geometry. But in order to get the value of the impe-
dance quantitatively and its dependence on the various parameters
such as width and number of strips, one has to consider the real
periodic structure, where the electromagnetic field has to satis-
fy the boundary conditions on the conducting strips and the non-

conducting slits.

Beloshitsky and Perelstein [12] have calculated the impedance

of an E-layer in a squirrel cage. But the results are not rele-



vant to the ring impedance, particularly because the above-
mentioned TEM mode does not occur in the E-layer case. For a
plane geometry Zhabitsky [13] published a calculation of the
impedance. An electron beam moves parallel to a plane in which
conducting strips are periodically arranged perpendicular to
the beam. But this calculation is not correct. The solution

does not satisfy the boundary conditions on the strips.

In the present paper the coupling impedance of the ring is cal-
culated for a coaxial configuration consisting of the electron
ring, a squirrel cage and a conducting cylinder with arbitrary
radii (Fig.1). In Section II the derivation of the coupling im-
pedance is given. From the general formula a very useful appro-
ximation for n/N << 1 (n = mode number, N = number of strips)
is obtained. In Section III numerically evaluated results are
presented. The dependence of the impedance on various para-
meters such as number and width of slits, radii of squirrel

cage and cylinder, and mode number is discussed.

The impedance calculation leads to a problem which is known in
the theory of singular integral equations [14] as the Hilbert
problem. The solution of the special Hilbert problem, which we
have used, is given by Agranovich, Marchenko, Shestopalov [15]
and by Marchenko and Sologub [16]. A slightly modified deriva-
tion of the solution and some extensions are given in the Ap-

pendix.

II. The Calculation of the Longitudinal Coupling Impedance

The force driving the negative mass instability [4] is the azi-
muthal electric field which is produced by the perturbation of
the ring charge and current. Assuming an electron ring with
radius R infinitely thin in the radial direction and with an
axial length 2a, the ring current perturbation proportional

-iwt : .
to e can be written as the Fourier sum
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where (r,¢9,z) are cylindrical coordinates, 0(z) is the Heaviside
function and gw is the unit vector in the ¢-direction. The per-
turbation of the charge density follows from the continuity equa-

tion p + div j = O.

Because the electric field depends linearly on the current, one
can define an impedance matrix Zm S which gives the dependence

[/
of the m-th Fourier component of the Em—field on the Fourier com-

ponents In of the current

We took the mean value of the E(p field averaged over the ring
cross-section. In the theory of the negative mass instability to
which we refer the influence of the minor ring dimensions on the
instability is neglected. Only the mean value of Ew therefore

has a relevant meaning.

The impedance matrix Zm,n depends on the boundary conditions for
the electromagnetic field, which are determined by the geometry
of the conductors surrounding the electron ring. In the present
paper we consider an electron ring inside or outside a coaxial

conducting configuration consisting of a cylinder with radius P

and a squirrel cage with radius T. The squirrel cage is a struc-
ture made of N equidistant strips of width D and slits of width

Li=D:(Bige19)3,

To calculate the Ew—field produced by the time-periodic charge

and current given by eq. (1), we use the Hertz potential II. For
I = E(r,w,z)e_lwt the Maxwell equations are (velocity of light
c =1)

5 4T
(3) Al + 0"l = -1 — 3




The electric and magnetic fields are obtained from I by

B
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2

E grad div II + ™I .

Il

To get the retarded solution, one has to add a small positive

imaginary part ie(e > O) to the real positive w.

For the geometry to be considered it is appropriate to start

with Fourier transformations with respect to z and o:

o Hr,n(k’r)
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The general solution for II produced by an arbitrary charge and
current distribution on the surface of a cylinder with radius r',

where the charge and the current satisfy the continuity equation,

is given by

L (k) = -2 (k) — a;(r,r') ,
VAl 74 SR Y
(6) M, (kr) = A (k) - a_(r,r') ,
™
Hz,n(k,r) = Cn(k) ; bn(r,r') ’

where An' Cn are arbitrary coefficients and
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For later use we define, in addition,

1)
Jg(sr)Hé ) (sr')rr's2 . r = x";
(9) b (r,x') =
' 1)! 2
Jn(sr')Hé ) (sr)rr's ’ 0 T =L
|}
The Jn’ J;, Hé1), H(1) are the Bessel function and the Hankel

function of the first kind and their derivatives.

The potential of the ring current given by eq. (1) is a special

solution of eq.(6) with coefficients

, sin ka
rlng(k) = T s bt )
n n Ka n

(10) A

The field of the configuration consisting of the ring, the cy-
linder and the squirrel cage is the sum of the fields produced
by the ring current and charge and by the image currents and
charges induced in the cylinder and the squirrel cage. Given the
ring current the image currents in the cylinder and the squirrel
cage are determined by the requirement that the electric field

is normal on the conductors.

For the Hertz potential produced by the current in the squirrel

cage one starts with the ansatz

—a59 +
ST BT Aygyn (X/T)
(11) Esq = - I f dk iAiqT a£2+n(r,T) el(N2+n)w e1(kz—wt)
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and for the potential Ecyl produced by the current in the cylin-

der with a corresponding ansatz replacing the radius T by P and
. sq sq cyl cyl

the coefficients Ag ' CQ by A2 ’ C2 . We have made use of the

symmetry of the problem, from which it follows that the only non-

vanishing Fourier components are m = N%+n, 2 = O, *1, 2,



The unknown coefficients Aiq, Ciq, Agyl, ngl

the requirements that EZ = E@ = O on the cylinder and on the

strips of the squirrel cage, and that the electromagnetic field

are determined by

is continuous in the slits of the squirrel cage.

The conditions Ez = E(p = 0 on the cylinder lead to the following

equations for the coefficients:

sin ka
(12) b (p,T™)D59 + b (P, P)DCyl + b (RP) ' —pemr— 6§, I =0
N2+n ' '/ [ N2+n e e 207 n !
2 =0, 1, £2, ...
and
sin ka
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L =0, 1 2, ...

where one has introduced the combination of the coefficients

1
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The condition Ez = Ew = O on the strips of the squirrel cage
gives
e ' sq cyl, iNRQy
(15) jSw (sz+n(T’T)Ag + bN2+n(P T)A )e =
= —b'(R T) Eiﬁ—ii I @ € strips
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and the requirement that the electric and magnetic fields be

continuous in the slits leads to the equations

+o0

17z ajd et o © € slits
Q==00

and
t®  sq _iNg

(18) 2 qu e P =0 ' @ € slits
Q==

Eliminating Azyl, Dzyl in egs. (15) and (16) by using egs.(12)

and (13) one dgets

12
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To determine Aiq and Diq, one has to solve the systems of egs.(17),
(19) and egs.(18), (20). Problems of this type are treated by

Agranovich et al. [15] and by Marchenko and Sologub [16].

Because the infinite series do not converge uniformly in ¢, appro-
ximate solutions for Aiq and Diq cannot be obtained by truncating
the series at some finite order. The method of solving the equa-

tions is based on exact solutions of special Hilbert problems for

arcs (see Appendix).




From the uniform asymptotic expansion for large-order m of the
Bessel and Hankel functions [17], the asymptotic expansions
for bm(r,r') and b&(r,r') are found to be

,

r . |m|
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(21) b (r,r’) = - 1 |m| » = ,
m|m|
r' |m|
AT
e
and
(22) b!(r,x') = - w’b_(r,x') , Im| »

From this it follows that the coefficient of Aiq in eq.(19) be-

haves like |#&| for lafge %, and the coefficient of Diq in eq. (20)
like 1/|%2| for large &. Now, replacing the coefficients of Aiq
and Diq by their asymptotic values, the systems of equations for

Aiq and Diq can be solved exactly, as shown in the Appendix.

To get an approximate solution of the real systems, one makes use

of this fact by rewriting egs.(17) to (20) in the following form:

One defines mO and u by

n
(23) m_+ py =-— , m_ integer, 0. S qls <
o e o
and introduces
\ 2
im b, (P,T)
N2+n
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2
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Furthermore, one defines

i ka N
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(27) g b_(P,T)b_(R,P), &
m™ sin ka In<bn(R,T) bn(P,P) )

In terms of these new quantities eqs.(17) to (20) then become

i9
(28) T ygel -0 , o, < ol <7,
Q==
+o0 {9 .
(20) T |a4ul(mep)y, e? = eMMo? 0, > lol
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and
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where one has substituted Ny > ¢ and @5 is defined as 9

For the e,, Ny it holds that €, > O, n, ~ 0 for |&| » «. Trans-
ferring all terms containing €y and Ng to the right side and
considering them as known for a moment, egs. (28) to (31) are

Hilbert problems, which are solved in the Appendix.

The solutions are infinite systems of linear equations for the

Yo and X From egs. (A32), (A33), (A37) and (A39) one gets

40
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and
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where Gi is the Kronecker symbol and
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The infinite systems of equations for the x, and y, can be solved

)

approximately by setting e = 0 for |%| > M, where M > O is

=an
L 2
a not too small integer. This yields a finite system for deter-

mining the x, and Y- Because of the fast convergence of the

L

gl %omys = 0(272) for |&| » =, one gets a sufficiently good appro-

'3
ximation for rather low values of M. Numerical tests showed that

in most cases of interest M = 5 did give excellent accuracy.

Calculating now the Ew component at the ring position and inser-
ting it in eq.(2), one gets the following expression for the

coupling impedance:




(37) ZN2+n,n N2+n,n Zn i ZN2+n,n
with
- , °°(n2k2 0 .sin’ka
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where dm’ d' are combinations of Bessel and Hankel functions,

m
defined by
, b (r,P)b_(xr"P)
a (r,r') = b (r,r') - = = '
b_(P,P)
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(40)
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The bm(r,r'), b&(r,r') are defined by egs.(8), (9). The coeffi-
cients x are solutions of the egs. (32), (33), which

g+mg’ ¥ o+m
have to be determined for each value of k in the integrand of

eq.(39). Furthermore, at k = w the integrand has a pole. As
mentioned above, one has to add a small imaginary part € to the
real w > O to obtain the retarded solution for the electromagne-
tic field. From this it follows that one has to take the .inte-
gration contour below the pole, as shown in Fig.2. The physical

meaning of that pole contribution will be discussed later.



III. Results and Approximations

Concerning the dependence of the impedance matrix Z on

N2+n,n
the various parameters, we shall restrict discussion to the

diagonal elements Z The off-diagonal elements are small

n,n’
and, as far as the negative mass instability is concerned,
they cause small corrections only to the growth rates as shown

by Masunov [18], [12].

Furthermore, because the stability criterion [19] depends on
the absolute value of the impedance, in most examples only

IZn,n' is shown. From the dispersion relation it follows that21/2
the frequency w has to be taken as w = nv/R, where v = (1-1/v%)

is the electron velocity (y = relativistic factor).

In Fig.3 the impedance |Zn nI/n is plotted as a function of the
14
mode number n for three different configurations: squirrel cage

only (radius T = 1.22 R), conducting cylinder only (radius P

I

19
0.5.

0.77 R) and a combination of both. The number of strips is N

and the ratio of strips width to squirrel cage period is D/L

For comparison, the ring impedance in free space is shown. The
essential result is that one gets high impedance if a squirrel
cage only is present. The impedance exceeds by far the ring im-
pedance in free space for low mode numbers n. The main reason for
this is the above-mentioned pole contribution at k = w, which is
a TEM mode. If one considers the electromagnetic field produced
by the electron ring perturbation, in terms of the transverse
mode expansion, one gets, besides the TE and TM modes, a degene-

rate TEM mode at k = w. This TEM mode is a wave elw(lz|_t) pro-
pagating undamped along the squirrel cage and constitutes the

main contribution to the real part of |Zn N
14

. This effect may be
partly reduced for a squirrel cage of finite axial length. The
impedance is considerably reduced by adding a coaxial cylinder.
But even in that case the impedance is still larger than if only

the cylinder were present.

A very useful approximation of the diagonal elements Zn # of the
14

impedance can be derived for n/N << 1 because it can then be




assumed that e, = n, = 0 for |2 2 1, and so only e and ng

have to take into account. Solving egs.(32) and (33), one gets

for the coefficient x , y

) O

(41)

Yo © 1 ~ !

w(1-e, = ——1)
A S0 S

where use has been made the expansion of the Legendre function
Pp(u) for |u| << 1
1+u

(42) P (u) =1 + u 4n —
H 2

Inserting X and Us into the general formula (39), the squirrel

cage contribution to the impedance becomes

(s) Bkt n?k? di(R,T)
(43) Zn T 41 J ( 5 = in +
I - — —_—
o v ] dn(T,T) N n >
w d;z(R,T) \sinzka
L B Waig2at s o nod
n 1+u
m 2n ——
2
where u = cos(m D/L) and 52 = w2 - k2.

The dependence of Zn,n on the number N and the width u of the
strips becomes very simple in this approximation. In the limit-
ing cases u = +1 (D = 0) and u = -1 (D = L) one obtains the im-
pedance of one cylinder with radius T and of two concentric

cylinders with radii T and P. Because of the logarithmic depen-




dence on u, the limiting cases are approached very slowly. In
Figs.4 and 5 the impedance is shown as a function of the strip
width D/L. It turns out that the impedance is almost constant

for a wide range of the strip width.

In Figs.6 and 7 the dependence of Zn,n on the number N of strips
is shown for fixed u = 0 and n = 4. For N >> n the impedance in-
creases with N. If N is comparable with or smaller than n, one
gets a more complicated behaviour which depends sensitively on
the geometry of the configuration. Taking the limit N = o for
fixed u in eq.(41), one gets the impedance of an anisotropically
conducting cylinder (infinite conductivity axially, no con-

ductivity azimuthally) [11].

The electron ring is assumed to be infinitely thin in the radial
direction and of finite length 2a in the axial direction. The
dependence of Zn,n on the length 2a is very weak. In all numeri-
cal examples shown here we chose a = 0.1 R. Concerning the de-
pendence of Zn,n on the mode number n, it has to be borne in
mind that the stability criterion can be applied only for mode
numbers nav/R < 7, where the wavelength of the field perturba-
tion is larger than the minor ring dimension because the varia-
tion of the fields over the ring cross-section is assumed to be

small in deriving the criterion.

In Fig.8a-f the impedance of a ring inside or outside a squirrel
cage of radius T is plotted as a function of T for different n.
For higher n one gets very sharp resonances, which are less pro-
nounced for wider slits. The impedance |Zn,n| increases if the
ring-to-squirrel-cage distance becomes smaller, which is mainly
due to the increase of the real part of Zn,n‘ This behaviour is
in contrast to the case of a conducting cylinder, where the im-
pedance gets smaller with decreasing distance of the ring to the
wall. From all these results it can be conducted that if it is
necessary to apply a squirrel cage for axial focussing one should
add a conducting cylinder to keep the coupling impedance tole-

rably small.
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Figure 1: Schematic of squirrel cage configuration

Figure 2: Complex k-plane, C contour of integration
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Figure 5: Zn n/n (in units of ZO(=377 Q)) is plotted as
’

a function of the strip width D/L with para-
meters n = 1, a/R = 0.1,y = 44.
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Appendix

In this section we derive the solution of three auxiliary
systems of equations for solving eqgs.(28)-(31). These problems
are special cases of the Hilbert problem. The general theory
of the Hilbertproblem is extensively treated in the book of
Mushkelishvili [14].

The problems discussed here are solved by Agronovich et al.[15]
and by Marchenko and Sologub [16]. In the following a deriva-

tion of the solutions will be given using generating functions.

1. Problem

We start by considering the system of equations

in
r o x e -0 , ®, < lo| <
n=-=co
(A1)
Vs Inl ing 5 ino
n=-—oo n n=-—o

where l%l = 1 for n = 0. The function on the right side of the
second equation, written as a Fourier sum, is given. The co-

efficients x are to be determined.
One defines the following functions in the complex z-plane:

(A2) x (z) = ¥ x z" n X (z) = - ha xnzn

The function x' (z) is holomorphic for |z| < 1 and x (z) is
holomorphic for |z| > 1.




Z]
L, C
C
ot 1 O ®
ro |

2 L1
Fig.A1 Complex z plane
From eq. (A1) it follows that
(A3) x+(eiw) 1Tty 2ip 1 for @, < )+ <24

The functions x+(z) and x (z) coincide on the arc L., (see Fig.A1).

2
Therefore, x+(z) and x (z) are the same analytical function x(z):

X N2y [ e

Il

(A4) x(2z2)

x (z) , lz| > 1

On the arc L1 it holds that

. , +co .
@5) xT(e™®) + xT(eM) =z £ M o] <o

n=-o

The problem thus consists of determining a sectionally holomorphic
function x(z) from the sum of the limiting values of x(z) on the

arc L1 inside and outside the unit circle.



This means that the function x(z) we are looking for has a cut
along the arc L1 and is holomorphic in the cut plane. The solu-

tion of the homogeneous problem satisfying eq. (A5) with vanishing
right side is given by

1 .
(A6) hi(z) = a = elq)O
(z=a) (z=-a)

which has the above-mentioned properties. The sign of the root is
chosen such that h(o) = 1.

The general solution of the inhomogeneous problem can be written
as

(A7) x(z) = ¥ f x(n)(z) + a h(z)

where x(n)(z) is a solution of the inhomogeneous problem with the

.

: in . .
inhomogeneous term e w, and where a is an arbitrary constant.

Without loss of generality one can require that x(n)(o) = 0, be-

n . :
cause one can add to x (z) an arbitrary homogeneous solution.

An elegant way of finding x(n)(z) is to solve the special inhomo-

geneous problem taking as inhomogeneous term in eq. (A5) the func-
tion

(a8) f(o,t)

which depends on a parameter t. Expanding f(¢,t) in a power series
of t, for |t| < 1 and |t| > 1, the coefficients of £ are the 1N,
Letting F(z,t) now be the solution of eq.(A5) with the inhomo-
geneous term (A8), it then follows that the xn(z) are the coeffi-
cients of the t-expansion of F(z,t). It holds that




(A9) F(z,t) = A

In order to find F(z,t) one applies Cauchy's theorem to the

function F(z,t)/h(z), which is boﬁnded in the z-plane. One gets

1 f B (g ;t)
(A10) F(z,t)/h(z) =

J dz + ¢,
2mi H (5).5¢C<2)
C

where C 1is a contour surrounding the cut along the arc L, (see

Fig.1). The constant c is the contribution of the integral along
the contour C _ (circle with radius going to infinity). Con-
tracting the contour C on the cut and taking into account the
different signs of the limiting values of the square root h(Zg)

at the cut, the integral becomes

)

1 J (rt (g, t)+F (¢, t))V(c-a) (z-o
L

(A11) F(z,t)/h(z) = — dc + ¢,

-z

where the integration path is the oriented arc L, inside the unit

_ 1
circle along the cut and where F+(z,t) and F (z,t) are the func-

tion F(z,t) for |z|<1 and |z|>1 corresponding to the definition (A4).
From the requirement F(o,t) = O, which follows from x(n)(o) = 0,

c can be determined:

1 "z, 0)+F 7 (¢, eV z-a) (c-a)
| 5
C




Inserting eq.(A5) with eq. (A8) in (A11) and using eq.(A12), one

now obtains

(A13) F(z,t) =

z 1 V(z-a) (z-a)
|

Viz=-a) (z-a) 27i (t-z) (g-2)

L,

The integral can be carried out using Cauchy's theorem and one

gets for the "generating" function

( z z Vt2—2ut+1 z
{ -

R | = R adit  J ’
t-2z t-2 V%2—2u2+1 ¢%2—2uz+1 )

(A14) F(z,t)

where u = (a+0a)/2 = cos wo. The generating function is section-
ally holomorphic and has a cut along the arc L1 in the z-plane

as well as in the t-plane.

Expanding F(z,t) in a power series of t and z the unknown co-
efficients X, can be expressed in terms of the expansion coeffi-

cients. One has to distinguish four different regions

®1% n ,-n _m |tl =1
Z Vm t Z 7 7
n=1,m=1 lz] < 1
A n ,-n m el >
-z Vm t z p ,
n=1,m=0 lz| > 1
(A15) F(z,t) =
A n ,-n _m el <1
-z Vot oz , /
n=0,m=1 |z[ < 1
-0, — = el + |t| < 1
% Vet Z i r

n=0,m=0 lz| > 1




Using the expansion of the function h(z) in terms of the

Legendre polynomials Pz(u)

p
pX Pz(u)z2 , |z % 1
1 2=0
(A16) = 4 ’
;z -2uz+1 -
-2-1
- P (u)z , lz| > 1
2=0
Q

the expansion coefficients V; of F(z,t) are found to be

m 1
5 (WP g (WP (W (w)) =, s
(a17) V2 = n| 1 |n£—1 Ppm) Py q(W-Pp,q(@)) n=m [n| >0
m n 2 =0 29+1
0 rm=m=0

From egs.(A9), (A7) and (A2) it follows by comparison that the

coefficients X, are given by

“+o0
(A18) X = Vv fn + a Pm(u) ’ m=0, 1, *2, ...

n=-—o

=J=}

This is the general solution of the problem (A1), where the Vg
are given by eq.(A17), Pm(u) are the Legendre polynomials and

a is an arbitrary constant.



2. Problem

The second problem we consider is the system of equations

+ :
ing _
T oy, e =0 , 0, < lo| < m
n=-—oo
(A19)
+oo ine +oo w
in

I |ntuly, e = I £ e ' ¢, > lol
n=-=o n=—o

where 0 £ u < 1. To solve this set of equations, we define the
following sectionally holomorphic functions as in the previous

case

Because of the first eq. (A19) the functions y+(z), y (z) are the
same sectionally holomorphic function, coinciding along the arc

L2:

viz)y » lz| <1,

(a21) y(z)
y (z) +» |z > 1

We now define the function g(z) by

d
(a22) g(z): = z — y(z) + v y(2)
dz

Because of eq.(21) the function g(z) is also sectionally holo-

morphic. From the second eq.(A19) it follows that along the arc

L1 it holds that

+, i@ -, +i@ .
(A23) g (e”™7") + g (e ) = I

n=-—oo

£ e1P®  for 0, > lo|




where we have defined g+(z) and g (z) corresponding to eq. (A21)

as the function g(z) for |z| < 1 and |z| > 1 respectively.

This equation coincides with eq. (A5). The function g(z) is there-
fore the solution x(z) of the previously treated case. The ge-

neral generating function for g(z) is thus

a(t)

(A24) G(Z,t) = F(Z,t) + 7-7——==q
z"=2uz+1

To the special inhomogeneous solution F(z,t) we have added the
general homogeneous solution. This is necessary because, unlike
in the previous case, the solution g(z) is unique. As we shall
see, the function a(t) is determined by the requirement that
y(z) =~ 2”1 for |z| » », which follows from eq.(A20). This can
be seen by integrating eq. (A22):

where z, z, are the end points of the integration path C

2 The
=1

functions =z g(z) and zuy(z) have a cut along the negative real
axis. Taking now the integration path C2 (see Fig.Al) around this
cut, below and above the negative real axis, the right side has

to vanish because of the requirement y(z) = 2~ for |z| > «. One

therefore gets the condition for g(z)

This conditon, which also has to be satisfied by the generating
function G(z,t), determines the coefficient a(t) of the homo-

geneous solution. For the evaluation it is convenient to shift
the contour C2. The function G(z,t)z“_1 has cuts along the ne-

gative real axis and along the arc L Shifting the contour C

1° 2




to the contour C,

arc L

(A27)

The integration path is the oriented arc L

36

around the arc L1 and contracting it on the
with eq. (A14) and eq. (A24)

dc 1 ok t-2ut+1
[Tt
r =2uc+1

1 inside the unit

11 we get for a(t)

gHo?
a(t) J

I, Vg ©=2ucg+1 2

1 1

t-o

circle along the cut.

One now introduces the Legendre function P

(A28)

u(u) by the definition

1 rHige
i = [
H im I g =2uc+1

where the integration contour is along the oriented arc

L1:

tion,

a(t)

(A29)

where the

(A30)

+i
. —0 =P = wo}. u =

the integrals in eq. (A26) can be evaluated by expanding

{z =e cos ¢_. Using this defini-

in a power series:

p
—% At oy s o,
n=0

a(t) = A
+2 at—n ’ ltl > 4 ’

n
n=1
.

coefficients a, are given by

u 1

%n
n+u 2Pu_1(u)

To obtain
G(t) in a
and (A18)

the unknown coefficients Y29 one expands the function
double power series in t and z. With egs. (A15), (A16)

one gets




(A31) G(z,t) = ¢+ ¥ (vg 3 aan)t‘ z ,

where the prescriptions for the summation and the sign are

exactly the same as in eq. (A15).

Finally, inserting G(z,t) in eq.(A22), one gets the Y

+
_ n
(A32) Vs = > Tm fn
n=-—o
with
n 1 n
(A33) Too = === (Vm + aan(un '
m+u

where the V; given by eq.(A15) and the a, by eq. (A30).

The equations for y, are solved assuming p # O. But the limit-
ing case pw = O is also included in the solution. The only
matrix elements T; whose definition may be doubtful are the

Tg. For them one gets for p = 0O

1

TO = - — Pn(u) - Pn_,I[u)),n *+ O
2n
(A34)
- T+u
TO = - 4n T .

3. Problem

The last system of equations we consider is given by

+oo :
ing
T ox e = 0 , 0, < lo| < =
n=-o
SRS ing _ %7 ing
% x e'P?= 1 g e ' ¢, > |o




This problem can be transformed to the 2nd problem. Introducing

new variables and coefficients

' =@ - '
Xn k n
(A36) vy =< - g_J(=1) ’
n | n+u | n)

Egs. (A35) in terms of the new quantities are then 1

r y ™ =0 o, < |o"| <
_ n 1
n_—-oo :
(A37)
i ing' i n-1 ing'
T |ntuly, e = x (=1) gn1n+Ule ©, > |o'|
n=-—o n==—oo
where cos @0, = -Ccos wo = —-u. The solution of these equations is

given by eq.(A32). The x ~are then obtained by inserting s in
eq. (A36) . One gets

+ oo

_ n
(A37) X = z Wm 9,
n:—OO
with
n n+m-1_n n
(A38) W = |n+u | |m+u| (=1) T, (-w) + |m+u|6m

Using the property of the Legendre function Pn(u), n integer

|n|
P_(=u) = (-1)"P_(u) '
n

one gets the following representation of W;:




P (u)PU(—u).

(A39) W2 = (n+u)Vp(u) + u P_(u) (Pn_,l(u) +

2 (=u) )

;
2 i

The equations for y, are solved assuming u * O. But the limiting

case 4 = 0 is also included in the solution.
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