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Abstract

The minimum half-axis ratio (g)min for all flux surfaces in a strongly
elongated plasma is derived for which the Grad=Shafranov equilibrium
equation reduces to the 1D-cylindrical slab equation in the midplane
(z = 0). (g)mj_n is found to be abouthIKwhere A is the aspect ratio.
For gz(g)min poloidal flux distributions in the midplane k}l(r,o) are
determined by the toroidal current density ; ( e t/z)and boundary
conditions L}/(V‘:“ ,0) -‘5}"(';'”,0) = Y, alone, whereas they do
not depend on the detailed shape of the plasma surface. These results
are confirmed by numerical 2D-equilibrium calculations with "flat"
(o= apr+Gp ) ma tpamabolic’ (G = (cpreek) Gp-gi))
current distributions. A determination of (r()(/ from
experimental Lk (r,0) -profiles is proposed.
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Conclusive information on cross-sectional shape and current density in
highly elongated axisymmetric plasmas can be gained by fitting magnetic
prabe measurements and total and poloidal beta values with results of
free-boundary MHD equilibrium codes /1/. The free—bmmdary contour

Lr( Y z)g (P‘ and the toroidal current density [( rw ) which

define the equilibrium configuration, are generally not known and

have to be determined by a trial-and-error procedure. One approach to

find the solutions more systematically was to approximate the equilibria

by a cylindrical slab model /2/. In the present paper we propose to
determine a‘(( r(,b) and Bp from midplane flux distributions LI/{y- 2‘0)

which do not depend on the free—boundary contour if all flux surfaces
have half-axis ratios above (E)mj_n‘ The value of (E)min will be derived.
One significant advantage of this procedure is that the detailed plasma

shape has not to be known. The experimental {}4(r,o0) can, forﬁ.nstance, be

determined from magnetic probe measurements of B = - 4.

in the midplane like those usually carried out in belt—pincheg. Once
4 ( r "P) has been found it can be used as an input function

for 2D computatlons with trial surface contours, which are chosen to

be consistent with measured (P or Bp—proflles outside the vacuum vessel.

For that a free-boundary equlibrium code is needed which works with rather

general input current densities.

For the midplane and symmetry plane (z = o) the following one-dimensional
ordinary differential equation in cylindrical coordinates r, (f and z

o o

d¥ - L dé ~ 1T i (ry) ()
dr r dr 14

with boundary conditions Lﬁ(’&,O) = }V(i;y, o) = Y

is obtained, if the term 2 4 in the Grad-Shafranov equilibrium

equation becomes negligibly small. The magnitude of this term can be

calculated by approximating a given flux contour with half-axes a and b

in the z = o vertex points by an ellipse with half-axes a and and b.

The projection of ?(// in a point r,z on the z-direction reads

’Qgg P 2
where P‘ = ‘g / Q_ is the radius of curvature of the ellipse and
P is a radial coordinate with the origin at the centre of the circle

of curvature. After differentiating with respect to z one obtains for
the midplane




?Z
| = I3 = r e 2 B

Thus for r%—if’ 0.2 and z = o the term ’a;;

is negligibly small so that Eq. (1) may be used. For a given flux
surface this result corresponds to ( )mln =~ ]’-5-1: where A is the aspect
ratio. If all flux surfaces have half-axis ratios above ( ) one can
conclude that practically identical midplane dlsterutlons of

and Bp result, if the same toroidal current density 3 ( r W )
and boundary conditions L//{ M’O) ‘70( 00/0) % are prescrlbed

and that the surface contour of the plasma does not enter.

In the asymptotic case 7:—-000 (cylindrical slab) Equation (1) becomes
exact ( glz"’ 0) , so that its solutions may be regarded as cylindrical
slab solutizons for arbitrary current densities. For special ) ( (5 Sll )
analytic solutions are known, e.g. for "flat" current profiles of

type €, Pr +C ‘% /2/ or for "parabolic" distributions of the form

((.1 r+c i)(w- ‘) , where Cop,coF,c1pandc1Fare
con tants.

In order to check the above conclusions two-dimensional numerical
equilibria are compared. Solutions for a = Q v+ cof 1—
with fixed values A = 4.4 and Bp = 2.5 but different surface contours
are presented in Fig. 1. Since the flux contours are symmetric with
respect to z = 0, the midplane distributions can be easily compared
by combining one upper (reference case) and one lower half of surface
plots. From Fig. la it is obvious that the flux contours coincide in

the midplane if all flux surfaces have half-axis ratios larger than

(b) =4.7. Note that an identical (l/(r 0) is obtained analytically

by msertmg the parameters of this case in the cylindrical slab
solution given in Ref. /2/. In contrast to that a dlfferent l[l(r o) -profile
results for a half-axis ratio small compared with ( ) (see Fig. 1b).

Corresponding results are expected for arbitrary current densities 3'? ( r‘y
This is confirmed for the special case of a parabolic distribution with
= 4.4 and Bp = 2.5 as demonstrated in Fig. 2.




We conclude that midplane flux distributions are determined by the
toroidal ¢ t density 4 iti Y_
urrent density a (v; \P) and boundary conditions Lf/(ﬁ(O)g (';’ ,0),%
>~ ¥5A.

alone if all flux contours have half-axis ratios above (g)min ~

The detailed shape of the plasma surface does not enter. Consequently,
without knowing or making assumptions on the free-boundary contour i ( v, )
can be determined by matching the experimental IP (r,0) with analytical

or numerical solutions of a one-dimensional ordinary differential

equation (Eq.(1)). On the other hand for g) (g)mj_n it is not possible

to draw conclusions on the plasma shape fram measured L'U(r,o) or

Bp (r,0)-profiles even if aY(r"(/a) is known.

Midplane flux distributions can also be applied to find the flux surface
structure of special equilibria without carrying out 2D equilibrium
calculations. Two examples are elliptical surfaces with flat and
racetrack-shaped surfaces with parabolic current profiles which both

exhibit an approximately fixed half-axis ratio for all flux contours.
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Fig. 1

Equilibrium solutions with a i j (6 r+(b‘.;§ ,

A=4.4,8 =2.5and (D _. .7 ¢or

P a’'min
various surface contours (reference case in
upper half). la-:-’ of all flux surfaces

2) above (g)min, b) el (g)m.m.
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