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ABSTRACT : To optimize the power spectrum of multielement grill structures,
a simplified formulation of the arill coupling theory is developed. The
optimization criteria are identified as : high ratio of accessible to

inaccessible power, low ratio of nominal power to actual power when elec-
tric field limitations exist and flexibility in the principal parallel
wavenumber coupled to the plasma while preserving the first two criteria.
General conditions on the configuration are deduced, and applied to the
present WEGA grill and future multielement grills (12-16 waveguides) for
WEGA and larger experiments. A novel grill arrangement, the " even " grill,
is proposed and found to give excellent results.
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INTRODUCTION

Lower hybrid heating is an attractive candidate for addi-
tional heating of Tokamaks. Its attractiveness is enhanced by the avai-
lability of tubes in the GHz range and by the simplicity of the cou-
pling structure consisting of a phased array of waveguides, the "grill",
first proposed in 1) and extensively treated theoretically by a number
of authors (2-8) . Present experimental results have indicated good
heating (eg 11) However, to the date of writing, no high-power heating
experiments have been performed for which the exciting structure is
longer than 1/2 period of the principal (slow) peak of the parallel
wavelength spectrum. As a result, in these experiments a large part
of the applied power typically 30-50%, is excited at wavenumbers too
low to fulfil the accessibility condition (9) and therefore is not
expected to penetrate to the plasma center. With this proviso, the
efficiency of heating has been reasonable - for example, in the WEGA
experiment (11), about 40% of the applied HF power was transferred
to the plasma ions and electrons (in the ratio of about 1 : 2). However,
these experiments were accompanied by urwanted effects, such as an
increase of the plasma density . To increase overall efficiency
and reduce the unwanted effects, the inaccessible fraction of the power
must be reduced. The optimization of the power spectrum to maximize
the accessible power is one of the main purposes of this report.

Nevertheless, the quality of the transmitted spectrum of
parallel wavenumber is not the only criterium governing the applica-
bility of the grill. A second very important criterium is the possi-
bility of dynamic tailoring of the spectrum in order to maintain
optimal heating as the plasma parameters, and therefore the desired
wavenumbers, change in the course of the heating. Practically, this
may be accomplished by either grouping the waveguides in discrete
groups having the same phase (relative phases 0 or m, i.e. standing
wave), or by progressively dephasing the waveguides by an angle ¢,
different from 0 or m, which is variable in time (travelling wave case).
The spectrum resulting from various standing-wave groupings and from
the travelling-wave case will be discussed in detail.




Finally, a third criterium of grill quality is the power
transferrable by the grill if each waveguide is limited in the Tocal
electric field permissible due to breakdown or multipactor effect.
The grill as a whole is never perfectly matched to the plasma.
Indeed, a plasma possessing either very low or very high density
gradients in front of a grill will reflect almost all the power. We
shall define a quality factor Q‘the ratio of nominal power trans-
ferred in the absence of reflection and at equal power density in
the entire grill, to actual power transferred in the presence of
the plasma under the best plasma conditions in the worst waveguide
of the grill. This factor should be as small as possible. In order
to achieve this, all the waveguides of the grill must have minimum
reflection at roughly the same density gradient, which will necessi-
tate an amplitude modulation of incident power in the grill.

In order to permit the synthesis of grills satisfying
the above criteria, a simplified form of the grill coupling theory
of Brambilla (Ref.2,8 ) is deduced. The expressions for the power
spectrum, the grill reflection ccefficients, and the quality factor Q
are deduced. The structure of the power spectrum is examined in
detail for various standing-and travelling-wave configurations, and
conditions for good definition of the spectrum are deduced. These
conditions are then applied to a series of simplified grills with
infinitely thin walls, and, finally, to a series of realistic grills.

II. MATCHING OF WAVEGUIDES TO PLASMA

In the following theoretical section, we follows closely
the approximations of Krapchev and Bers (Ref. 7 ). The major approxi-
mation made in their paper is the neglect of the higher order eva-
| nescent modes. For a full treatment of the problem including these
modes, the reader is referred to the paper by Brambilla (Ref.8 ),
| in which the problem is treated fully. In order to obtain tractable
| equations which permit optimization of the multi-waveguide problem in

the presence of reflections, we also neglect the higher order modes.




We shall use a slab model, in which x is the direction
of the density gradient, z is the direction along the magnetic field.
We shall assume the waveguide to be infinitely high in the y-direction.
Consequently, we set all derivatives with respect to y to zero
( é}yzt) ). A1l dimensions are normalized to the free-space wavenumber
( x E-Jg X space =21 f_;gﬂfg ). The fields in the k™ of the 2 wave -
guides composing the grill may be written, if one writes EZ (% s b )=
Qe E, (xs 2) e iut

I
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where Y0 is the wave admittance of the fundamental TMo mode in the
guide, and is equal, for our case of infinitely high waveguides,

to the inverse of the free-space impedance (Zo = v’uo/ﬁo). The func-
tion 9y (z) is the space function of the Kt guide and is defined as
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and where the kM waveguides has a width along z of bk and is centered
at z = Z . X is measured from the waveguide mouth toward the plasma.

We note in passing the relationship between the modes
(TMIn and TEm Jof the infinitely high waveguide and the more familiar
modes of the rectangular waveguide. The identification of the modes
may be carried out by writing the fields of the modes of the rectan-
gular waveguide around half-height, letting the total height go to
infinity, and comparing with the fields of the modes of the infini-
tely high guide. Hence the TM0 mode of the infinite waveguide
(which is actually TEM), the fundamental mode, is found to be equi-
valent to the TE10 mode and has wave impedance and propagation constant




equal to the free-space case. The TMm modes are found to be equiva-
lent to the TM modes of the rectangular guide form # 0 (m=0 does
not exist in the rectangular guide), and the TE modes to the rec-
tangular TE modes The amplitude of the TE1 modes and all modes
with a f1rst 1ndex greater than 1 go to zero as we let the height
go to infinity.




In the plasma region, we write Ez and Hy in terms of their Fourier
transforms :

AL (-z‘;n f dn, & (e 2)
e L[ Ny 2 3b)
" (x,2)= Wa{ dny ¥y Giny)e

To match the electric fields in the plasma (x=0+) to the fields as
the waveguide mouth (x =07) , que require continuity of the elec-
tric field across the entire surface x = 0.

Hence we équate la) and Ba} to obtain, after Fouriér transformation

& (0" n,)= = Eim+Erm) G2 (4)

. ng WAL
where Gm (nz) js the Fourier transform of the space function gm(z)

of the m'th waveguide, i.e.

; LN, 2 n, b
G m) = fa’iL 9,() e""*i/z E_,_i_’is',h—-_%—m (5)
ZIT -0 m ﬂz_

The magnetic fields may not be so easily matched because of the
presence of surface currents in the walls, which also depend on the
higher order evanescent modes not considered here. We shall assume
that the average magnetic field of the fundamental across the waveguide
mouth equals the average of the plasma magnetic field. That is, we
assume that the contribution of the evanescent modes to the average
magnetic field at each waveguide mouth is negligible. While this
assumption seems reasonable, it can only be justified by comparison'

of the results of the simplified model with those of the complete

model (Ref. 8 )

Accordinaly, we set equal the integrals of 1b) and 3b) across each
waveguide mouth to obtain the % equations.

o
| ¥, {6)
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where we have indentified, using 5) lgien
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In the aboye, we have introduced the surface admittance of the plasma.

Y, (na)z - ¥y lo,n2) (7)
{‘i,(o,ﬂz)

defined by analogy with the wave admittancé, but using the Fourier
transforms of the total field rather than incident and reflected fields
separately. This quantity is calculated in the next section.

I1I- FIELDS IN THE PLASMA : SURFACE ADMITTANCE OF PLASMA

The electric field in the plasma is the so1ution'of

2
Ux (VxE) - &£ K.E =0 (8)
where K is the dielectric tensor, normalized to ¢, for a cold,
two-fluid plasma given by Stix (Ref. |0 ). The magnetic fields are
deduced from

VXH:(E-D-'( .E) (9)
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W

Four our case, £ e 0, (infinite height waveguides, slab model).
3y

We rescale the space variables (x =% x )Fourier transform in the

c “space
z direction, and substitute the components of K to obtain

% P
5';1. gz(";"%)"' (n%z_ s)[“g )E;(";”eN- _’;&Da_i S (",”e)’d(m)

d

P p° |

Set Ey (x,1;) + (-';E:S = (":!2'5)) Ej (1) + (11)
n, D
£ s Gl =0 -
ale,ny. _ ¢ 0 B
2) riis (ﬂa&fa&,ne)qf DEJ Gny)) (2
P/ .o ;

3 [kfn_l)— -h-;zb (ng(x’n.z) = LDSJ [klni)) (‘3)




Where Z0 is again the free-space impedance, and S, P, D are the
notations introduced by Stix (Ref. 11 ).

From (12) and (13); we find

. : o
e B 55 g [ 4% 28 T

& (o) 20(n 06)-%79 é&

We note that the Poynting vector corresponding to the plane wave

n, is given by

Spe 24 o (& 451+ 4 166]" Ve () (s

In the lower hybrid frequency range,w ;<< w << W g and therefore

A 2 (A 2
P s A W s
g WF ) Lo ) ~ = (18)

We shall assume, with Krapchev and Bers, that coupling to the fast wave

may be neglected (i.e. last term of (10) is negligible, Iey | << | &
Furthermore, we assume that, at the waveguide mouth, the density corres-

ponds to the slow-wave cutoff density (w o T W )

or that the evanescence region of the slow wave is so small that perfect
tunneling is achieved. Further, we assume that S =1, which is the case far
from the resonance and in the edge plasma for n, >n_ acc. The reader is

referred to the elegant summary by Brambilla (Ref. 8 , Sections 3 and 4) for

a complete treatment of the validity of these approximations.

With the above approximations, we have

PR L
S 2 lany) + (nf- 1) -‘i?i £, (x,ny) = O (17)
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and R I asl (19)
P4 it ad
Tpe (1) 3 Tty xow B P

where (19) is particularly well justified because, at x = 0,-2 is small
(v w/mcé and €y (O,nz) is also small (since, for the fundamental, there is
only an Ez field).

We shall now proceed to solve Equation (17) for the case of a linear
density gradient on the plasma. We define

2
o = (o! ( mp )Vn
3 (2 (20)
or, numerically
\/
a Bssos = (V"rs) (21)

G

Where f is the frequency in GHz and Vn13 is the density gradient at the edge

in un1ts of 1013 4. Defining also

iz
[z Ingt-al x'® x (22)
(17) may be rewritten
b
bk‘ & - (5 <t (23)
e% + 48 =0  Inpl>14
Z (24)

a) Solution for |n | <1

The solution is given by the Airy functions of positive argument. However,

since Bi ( z ) diverges as ¢ (i.e. x ) goes to infinity, the complete solu-
tion is

E%Cx,wl)g ¢ Ai [Z) Iny 1<4 (25)
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As [c| goes to zero, ‘( _4

It { { | S e A [Z

fs0 Ai (4D 3%3 P[Z/g,) f-?o '/5 r(Ys)
Hence, using (19) t'”/z

'/5 ZIS 2z
y, e) . A . 3 I"[ /5) Intl ¢ ) (26)
P Zo Il- 212/3 33 70 Vs)

We note that, since sz (nZ) is purely imaginary, the Poynting vector
in the x direction given by (15) is zero, i.e. no power is transferred
to the plasma for [n, [< 1.

b) Solution for |n, |>1

For this case, the two linearly independent solutions of (24) are the
Airy functions of negative argument Ai (-Z ) and Bi (- ). These are
defined as

Ai (-T) = {‘C_[‘J_l/:g(g ¢ 3/2) +J +1/3 (% C 3/2) ]

Bi ("Z) : [I'll!a (z 3 z 5/2) 4:/5 ( 23/2)]

AL imm- L[- Ty GO *)+ ANE )
: , 3/ 2 43k

BI-I('Z):‘_ "'dfé Bi ["Z)z 75 Z[-J- 3-2/5 ('-;-Z 2) + J42/5 (g Z )J (28)

\-— w[.—-

(27)

The Wronskian of the Airy Functions is given by

P R YIS |
W (A, Bi)F Ai B  — BiAc - (29)

The field is given by a linear combination of Ai and Bi, i.e.

82 = C As¢ ("Z) + DB ("Z) (3%)

'

‘Using (15), (13). (30); and(29), the Poynting vector méy be simply.written
(in MI(S units) as {

%
o 2t R 9%) = 2 1y m D G

an2, [n2- ;’2/5

We now apply the radiation condition at large Ts i.e. we require that

no energy be reflected ﬂlrom *inﬁnityT Tpr implement this cpndition. we use the
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asymptotic expansion of the Airy Functions,

. 1
[ KD o cos (5455 )

b ' (33)
¢ A Nt - : £ Shiim
and calculate the square of the nagn*tude of the electric field
Lt x _pY 2 /z 7
e Qg_zdl[klwm+(klﬂkmﬂ ) =
(34)

— G?oPC*S«V)Z (—*Zg/‘ "-)]

For a puré incident (or pure reflected) wave; the standing wave ratio
must be 1 i.e. the magnitude of the electric field must be slowly
varying with z while the phase varies rapidly. Hence we deduce from (34)

let=Iol R bc*¥=0 (35)

which implies
L2 1)
c

(36)

Since, for a pure incident wave, the Poynting vector is positive, we

see from (32) that ve must choose the + sign. Hence,

£, =C (Al-8) +0 B (D) (34)
with the asymptotic forms
PAg - % (— Sh _m
o rg'/v v s (38)
1)

LA e_?_ = -—-2-5—-—— e * /5 '
el 343 1(%z) (39)
bt d&; 2c e"mls

>0 dy ° I3 /1
4 ] 33 (V) o
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From (19), (22), (39), and (40), we then have
e""/" x'B 3riis)

(W = ’”i’>1
YP" ) 2, [n,2-1]/3 33 M (')) S
and, ;rom (32) and (36)(‘C""' x A
pe = 2re, Ing-11®

TRANSMITTED POWER TO PLASMA ; SPECTRAL POWER DENSITY

The power transferred by the kth waveguidé to the plasma per unit height
of the waveguide is given by :
wth /e

S, —1 @ [ da (Ekme) # o)
Zi- b2

. b g [ (e

(42)

(42) may immediately be rewritten to give the expéctéd expression for the
power transmitted by the kth guide per unit height

< Yf’-{h (lEfle i \Evk\z) (43)

K

which simply means that the transmitted powér is givén by the difference
of incident and reflected power. However, we may also substitute (6)
into (42) to obtain a spectral form of the power transferred,

S : — [ _(.dnz YFe(m)E (WQ>KELh+Erk)é:-(ﬂ.z)] (44)

k Z

The total power transferred to the plasma by the entire grill
per unit he1ght is then given by

s ZS s L (jze[ de yPe("f) | €, (m)] (45)
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where we have substituted(4),

Using the definition '
s t(2(3) n Y42
A= pers) (Vn.3)

46
33 (') e (46)
where fG 1sthefrequency in GHz, Vn13 is the edge density gradient in units
of 10 4, we now substitute the express1ons (26) and (41) for the wave

adm1ttance of the plasma at the waveguide mouth to obtain

r c',ﬂ.; lﬂ(nt)l

= —Y Acon s AL TR
2 ° -1
¢ >t IM: ‘ (47)
There is no contribution to the integral for |n |< 1 since, from
(26) ,ng ("z) is purely imaginary for |" | <1 . The expression (4)
for €, (nz) is here repeated for convenience :
e
52 (ny) = 2 (Eim + Erm) ém[wi) ()
m=1

From (47) , the spectral powér dénsity S (nz) " defined from
)
S= dny Slny) (48)
oo

is proportional to

2
]8;(”?)‘
SCn;) ok - 2 -(49)
[n,2-11%/3
]
From (49), we note that the spectral powér density dépénds only on the
Fourier transform of the total electric field at x =0, which depends,
from (4), only on the total field at each waveguide mouth
E, = Eoe tEvy (50)

In the sections déa]ing with the optimization of the power spectrum, we
shall therefore consider the total é]éctric_fié]ds Ek and the_geométry

of the grill to be specified, and deduce the dependence of the power
spectrum on the distribution of the Ek. Once a réasqnab1e power spectrum

has been found, the distribution of the incident fields necessary to produce

the distribution of total fields corresponding to the spectrum may be
calculated, as shown in the next section.
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DEDUCTION OF WAVEGUIDE QUANTITIES, DENSITY DEPENDENCE

We have noted in the previous section that the total field distribution
Ek at the waveguide mouths specifies completely the spectral density
of power transmitted to the plasma.

We shall now deduce the waveguide parameters as a function

of the density gradient in order to produce the préscribed spectrum.

We define the surface admittance of the plasma viewed from the

mouth of the kM guide by
.. = Ey
V= Y, ot (51)
Etk. 4‘ EV‘E.

From (6) and (50), Epis may be rewritten

Y = m 1y fpe (02) & wl) 6y ) (52)
B El‘ o k:1l....€

We now substitute the expression for ng from (26) and (41),
using definition (46) to obtain

Vo A () j’ Iny G (n) 6, *1ny) i/ [ dn; ém(ﬂt)él:(}?‘;)
Yk = 1- [1-n2| 3 Iny2-1)%
be €, =1 Inyl<1 Ingl >
Substituting for G (n )Gk(n ),and noticing that the imaginary part
of this quantity 1s odd in n 2 and therefore its 1ntegra1 is
zero, we obtain

clT/z - (54)
bEk me=i L
' Ny bm 1'.*... 55
""’e"ek RN cos 1y (B Z;)Sm————zfsm (55)
LI n2  {l-ntlTs
_ Mebwy . Nybe 6
nd 4 S’j Cos Ny (2~ ) S o S ot
T = 2 n
W= R n [nl2-11%3
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We note that Kmk and Imk are real, and symetric in m and k.

They depend only on the geometry of the grill. As the density gradient
is changed, we hold the power spectrum transmitted to the plasma cons-
tant, and hence, as shown in the previous section, hold the relative
total field amplitude and phases Ek constant. Under these conditions,
the magnitude of Yk isproportional to A (and hence to ( Vn) 1/3), while

the phase of Yk remains constant, containing, in general, a non-zero reactive
susceptance.

From (51), the field reflection coefficient is simply written as

Ey' ‘ ] = Kh/,%

g — = 57
p, = - (57)

E‘:h l 4 Yk/Yo

Since, as a function of A, the phasé of Y, Yk , does not change,

the mimimum reflection coefficient is obtained when
W],_I = \/o

for which case

b, [Exl

‘ Z Em (e""/’k,..,, ‘e’ /‘Im)l

AzAho

(58)

and

4 Yie
m\\\EIP } \PQCAho)l - coe L

l + (o5 LZ'! (59)

From (59), we see that the minimum reflection coefficient can only be
zero if the phase of Yk iszero. Since this phase depends on the spectrum
to be excited (see (54) ), it may be zero for some guides of the grill

but will, in general, never be zero for all the waveguides of a
grill.
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From (42), (48), and (51), the power transferred to the plasma by the
k'th waveguide per unit height is written

Sb. - .l.’?.-l‘ lEg\z e ylz (60)

Since, from (54) and as already noted above, all the Yk's are directly
proportional to A, the fraction of the total power supplied by kth wave-
guide to the plasma is independent of the density gradiént. provided the
total fields, and hence the power spectrum, are kept constant. Indeed,
using (60) and (54), we may write the total power explicitly as

4 .
l T ¥
S: E; SE ° 3 YoA Cos-(-; g E EA, Em Imb_ (61)

wheke we have used the symmetry of I and Kmk

This is easily seen to be equivalent to the expression (47) in the
previous section.
The kth power fraction may be written explicitly as

E‘_‘_ = Rh Cos u&
S ; (62)
o ) -k
where €| lE_, Bl (e‘ zl(l«h +@ Tise )I
Ry = -
2s? EJ'* Em LTwj Qs'g‘ .
i m

Itis seen that this power fraction dépénds explicitly only on the fields
and the phase of Yk-' Since cos _I_Y_k may be negativé-,_ it is_séen that
the power fraction may be negative, which simply reflects the fact that
the power coupled into the k'tl‘l guide by the other guides may be larger
than the power it furmishes itself. : '
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In the following expressions, the dépéndencé on A (i.e. (Vn)lla

) is

expresséd in terms of a function Ty

A o | (64)
?‘. 3 (Algo % ) )

which is symmetric in A/Ak and its 1nverse. and is 1 for the density
gradient for which the reflection coefficient is minimum. From (57),
(58) and (64), we obtain the power reflection coefficient

16 o pifes = (65)
. + Cos LYb.

From this and (62), we deduce the incident and reflected powers, ex-

-

pressed as a fraction of the total power transmitted to the plasma, as

.f‘i'h ’ _%-‘ (fh-fcosf._yu)

S (66)

g_‘_f__b- . ,Qh (Zh - Cos [.Y*—) (67)

S =

The standing wave ratio in the kN waveguidé is

ool Il Ttot cos L + |/ £, - cos Ll
Ty VK““’”—E"m

Another important parameter is the ratio of maximum field in the waveguide

(68)

to the nominal field in the waveguide, since this will determine the power
which may actually be transmitted to the plasma for a given spectrum, if
the local electric field is Timited due to breakdown ‘or multipactor effect,

. Here, the kth
in the kth
to the plasma at equal power density in all the guides in the absence
of reflections and coupling between the waveguidés.

nominal field is defined as the incident field
waveguide which correspond to transmission of the power

As expected, the square of this ratio turns out to be equal to

M
Q, = | |" : /b (69)
E e S/ 3h,

e e ey el s = Mt e e
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i.e. the standing wave ratio times the ratio of transmitted power den-
sity in the k&I
in our case, the reflection coefficient may be larger than one, and

the SWR infinite or negative without producing infinite fields in the
th
k

guide to average power density of the grill. However,

waveguide, reflecting the fact that some waveguides may be receiving
net power rather than furnishing it. We therefore prefer to rewrite

the quality factor of the kth

Qy: —— Qgam g‘/—*a’s!_ \/-Z,'-Cosl}_/_{
Q= v gmax,"(aﬁf

guide,Qk, and of the grill Q, as

(70)

th guide do not diverge.

Eq.70 for Qk shows that the fields in the k r
The grill quality factor Q, the minimum as a function of A ( (Vn)™" ") of
the largest of the Qk’ may be interpréted as the ratio of nominal
(electric-field -1imited) power to actual power transferred under the
best conditions, and plays, in this respect, the same role for the

entire grill as the SWR would for a single waveguide.

We note that all the quantities (65) to (70) depend on the density gradient
only via the symetric function Ty - Hence all these quantities have a
minimum for A = A, and are mirror-symmetric about this point when

plotted as a function of Tog A/Ako' This comes about only because we

have specified the total field distribution, rather than the incident

field distribution to be constant.

It remains to calculate the phases of the incident and reflected fields
relative to the phase of the total field (which is the major factor in
determining the power spectrum and is therefore specified, rather than
deduced.

From (57) and (58), the phase of the incident field is given by (LEK
is the phase of the total field E, = ik E rk)

i
|Ete = |Ep + don e r"z—“ (1)
i —A-' (bS\.\/—)g_

ko
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and the phase of the reflected field is

A . [Jﬁz
- |E = __:F_';z-s.'—"————
|Em = LB + fan l"‘z = g (72)
ko

The phase of the reflection coefficient is

— sin Lt
P = [Een - = tau™ 1 1(A _ j) (73)

Aﬁo | A

The above expressions have been written so as to permit deduction
of the correct quadrant from the signs of numerator and denominator.
For positive lY \ IFL goes from 0 via - m/2 at A= A o ™
as A goes from 0 to 1nf1n1ty For negatwelYk (the more usual case
since, as can be seen by inspection of (5_7:|Yk would be - m/6

in the absence of contributions from 0<|nz|:?3f)41ﬁi goes from

0 via+m/2 atA=A ,  to ™ as A goes from zero to infinity. We
see that the plasma passes from an open circuit at low density gra-
dients to a short circuit at high density gradients, as expected.

VI- SPECTRAL POWER DENSITY OF MULTIWAVE GUIDE GRILLS

A major concern of lower hybrid experiments is the design of grills
coupling only a small fraction of the power into the inaccessible

tion of the spectrum (1 <|n | < ln I, where N__ is, for the case

of WEGA, of the order of 1. 8), in order to max1m1ze the heating power
in the central portion of the plasma and to reduce the unused power
which may lead to unwanted effects (impurity influx, dénsity increase,
wa]] heat1ng in multi-M{ experiments). One method of reducing this po-
wer has been proposed (Ref. + ) for the case of the classical
4-element grill. The method amplitude modulation consists in reducing
the incident power in the outer waveguides to 1/4 of the incident po-
wer in the inner waveguides. While the inaccessible power is reduced
almost to zero for this special case, the results are not necessarily
as strinkingfor a grill of more than 4 waveguides, and, if one assumes
that the total power transferrable per waveguide is limited ( by ,
for example, the multipactor effect), the total power transferrable

_,____—_______—_—_______J'
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through the grill opening is reduced to 63% the possible value.

With these considerations in mind, we shall now proceed to investigate

the dependence on n, of the spectral power density S(nz) given in (49),
speci fying the total electric fields at the waveguide mouths in accor-
dance with the remarks in Section IV. We shall separate: the effects of
grill geometry from the effects of the distribution of field amplitu-

des and phases to synthesize a reasonable power spectrum. For convenience,
we define the normalized " geometrical spectrum "

lei(ﬂg),z

Plny) = )
_rdn% &, (ny))*
in terms of which (49) is written
3] T (5 kf5) L0 i

=0 (M2l < 4

where we have used Parseval's Theorem

P " ¢
£ dny [Sf= (" dr [Elol” =h2 lE,1°6,

R

Hence,aside from the weight factor [ng -1] 2/3, due to the plasma,

P (nz) contains all the information about the structure of the spectrum.
Since we normally demand a spectrum with a well-defined peak, the

grill configurations chosen must possess a high degree of symmetry.
Three .such configurations are studied below.

a)" 0dd and " Even " Standing-Wave Grills

We consider grill configurations in which the total electric field has

1p complete periods of normalized length p (pspace = 2w E— ). To pro-
duce a standing wave, all waveguides composing this electric field must
have relative phases of either 0 or 7. We distinguish two special cases :
the " odd " grill, in which the electric field is left-right antisymme-
tric about the center of the grill, and the " even " grill, whose field
is left-right symmetric. In each quarter-period, the field is specified
according to Table I, where z is measured from the center of the grill.




TABLE I .4

S
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Here, h (z) is considered to be positive for 0< z < p/4 . It is seen that
the above fields are constructed by folding the field of the preceding
quartér period successively about the E and z axes. The odd grill has

the structure of sin (nzg), the even grill of cos (nzﬂ. and both

may therefore be expected to give a strong peak at N, = 2 m/p.

The Fourier transform of the electric field is

Py
|, (0] tosNy U
W =— & 2(-4) ZSm (Ze-1 )ﬂiPl p‘&(“ ; ‘ 77)
1S o ()] V;ﬂ' k= 5"‘"*({-,’-“)

and the " geometrical spectrum " P ("z) is, from (74), using Parseval's
Theorem and performing the sum in (77).

Ply 2
e ; 5 gw)jwsm: K&{] (78)
(RSP VAP el r/ siuny (P
4200 du

The " odd " grill is the classical grill, composed of, for examp]e; an even
number of elements, with equal amplitudes, and phases of 0 and m or equal
groups of 0 and .
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As a specific example, the classical 4-element grill with vanishing wall
thickness and phases 0,m, 0,7 has

€=4, 1p=2, h(x)=1,b=p/2

For this grill, the geometrical spectrum is, from (78)

2
A Stu 2%4_ Q( “Z t).!_!,
2rh n_?:‘ Cost -9-;—[3 2

Poaa,v (ny) -

The " even " grill is a novel arrangement to produce a standing wave

at the same basic h, as the corresponding " odd"grill.

If the corresponding " odd " grill was produced by grouping the waveguides
in groups of two (0,0, ™ ,m, etc.) the corresponding " even " grill is
produced by shifting the phases (0, = w, 0, etc..). If the " odd "
grill was composed of single waveguides, the corresponding " even " grill
is produced by taking one-half of the Tast waveguide from the left side
and placing it on the right (at constant electric field and phase, i.e.-
half power). In the last configuration, the " even " grill is therefore
composed of an odd number of full-width waveguides plus two

half-width waveguides.

As an example of the even analogue to the 4-element grill, we define
a 5-element grill having widths b/2 : b : b : b : b/2,

equal electric field amplitudes, phases 0 : m: 0 : m : O, and powers
D7 Y% o st Then
2 2

€=51p=2,h(x)=1, b=p/2

Hence, from (78) 2 2
2 n &
bt Cos' =%

The " Travelling Wave " Grill

This grill configuration produces an asymmetric spectrum, P (nz) # P('“z)'
While the asymmetry is of great interest to produce RF- driven current
(Ref.12,13 ) the possibility of dynamic tailoring of the n, spectrum by
changing the phase difference from one guide to the next also makes this
arrangement very attractive.
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We shall assume that the electric field amplitudes are repeated every

period P 6 that from one period to the next the phase is advanced by
., and that there are €¢ such periods, i.e.

Elo2) - & hg(2) O3 <y

13 (79)
E{O,‘i‘): 2 fO,%)el ¢'°&“_ 2, where & s
ow iwtefer sqek phat 0 ¢2 ¥

The Fourier transform of the electric field is then given by

\ Cos g (B-xfy)-14 4 sin LB-nts)
€¢ ("-'.,\) St €5 3 i
\an cos (G-Mufy) —4+) S (6-¥; f?‘) (80)
. f@,&q, (u) (cos Nyu- jsin ny ) :
and
P.lny) = Siw ¢ d_”? £ [ ﬂ;(“)wﬂz“«] ”'adf“"‘""»“ 2
Ny) 2 — —
¢ my g ¢__—_ﬂ_g_f’¢ fr,; 0 25 di (81)
2 o )

This expression may be simplified if h (z) has left-right symmetry within

the period P,, which we shall assume in the following Then h, (P ¢-z)= h¢ (z)
and we have ¢ ¢
fs/2 2
¢-nf w [ B
o (n 6 __\__ S\\\ [VE vﬂgg(k)dosn.;(a-_f)cfu
(A2 ey — ¢ T82)

. Re!
" f-;?jﬁ o.f ; z,&z‘ () du

We note in passing that we obtain the same expression as for the odd standing
wave grill if we set

Py = P/2, Ty =210, ¢ =1, by (x) = h (p/4 - )

as expécted.
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We now consider the particular case where ¢=m /2. Setting

P¢=?/.+ : ly - qlef,’ ¢- TT/Z) h¢(%): l’lg(f’/‘#-%)

We find, for this particular case ?ﬁ+ £
! -Ph)d
4 -—= o 174 u
Si,} f—-—-PZiP [ug (u) V2 _5:_71(___—9__ ]

\
Cop, 2): — ———— o (¥
Wl -2 me, (I sin V%_P) OS "B (w)du (83)

which is, as expec’ed, not symmetric in n, While this expression gives
the spectral power density for positive or negative n,» it is, for
comparison purposes with the " even " and " odd " grills, interesting
to define an average spectral power density

P(“lz? (ny) = 'é ( P’Th (ny) + P“IZ (-1 ))
Then

P4 2
O 1. (Ma)= ‘ Si“,z fz'?;?. [df ﬁf/(u)’_":i fost (“-g)d{u]
. 4
ARSI S O ST (o

This is the final expression, to be compared with the analogous expressions
for the two standing-wave grills.

Before leaving this topic, however, we remark that not all of this power

is available, in principle, for current production by one-sided electron
Landau damping (Ref. 12,13 ).

In fact, the part of the power which may produce current is given by

I
?‘r(z (Mg) s P'“h C'ﬂ-z) - Pﬂ(; (-v:)
(85)
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T By ny) Dsin % By 0w (56)

Since this expression can charge sign, current produced in one part
of the spectrum can, in principle, be reduced by an opposing

current in another part of the spectrum although in practice, condi-
tions on the ratio of phase to thermal velocity (optimum n, for
current production) will tend to reduce this effect.

c) Comparison of the three grill types

The spectral density of transmitted power S (nz) may be written for the
three grill types as, from (75), (78), and (84)

(ny &, 1) + (3 Ch®, 7, 1)
NUYER L ZE\E B U, Rep
: Y°AC°S ( y ) Ny [0t 1|3 (87)

=0 [M)¢4

where o is a function depending only on the number of periods and the
size of the period chosen but not on the grill configuration,8 depending
on the type of grill configuration (even, odd, m /2), and the distribu-
tion of waveguides inside each quarter-period, but not on the number
of periods. We may therefore separate the effects of grill length and
grill configuration by studying each term separately, o, 8 , and

"zp are defined below.

d) The periodicity function a (nz, 1p, Zp)
The function ais defined as
gm(‘n’-——' (88)
& (ny b )z — ——L—F
T (os %E =
where (89)
ar A"‘

w*f"-" - Face

is the principal parallel wavenumber corresponding to the chosen period p.




27

o is the same for all three grills, depending on n_s the number of
periods, and the length of each period.In Fig. 1 , o is plotted for
the case of 1, 2, and 4 periods.

o contains the basic distribution of zeroes and peaks of the power
spectrum. In fact, it is easily seen that a has zeroes at

h,z:ﬂ;? ('Zw-rl:t%) M= 0,21, «--.

(90)
e = 1,2 -, &
and major peaks for zeroes of the denominator
n = ' - = +, -

Because of the strong damping of higher nz' s by the function g8, only

the first of these major peaks, wp= 0, nz =n_ , is important.

zp
Hence, the principal peak of o is given only by the period
7 P
V)0 = geamineg 92
i P Pspace e

i.e. ratio of wavelength to period in non-normalized dimensions.
The height of this peak is given by

Y¢

z (93)
n .
The width of the principal peak is given by the distance between
zeroes
2\ 2
sy - e 2o - L
a¢
P (P Fspaee gf’ £

If we recognize that L= 1p pspace is nothing but the total length of
the grill, we see that the width of the principal peak depends only
on the ratio of the wavelength to the total length of the grill, and
not on the number of periods inside the length,

(95)
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The secondary peaks of o are only half as wide as the principal
peak
Mp A
bngls = =5 = s (96)
F space
They are centered on
4
(Zwel & REZY Mmooz ..

% k= 4,2, e, -

s, = Vap (97)

The amplitude of the kth secondary peak is given by
K (g ) - kb (98)
- —______.-——-——‘—‘--
25, k/ ~ & i b-p-l 512 ... -1
' T siw o = 2 Vs

The secondary peaks therefore decrease in amplitude away from the

primary peak. The ratio of the amplitude of the first secondary peak
- $9q3
("zs. 1" "zp = ZTp ) to the primary peak is given by

ol (Mag,4) 1
Lfve lo> |

'&TJ:) Ty m?_‘s’]_' [P>] (99)
P —

As the number of periods becomes large, Ip >> %E— » this ratio goés
to a constant value.

£t o (es,2) = 1. 4.5% (100)
N3 af Vsp) 9

Hence, while increasing the length of the grill narrows the width

of the principal peak, the quality, i.e. the ratio between the ampli-
tudes of the principal and secondary peaks, can not be improved

be yond a certain point. Here, the structure of the function g
becomes important.
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e) The configuration function 8 (nz. nzp)'

From (75); (78); (84); (87), and (88), the function 8 may be written
for the three grill conf1gurations under consideration.

; Tr" [f h(u)cosmuéu:(z

— u rP/‘{- hl (M)C(M
Py

(101)

Bous

Pyt ]4
g [ bl sin e (-l

(ZMVm ﬁ”h”zr" T; = i.P/*,n hz(“)cl“

(102)

%117(%'“;?) ” —F— B fw.* h?fn)clu (103)

L 2T
h = —
where nZp 5

From the above equations, we see immediately that, for ns= nzp =

<%

(and h (u) having left-right symmetry in the quarter-per1od)

[ fvvh(u) u»s 7 “ du ]2
Poss = Pevea = Bd"’): P f% hi(w) da

v

(104)

i.e. the three configurations give the same total spectral density
(not necessarily the maximum) at the center of the principal peak.

=21
Furthermore, we note that, for all n, < nZp i

: P v
Su ny (£-1) Losmu Al o we g

(105)
Hence,

Beven < godd for all n, < N

Hence we have proved that the"even'grill has a lower spectral power
density than the " odd " grill for all parallel wavenumbers less than




f)

the pr1nc1pa1 n, and therefore has, in particular, a smaller
nonaccessible nower If,in addition, we impose the not very stringent
condition of left-right symmetry on h (z) i.e.

h(% -2) = hW(?) (107)

we obtain a universal form for the configuration function for the

1
2 [ofmh(ukosw.} (U--E)JKL_

three cases, i.e.

l?v(“a,"ep)= y-ﬁ | e o7 (108)
¥ d
P of h(w)Su
where
el R
Vesg = Cos = = “ep (109)
R
Y&y = '%. = sy
1P qutT M
Yeveu S "g' = ST Mif:

From these expressions, it is clear that
ﬁ'lveu < ﬁ@h) 4 POJA {QV' all o _(“-1 < m’lF

i.e. the travelling-wave case is better than the odd case, and not
as good as the even case. As n, goes to zero '

. . = L ]
Pevew’ Payy Posa = 0 i L
i.e. the power density of the even grill goes to zero at low n,.

Equal-Amplitude, Equally-Spaced Waveguides

The above éxpréssions many be written explicitly if each quarter-
period (108) and (109) is composed of a number ]w of equal-spacing,
equal-amplitude waveguides.

Let the total number of waveguides be
2 =41w]p (110)
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whéré ]w is the number of waveguides per quarter-period and 1 is

the number qf periods as before.let the width (normalized to AO/Zn)
of gach waveguide be given by b, the spacing by Z, = ;Tw. and let the
waveguides be centered at

A4 (2ha-DP
LA TR TR W C RS LI AR

The wall thickness is, of course, given by

{-F

s= .h o0 (112)
¥ lw 2

Then, with nzp = 2'"/p as before, and the " filling factor " (ratio
of waveguide area to to:al area occupied by the grill) defined as

1b
W
F= 574 (113)
we may rewrite
R (wq Wyp) = GF'@C (114)
where 8 is a factor common to all three grill types and depends
on the filling factor.:z Mes M5 Can [7
B¢ < NG Ao iyl ¥ (115)
S = T a1
Faull " Fs‘."‘z'qf",’. -‘3
and Be depends on the configuration :
54 T n,
AT
Reois = M2 /ngp)*
- e 116
\= oy o (116)

[e,ay - T
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(1 - cos ﬁte)

(p*lwaf)

@c,ewu =

This configuration factor is plotted for the three types of grills
as a function of nz/n in Fig. 2. As expected, all three are

zp
equal at n, =N, and, as ni* 0, they scale as

zZp g
(] ”-1 TI'I 'ﬂz

At : ‘: odd ™ fi —_ -
VI‘-?o ﬁﬂleu Ig@'!> F by ”-ir 8 v

Itis worth while to write down the explicit expression for the
power spectrum for the case of equal-amplitude, equally spaced
waveguides treated here. From (87), (88), (115), and (116), it is
given by

h 2 mb
Coas (M) I T |E\7' 2 Siu (P-n- ¥ gin .'1‘{ )
z 5 ROAT 2 T
gé‘h)(“‘l) : 'h l"z"’”"%\ L “‘-‘zmm)
eyen W2 ““?Iu‘_
'I—T"‘P
° [—cos I Us
T HP
- e T U
{ c»s_,__‘;:r)

where [E| 1is the totaI oscillating field amplitude at the mouth of
each guide and siv (M2b)2) cancels against gint (rr"u;/‘&{wm‘,)
when the filling factor is 1, i.e. the wallsare infinitesimally thin.

To summarize this section, we have shown, for the special
case of equal total field amplitudes (which does not correspond to the
case of equal powers transmitted),that the basic structure of peaks
and zeroes is given by the chosen periodicity and length of the
grill, with a superimposed modulation depending on the grill confi-
guration. Of the three arill configurations studied, the classical

odd " grill is seen to be the one which will tend to lose the most
power in the inaccessible region, while a novel arrangement, the
" even " grill, is expected to be the best in this respect.
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In the examples treated numerically in the subsequent sections,

we shall be forced to abandon the condition of equal oscillating
field amplitude which permitted us to find simple analytical éxprés-
sions above because of the large disparity of the power fractions
transferred for this case, but shall retain the notions of odd

and even as concerns the phases. We shall find that all the
qualitative conclusions of this section are preserved.

g) Spectrum Tailoring by Phase Shift

Before leaving the idealized models developed in this section,
we would 1like to point out another way of looking at the travelling-
wave grill which will make clear the effect of changing the phase.
Consider, as in section b), 1¢ to be the number of groups of
equal-phase waveguides of length p¢ and p the phase between
one group and the preceding group. Then, from (82), and (101)

X (usy ) @ou (uy )

S} (W )= =
¢ [u-11%/3 (118)
wheve
4T (M (-9
2 Cin = 175 1]
oy (ng) = ~ (119)
80T T ol (M (1))
z Mg w
]da
and we set, when p=7m , 1_= — » SO that
. (nz) is identical to the periodicity function o defined
in (88) when § = m. We also define the geometrical peak ng

as

T (120)
N = Pu . ‘n%r;rr

i.e. the principal peak of the spectrum when the phase is .

From (119), we see that the effect of imposing a phase other than w
is simply to translate the entire spectrum. For example, if § <m, the
principal peak for positive n, values is moved to "zp= ! -¢. i.e.

n
G s
closer to zero, and the negative peak is moved by the same amount away
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from zero. Since the other factors in (119) are unaffected by this
trans]a;ion; the positive n, peak, what is closer to zero, will
increase in amplitude, and the negative peak will be damped.

When ¢ =m /2, |nzp_i = 3 |nzp+|, i.e. the negative peak is strongly
damped.

However, when the phase is close to m , the negative peak is only
weakly damped. For the purposes of tailoring the spectrum by moving
the principal peak, we conclude from these consideration that dynamic
tailoring can be performed for ¢ between O and about = /2, but not
when ¢ is near m since then too much power will be Tost to the second
travelling wave at higher (but negative) n,. One consequence of this
conclusion is that a grill which is to be used to follow the evolu-
tion of the plasma parameters by changing the relative phase during
the shot must be designed such that the " geometrical " g is rou-
ghly twice as high as the highst n, to be used in practice, i.e.

be composed of twice as many waveguides half as large.These, qua-
litative conclusions will be substantiated by an examp]é in a subsequent
section.

VII- IDEALIZED EXAMPLES WITH INFINITELY THIN WAVEGUIDE WALLS

In this section, we consider the power spectra of four
grills, the odd 2-element grill1 G2 and its even 3-element
analogue G3 ., and the odd 4-element grill G4 and its even 5-element
analogue G5 . The full-width waveguides of the even grills have been
chosen to be 14% wider than the corresponding odd grills to compensate
the fact that, for equal widths, the configuration factor of the
even grill shifts the real maximum of the principal peak to a value
above nZp and of the odd grill to a value below nzp‘ The phase shift
of the total fields from one waveguide to the next is .

Initially, we take equal total fields in all the waveguides.
Both the spectral density, normalized to the total power transferred
( full Tine ) and its integral from 1 to n, (dotted Tine) are plotted
in fig. 3 and 4 . Its is seen that the 2-element grill G2 ( %%— = 0,25)
and G3( —%— : 0,286) both have the wide spectrum expected for such
short lengths from the considerations in the preceding section, but
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that the " even "G2 already shows a pronounced maximum near the
desired n, of 3,5, and couples 83% of the power between accessibility

(heré considered to be n__ = 1.8) and the first zero, where as G2

za
only couples 53% 1in this region, and loses 46% for 1< n,< 1.8 . The
comparison between the odd G4 (L/x = 0.5) and the even G5(L/X = 0.57)
is equally striking, G4 coupling only 58% of the power into the

principal peak above n, = 1,8, while G5 attains 90%.

However, when the power fraction transferred by each
waveguide is calculated for this situation from (62), it is seen that
the prescription of equal total field does not correspond to a real
experimental situation. The power fractions are given in table II,
where the nominal values are simply proportional to the waveguide
width.

TABLE II : POWER FRACTIONS AT EQUAL FIELD

Guide 1 Guide 2 | Guide 3 [ Guide 4 Guide 5
Grill Real Nominal | Real Nominal| Real Nominal{Real Nominal| Real Nominal

odd G2| 0.5 0.5 0:5 0.5
even G3].0.058 0.250| 0.884 0.50 |0.058 0.25
odd G4| 0.481 0.250| 0.019 0.250 |0.019 0.250] 0.481 0.250
even G5{ 0,081  0.125}] 0.338 0.25 |0.161 “'0.25| 0.338 0.25 | 0.081 0.125

In G2, both guides transfer equal power by symmetry. For more
waveguides, it is seen that the even grills G3 and G5 transfer less power

on the outside guides than on the inside ones, while the converse is true
for G4.

In order to calculate a more realistic situation; we shall
now keep the same grill dimensions and phases of the total field as above,
but calculate the spectral power density by setting the density of power
transferred by each waveguide equal, i.e. power fraction Sk/S proportional
to width. g

s s B
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Total field amplitudes corresponding to this prescription are calcu-

lated numerlcally from (62) together with (54). The resulting spectral

power densities, normalized to total power, are p1otted (Fig.5 and 6),

as are the corresponding integrals from 1 to ﬁz, where we refer to

these cases as G2' to G5'. Of course G2' is the same as G2 because

of symmetry. Grill G3' (L/A = 0.286) givés excellent results in spite

of its short length, fransferring 91.4% of the power in the principal

peak and losing only 2.4% for 1<|n |<1.8 Grill G4‘ (% = 0.5) is considerably

better than before (Sprinc.= 87. 6% S (1 <|n,|<1. 8) = 10.6%), but, as

far as inaccessible power is concerned, not as good as G3' which is much

shorter. Grill G5' LL- = 0.57),the best with 91.5% of the power trans-

ferred in the princi%a] peak, and only 1% between 1 and 1.8. Once again,

the even grill configuration appears to be, from this point of view,

pr‘eférab1e The amazingly good results of grill 63' ( by : b, : by =1/2:
: 1/2) may well be of interest for experiments in wh1ch the access ports

are very narrow, of the order of half a wavelength.

The quality factor Q, defined in (70) as the best ratio of nominal power to
transferred power, is found to be 1.55 for G2, 2.61 for G3', 2.12 for G4',
and 2.47 for G5', i.e. the two-element grill can transfer the largest
power density, while the other three grills are roughly equivalent.

VIII-GRILL EXAMPLES YITH FINITE MALLS

In this section, wa consider realistic examples of grills
with finite wall thickness between waveguides. In all cases, we shall
specify the amplitude and phase distribution of the total field in
order to keep the power spectrum invariant with density gradient (Sec.IV).
A11 the waveguide quantities are calculated according to the formulation
of Sec. V.

a) Realistic 4-Waveguide Grill (WEGA)

We shall now examine in detail the results for a four-wave-
guide grill designed for WEGA which will be put into operation in early
1980, The frequency to be used is 800 MHz. Grill dimensions are : wave-
guide width 3.5 cm (b= 0.586), mean separation of waveguides 5.4 cm
(pW=Az = 0.905), 1 = 4, geometrical wavenumber (Eq.120 or 103) ng= 3147,
Total length L/Xo = 0.58. The wavenumber for accessibility is e, = 1i8s
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Sincé. given the above dimensions, the first zero of the major peak
a]ready.1iés in the inaccessible region, reduction of the n, by chan-
ging the phasing is not productive. Accordingly, all the following
curves for this grill are calculated for phases of the total field
of 0, m, 0, .

In Fig. 7, we plot the quality facters of the outside
waveguides (Q and 04 ) and of the inside waveguides (Q2 and 03)
as a function of the density gradient, for the case in which all
the waveguides transfer equal power.It is seen that, under this
condition, the transferrable powér is limited by the inside waveguides.

The minimum value of Q, = 2.4 is attained for 7n = 7.2.10M0¢ 3 =

A G
= 3.7.1011cm 4. The power reflection coefficients of each waveguide
as well as the global reflection coefficient R =L Skr/zski

are plotted in the same figure.

In Fig. 8, we show the results as a function of the ratio
of power transferred by the outside waveguides to that transferred
by the inside waveguides, taken at vn = 6.7.10'1¢3 = 3.4.10"!
which is close to minimum reflection. A1l the powers are normalized
to S, the total power transferred to the plasma. The reflected power
is not directly plotted, but is simply the difference between incident
power (e.g; (812 + S;5) /S) and transferred power (e.qg. (Sl + SZ)/S)‘
It is seen that, when the power level of the outside waveguides is
reduced (S;/ S, < 1) , the total reflected power (I S;i/S-1.) is Tower.
Except at the highest values of 51/ 52, the reflected power comes mainly
from the inside waveguides. When S1 /S2 = 0.42, both inside and outside
waveguides have their minimum reflection at the same density gradient,
In addition, we plot S

cm"3,

acc/ S, the ratio of useful power, between fiER = 1.8
and 5.5, to total power. It is seen that 95% of the power is accessible
when S; /S, < 0.5. - For the WEGA experiment, serious electric field
limitations are not expected at the presently envisaged power levels,

so that, from the standpoint of reduction of inaccessible power and
reflected power, the best operating regime is $1/8, = 0.2 - 0.5 While

not optimal, operation at Sl=§2 remains acceptable.
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For reference, the quality factors are plotted as a

function of $,/S, in the same figure, at vn = 6.7.101¢ g en 4,

For SI/S < 2, the inside wavegu1des will Timit the transferrable pOWer

in the case of electric field 11m1tat1on We have also p1otted the ratio

of QOmax to the useful power fraction, i.e. the ratio of nominal power

in the absence of reflections to useful power transferrable. At Tow

51/52, this curve is reasonably flat, showing that reduction of the
imccessible power by decreasing the power levels of the outside waveguides

does not lead to a significant reduction of the useful transferrable

power,

In Fig. 9, spectral power density, normalized to total
power transferred, and its integral from to n, are plotted for two
cases,SI/ 52 = 1 (equal power density )and 51/32 = 0.42 (A1l waveguides
matched to same density gradient, A10= Azo). The effect of the power reduc-
tion in the outside waveguides is to broaden the principal peak somewhat,
analogous to amplitude modulation in the frequency domain, thereby shif-
ting the lower zero closer to n, = 1 and reducing the inaccessible power.
Useful powers of 89.6% (95%)between 1.8 and 5.5 and inaccessible powers
of 9.5% (4.2%) are achieved for Sl/ 82 =1 (0.42).

It is noted here that the reduction of power in the
outside waveguides in order to reduce the inaccessible part of the power
was first suggested by Krapchev and Bers (Ref. 7 ). Their results for
a 4-waveguide grill centered at a higher wavenumber are entirely borne
out by the present example, except for the fact that their figures should
show no power transferred for 0 <|nz[<1 (see discussion after Eq. 26
or 47 above).

From the above, the present WEGA grill is well-adapted
to couple almost all the power into the accessible region of the spectrum.

The spectrum can, however, not be varied without dramatically increasing
the inaccessible power.
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b) 12-Waveguide Grill

In order to demonstrate the range of possibilities of spec-
trum tailoring possible with a multiwave guide grill having a large
number of elements, we have chosen as an example a 12-waveguide grill.
This grill has about the same total length as the 4-waveguide grill of
the previous section, and can thus be used in the next experimental
phase of the WEGA program. The frequency considered remains 800 MHz,
but the results remain of course applicable if the dimensions are
scaled with the frequency. The dimensions are : waveguide width
1.2 cm (b= 0.2), mean separation of waveguides 1.6 cm (p =Az=0.268),
2=12, geometrical wavenumber (Eq. 120 or 103) ng = 11.7. Total length
L/X0=0.51. The wavenumber for accessibility remains 1.8. Although
the geometrical wavenumber g is too high to be of interest in itself,
we have chosen this grill to permit flexibility of operation.

The results are given in Table III and Fig. 10-13. Confi-
guration denotes the phasing of the total field used, Sk/S= 1/12 means
equal power transmitted by each waveguide. Inaccessible power and the
power in the principal peak (between the zeroes on either side) are
quoted The minimum value as a function of Vn of the global reflection
coefficient R, the ratio of reflected to incident power, as well
the quality factor Q are given. It is noted that R and Q are not
quoted at the same Vn, since their minima do not coincide, as was al-
ready apparent in Fig. 7 for the 4-waveguide grill.

Cases 1-3 in Table III represent the three possibilities,
odd, even, and m/2, of creating a power spectrum with a peak around
n= nG/Z 5.8 at equal power density transmitted per waveguide. The
spectral power densities, normalized to total power transmitted, are
plotted in Fig.10. As expected from the discussion of Sec. VI, the
even configuratioﬁ is better, although the improvement of even over
odd was more striking at equal total field (Sec. VI) than at equal
power density considered here. The inaccessible power is lowest for
the even case, although quite low for the other cases also, as is
to be expected from the high central n, used here.
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TABLE III : RESULTS OF 12-WAVEGUIDE GRILL

Configuration Center| S Inacc. Power R . Q Fig.
) k/S o I min :
z ) Peak
1. Even O:m:m:0 ... | 5.9 | 112 | 0.3 g5z | 162 | 2.8 | 10
2. 0dd 0:0:m:m ... Bl 1/12 4 % 81% 14% 3.4 - 10
3. A = 90° 5.6 1/12 4.5% 80% 12% Cul - 10(13)
4. Even O:m:m :0 ... 5.9 .03-.14| 3.6% 84% 17% 350 11
5. 0dd 0:0:wsd i, & 8112 0-.16] 0.5% 92% 10% 3.6 11
6. A = 90° 5.6 0-.13] 0.5% 88% 10% 3.6 11
7. 0dd 0:0:0:m:m:m ... 3.3 1/12 9.7% 83% 19% 3.4 12
8. 0dd 0:0:0:m:mem ... 31 .01-.18] 3.7% 94% 12% 4.6 12
9. A = 60° 36 1/12 9.4% 87% 16% 204 12(13)
10. 4-WG Grill < bW | 1/12 9.5% 90% 11% 2.5 9
11. A¢ = 180° 157 1/12 1.0% 88% 12% 3.0 13
12. A = 150° 9.7 1/12 2.6% 60% 12% 351 13
13. A¢ = 120° Lol 1/12 3.1% 74% 12% 3.4 13
14. Ap = 90°(cf.3) 5.6 1/12 4.5% 80% 12% 9.7 13(10)
15. A¢ = 60°(cf.9) 356 1/12 9.4% 87% 16% A ) 13(12)
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In cases 4-6 (Fig. 11), the power transmitted by each
guide is no longer equal. Instead, we have imposed the condition that
each waveguide be matched to the same Vn (Ak0=equa1). It is seen from
Fig. 11 and Table III that the odd and 90° configurations are improved
by this amplitude modulation, i.e. have more power in the principal
peak and less inaccessible power. The even configuration is not impro-
ved, but for this case Ako is already roughly equal for all the guides
at equal power density. It is noted that for the odd and 90° cases,

Q increases, which is due to the increase in power density of the cen-
tral waveguides due to the amplitude modulation. Of these six cases,
case 1 (even, equal power density) seems to offer the best compromise
between ease of operation (equal power density), concentration of power
in the principal peak, and maximization of transferrable power (low Q).

In cases 7-9 of Table III and Fig. 12, several possibi-
lities for creating a peak near g /3 are presented. For this n,s the
possibility of an even configuration does not exist, since each half
period is now made up of an odd number of waveguides (three). For
reference, we have included as case 10 in Table III the 4-waveguide
grill considered in section VIIIa) above, since it is centered at
roughly the same n,. The equal-amplitude standing-wave case (7) is not
quite as satisfactory as case 10 as concerns power in the principal
peak, reflection, and Q, although it gives roughly the same inaccessi-
ble power. Very strong amplitude modulation (case 8) is neccessary

to match the entire grill at the same Ako’ with good results as far as
the spectrum is concerned, but a strong increase in Q due to the
increase in power transferred by the inner waveguides. Here, the best
compromise would be to modulate the power densities in order to mini-
mize Q, but this has not yet been carried nut. The equal-power
travelling-wave case, case 9, is seen to be just as good as the
4-waveguide grill, case 10.

In cases 11-15 various travelling-wave cases are studied.
The principal peak of each case is plotted in Fig. 13, except for the
150° case, for which the principal peak for negative n, is also plotted.
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For A¢p = 180°, we have a standing wave, and therefore plot the sum
of the positive and negative n, peaks. From the figure, and Table III,
it is seen that A¢ < 90° and A¢ = 180° give acceptable power fractions
in the principal peak (A¢ = 90° can be improved by amplitude modulation,
cf. case 6). Phase angles between 90° and 180° are not acceptable, since
too much power is taken by the other travelling-wave peak, at negative
but high nz's, and would therefore be lost at the edge. This example
confirms the discussion in Sec. VIg.

The 12-waveguide grill presented here is therefore capa-
ble of producing standing-wave spéctra centered at n, 3.3 and n, NGB s
as well as travelling-wave spectra centered at any n, between these
two values. At any of these wavenumbers, power in the principal peak
of more than 85% and inaccessible power of less than 10% may be achieved.
Furthermore, neither the global reflection coefficient R nor the quality
factor Q, the best ratio of maximum electric field to nominal electric
field squared, is significantly changed by going from 4 to 12 waveguides.
The grill described here is therefore a well-adapted tool to study,
under the same conditions as the VEGA 4-guide grill, coupling to elec-
trons (nz= 5.6) or ions (nz= 3.3), travelling-wave excitation, and dyna-
mic tailoring, and compare the operation of a classical and a multiwave-
guide grill.

VIII- CONCLUSIONS :

In the present report, we have developed a formulation,
simplified with respect to (8) and extended with respect to (7), of the
coupling problem of a multiwaveqguide grill, with a view to optimization
of the power spectrum. A novel grill configuration, the " even " grill,
has been identified and found to be very interesting, because it offers

good definition of the principal peak, low inaccessible power, and a good
quality factor Q (effective standing-wave ratio) because amplitude modula-
tion is not necessary to improve the definition of the spectrum and it
may therefore operate at equal power densities in each waveguide. Of this
class of even grills, the three- or five-waveguide grills described in
Sec. VII are especially interesting for experiments in which the available
port is shorter than a wavelength.
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In the framework of our simplified theory, we have shown
that the spectral power density produced by the grill depends only
on the grill geometry and the total electric fields at the waveguide
mouth, as does the power fraction transferred to the plasma by each
waveguide. This has permitted us to calculate the quantities which
depend on the density gradient at constant power spectrumwhich is the
real quantity of interest.

By studying the examples described above, as well as
a series of other examples not described in detail here, some general
considerations have emerged. First, as already remarked in (7) and (8),
the 2-waveguide grill, while offering an unacceptable power spectrum,
is definitely the best as far as the reflection or the quality factor Q
(1.55, Sec.VII) is concerned. This is simply due to the fact that there
are only 2 waveguides, which are identical in all the deduced properties
by symmetry. However, once one passes to four or more waveguides in order
to obtain an acceptable power spectrum, a further increase in the number
of waveguides does not lead to a further significant increase in reflec-
tions, independent of the number of waveguides, the central n,» or the
production of travelling rather than standing waves.

In fact, this conclusion may be understood qualitatively
from Eq. (52) to (56). Once a very good concentration of the electric
field in the region |n_| > 1 has been achieved, either by centering at
high n,s using an even configuration, or amplitude modulation in the
odd or travelling-wave case, the contribution to the surface admittance
Yy from |”z[ < 1 usually becomes negligible for all but the end waveguides
of the grill. For the inside waveguides, the largest contribution to Yk
comes from its own field. Ek' Hence, for these guides, the phase angle
of Y, is close to -30°, corresponding to a minimum standing-wave
ratio I § B
It usually turns out when amplitude modulation is used
to improve the definition of the power spectrum that the amplitude of the
end waveguides must be decreased, and of the inside ones increased.
(In fact in some cases, for example case 5 or 8 of Table III, the power
transferred by the outside waveguides is almost zero, rendering these
guides similar to the " passive " guides in Ref. (14) and giving the
same result, i.e. improvement of the power spectrum definition).
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Therefore, the quality factor Qk is never below 1.7, except for the
two-waveguide case, but is normally above it by the ratio of power -
density of inside waveguides to average power density. Since this
increase in amplitude is normally not very great, values of Qk
between 2.5 and 4 are typically found independent of the number of
waveguides, except in extreme cases where the individual best values
of the density gradient lie too far apart.

In order to permit maximum flexibility of the grill,
dynamic tailoring, or current production, we also conclude that
the geometrical e should always be twice as high as the highest n,
which is actually to be used. For the travelling-wave case, it was
shown above that phases between 90° and 180° do not give acceptable
definition of the power spectrum, leading immediately to this con-
clusion. However, the statement is also true for the standing-wave
‘case if the " even " configuration is to be used, unless one wishes
to use waveguides of unequal width as in the 3 - or 5-waveguide
examples presented here. In fact, the best number of waveguides to
use per grill is 2= Zk, permitting the largest variety of odd and
even configurations. (The 12-guide grill of the previous section
was not ideal in this respect since it did not permit an even
configuration at 0, = 3.3, whereas the advantage of the even grou-
ping is greater as n, approaches 1). While the condition n_ = 2nz.max
appears necessary from the considerations presented here, technical
considerations may change this conclusion, since this conditions
demands twice as many waveguides half as wide. For example, it
has been pointed out (15) that, if the transmissible power is 1imited
by the multipactor effect (limiting field proportional to waveguide
width) that this condition leads to a reduction of the transmissible
power by a factor 2, above the quality factor Q.

In-conc1usion, reduction of the inaccessible power
below 10% and optimal definition of the peak of the power spectrum
have been shown possible for a multiwaveguide grill, with reflection
factors and electric fields similar to those of the classical
4-waveguide grill.
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FIGURE CAPTIONS

Fig. 1 Periodicity function a (nz, nzp) plotted as a function of
nz/ n, for 1, 2 and 3 complete periods of the exciting field
(i.e. at least 2, 4, and 6 waveguides, respectively).

Fig. 2 Configuration function B . for odd, even, and m/2 distributions
of equal-field-amplitude, equally-spaced waveguides as a function
of nz/ "zp' a (Fig.1) and BC multiplied together give geometrical
power density if wall thickness is ignored, and transmitted power
density (non-normalized) when divided by |n 1[2/3

Fig.3 Normalized spectraT power density S(n,)/ _rS(n,)dn,. (full Tine)

LY
integral  f S.("'7':,"“/ r?(”t)J"r (dotted line) as a function
of ng for grill G2 (bl- 2—0.785, ¢1- . ¢2 = m) and G3(b1 b3 0.449,
b2=0.898, ¢1=¢3=0, ¢2 =m), when field amplitudes at waveguide mouth

equal ,Zero wall thickness.

Fig.4 Normalized spectral power dens1ty S(n, )/f S(n; )J”
(full line) and integral f S(n,,)dne /,S S(M,-)dn*_
(dotted 1ine) as a funct1on of n, for gr111 G4 (b =b,= b3 b4 0.785,
$1595= 0, ¢2=¢4=w) and G5 (b1= 0 449, b b4 0 898, $1%05= ¢5-0
$o=g=T ) when total field amplutudes at wavegu1de mouth equal. Zero
wall thickness.

Fig.5 Same conditions as Fig.3, except transmitted power density constant.
Fig.6 Same as Fig. 4 except transmitted power density constant.

Fig.7 4-Waveauide Grill WEGA with finite walls. (b-const-D 586, waveguide
separation Az = 0.905, phases ¢1 ¢3 =0, o= ¢4 T ). n.= 3.47, L/)0=0.58.
Transmi tted power Sk/S‘equa1 Plotted are qua11ty factors of inside
02, Q ) and outside (Q,, Q,) wavegu1des, power reflection coefficients
of 1ns1de\?2 312 and outs1de]t°1 4\ waveguides and g]oba] power
reflection coeff1c1ent R as a funct1on of Vn (cm ') over fs
(frequency in GHz) cubed.

T e e
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Fig. 8 4-Waveguide Grill WEGA, same geometry and phases as Fig. 7.
Results at Vn = 6.7 (10) fG3 cm 3, as a function of ratio of
transmltted power in outs1de (S or 84) to inside (S or S )
wavegu1des Plotted are quality factors of inside and 0uts1de
waveguides, transmitted power of inside (( 52+S3)/S) and outside
((51+S4)/S) waveguides, incident power of inside ((512+Si3)/3)
and outside ((Sil+814)/S) waveguides, ratio of accessible to
total transmitted power Sacc/s' and total incident power normalized
to transmitted power ZSik/S.
Effective quality factor for accessible power Qmax{Sacc/S) is also

plotted, where Qmax is the larger of Q 107 Q2.

Fig. 9 4-Waveguide grill WEGA, same geometny as Fig. 7. Plots of normalized
spectral power density S(n // il SCny) dny.  (full line) and
integral _f S(nddny /, §°°S(m.1) dny (dotted line) as a
function of n,. The two cases correspond to equal transmitted power
density (S s =1). and variable transmitted power density
(S =54:S,= S3 in ratio of 0.42 : 1),

The latter case corresponds to A10=A20=A30=A40.

Fig.10 12-Waveguide grill (b= const= 0.2, waveguide separation Az=0.268)
ne= 11.7, L/A= 0.51. Power spectra of odd (dot-dashed line, case 2,

Table IIT), even (dotted 1ine, case 1) and m/2 (full line, case 3).
For standing-wave odd and even cases (S(n )+ S(-n ))/ f .S(n,)dﬂ-r
are plotted, while for travelling-wave odd m/2 case, S("%)K;IISCht)“br
is plotted. Phases are : odd (0,0,m,m, ...), even (0,m,m, O, ...)

and m/2 (0 : 7/2 :m: 3m/2 ...).

Equal transmitted power densities.

Fig. 11 Same conditions as Fig. 10, except power densities unequal, adjusted
so all Ako‘s of ‘each grill are equal. (cases 4-6, Table III).

Fig. 12 Same grill geometry as Fig. 10. Full line is odd configuration at
constant transmitted power density, phases 0:0:0:m :m: 7 ...(case 7,
Table ITI). Dotted Tine is same configuration, but with unequal power
den51t1es, adausted so all Ak s are equal (case 8 ) Dotdashed line
is trave111ng wave configuration at equal transm1tted power density,
phases 0:60°:120°:180°:240°:300°:... (case 9)

L__—'—._——._____——J
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Fig. 13 Same gmﬂ geometry as Fig. 10. Relative phases between waveguides

as gwen on the figure. Plotted is S'(n,)/ % SCng ddny

except for 180° case, where we plot (S(n,).; Sc-n)) /. j‘ y(,,')d”?_
and 150°, where negatwe peak is also plotted. Only pr1nc1pa1 peaks

are shown. Cases correspond to case 11-15, Table III.
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