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Abstract

We consider relativistic guiding center motion of
charged particles (charge e, rest mass mo) in mag-
netic fields consistent with toroidal tokamak equi-
librium. The particle acceleration due to the toro-
idal electric field essential to tokamak operation,
is taken into account. For the case of weak accele-
ration (eU/m0c2<(1, where U is the loop voltage),
the poloidal locus of charged particle motion is
found to be an envelope of closed drift orbits at
constant kinetic energy and is characterized by the
existence of an appropriate adiabatic invariant.
This allows, in the absence of collisions, a com-
plete description of the motion and confinement of
runaway electrons in tokamaks. For peaked current
distributions and sufficiently high energies drift
separatrices exist. They are calculated and their

relevance to charged particle confinement and in-
jection is considered.

+) At present JET Joint Undertaking,
Abingdon, Oxon., OX143EA,
England




1. Introduction

The study of relativistic runaway electrons has become the
object of increasing interest. Such studies gain their par-
ticular importance from the fact that because of their qua-
si-collisionless motion runaway electrons may be experimen-
tally used as test particles for the investigation of the
confining magnetic field. In order to take advantage of this
fact a theoretical analysis of collisionless runaway motion

is an indispensible prerequisite.

The analysis is considerably simplified by a knowledge of the
constants of motion. Charged particle motion in the axisymme-
tric magnetic field of an ideal tokamak is characterized by the
constancy of the toroidal canonical momentum. Since through
first order in gyroradius this extends to the toroidal cano-
nical momentum of the guiding center /1/, guiding center mo-
tion in tokamak magnetic fields can be considered in terms

of this constant and of the constants of motion E (energy)
and W (magnetic moment). Most calculations of runaway or-
bits in tokamaks are based on this approach (/2/, /3/ and
references therein). For example, runaway orbits, with par-
ticle energy as a parameter, passing through a fixed point

at the outside of the torus, have been calculated in /4/.
From the experimental point of view the following more ex-
tended problem is of basic interest: what is the orbit of a
runaway electron which is produced on a given magnetic sur-
face after it has performed a very large number of toroidal
revolutions (typically 106) and - by acceleration of the to-
roidal electric field essential to tokamak operation - has
obtained an energy of the order of several MeV? This is the
main problem treated in this paper. Our treatment takes ac-
count of the fact that runaway electrons increase their ki-
netic energy due to the accelerating force of the toroidal
electric field. The presence of a toroidal electric field,

of course, changes the situation with respect to the con-

stants of motion. We consider time-independent electromag-




netic fields, so that the magnetic moment M and the total
particle energy remain constant, but the corresponding La-
grangian now becomes a function of the toroidal angular co-
ordinate so that the toroidal canonical angular momentum is
no longer conserved. However, taking into account the small-
ness of eU/mOcz, which is the ratio of the particle one-turn
energy gain to particle rest energy, the acceleration process
is accompanied by only a quasistatic increase of the particle
kinetic energy and the poloidal locus of charged particle
motion is found to be an envelope of closed drift orbits at
constant kinetic energy. The corresponding adiabatic invari-
ant is derived in this paper.

Another important question is concerned with the change of
runaway orbits due to a variation of plasma parameters such
as profiles and absolute values of current and pressure. For
example, in connection with the internal disruptions a saw-
tooth modulation in the hard X-ray intensity, produced by
runaway electron bombardement of the limiter, has been ob-
served in the Pulsator tokamak /5/. Here the question arises
as to whether the observed modulations can be explained by
the change of the runaway electron orbits due to a flatten-
ing of the current and pressure profiles. In order to treat
this problem we consider magnetic fields consistent with to-

roidal tokamak equilibrium in terms of current and pressure
distributions.

For nonflat current distributions and sufficiently high particle
energies the occurrence of drift separatrices is observed. Their
topology suggests charged particle injection into drlft. trajec—
tories for the purpose of heating. Their geometry is calculated
and the relevance to the problem of charged particle injection
and of slowihg-down is considered.




2. Basic Equations

We consider relativistic charged particle motion in terms of
guiding center theory. The particle equation of motion avera-
ged over the rapid revolution of a particle in its Larmor or-
bit gives the following equation for the time evolution of the
guiding center position /7,8/

%’é = ¥y % #BX{%"lrzB-VB + 'm_zﬂ B] W VB - eEl

m and e are the particle rest mass and charge, respectively.
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c is the speed of light, E is the electric and B the magnetic
field.

We assume a time-independent electromagnetic field. In this ca-
se the electric field E has a potential ¢. The particle ve-
locity components vy and v, in equation (1) are related to the
adiabatic invariant | and the total particle energy E, which
are constants of the motion, by

W = @%ﬁ ;B = m(p-1)ct+ e (3)™)
: Z

Taking into account that J2 and E are constants of motion equa-

tion (1) can be re-written as

o5 R /'_v”{(/l— %fB-mtB)B + '%’Wt(%/’@)} (4)
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where 1.
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+) There are, with respect to the adiabatic expansion parameter
my/e, some first order corrections of the magnetic moment.
These, however, do not affect the validity of (1) expressed
in terms of the constants of motion to this order, but con-
cern the assignment of a particular value to w for a parti-
cle whose initial position and velocity are given (see /1/).
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r=7E0K) = 1+ Ee@X (7
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X is the angle+) between particle and magnetic field direction
at some initial point X,r where B and T have the values B, and
?b, respectively. The negative sign for \/ in (5) corresponds to
the choice a>1/2.

In what follows we consider the relativistic guiding center motion
in an axisymmetric electromagnetic field appropriate to the ideal
tokamak. This means that we include:

(A) magnetic fields consistent with toroidal tokamak equili-
brium in terms of current and pressure distributions

(B) the toroidal electric field essential to tokamak operation.

Relativistic effects enter the guiding center motion according
to (4) through (5)-(7). (A) means that the magnetic field and
the current density are given by

B=VExXVG + AG)VE
fof = 10tB = N(G)V6xVE + R*din- (B)VE (o)

(8)

where G is the poloidal flux function determined by equilibrium
in terms of current distribution A(G) and pressure distribution
p(G):

R? daw %f + AN'(6) + 4T, R*p'(G) = 0 (769

A prime (') denotes the derivative of a function with respect to
the given argument. g is the angle about the axis of symmetry
divided by 27T, R is the distance from this axis. According to
(B) we have the electric potential

dx) = UE(x) S
where U is the loop voltage.

This last relation together with the equations (7-9) for the mag-
netic field give for the guiding center motion

- W Vi ey
g8 - {78 (are - O] i ve ey 9 oo

+) For the interpretation of this angle the same qualifications
have to be made as with respect to the magnetic moment.
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and v

y 1s to be replaced according to (5).

3. Characteristic Features of the Motion

As all equilibrium scalars are independent of g

this angle
variable is an "ignorable"

co-ordinate in the sense that it

enters each component of (12) only through i according to

equation (15). Therefore, if we use the time derivative of (15),

equation (12) can be transformed into a purely poloidal pro-
blem and an equation describing the time evolution of T
d.X 4R 'ma

Lo (a4
T vE x {16 - ()} - £ 2w e

de _ _ el Vi = (17)
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If -xi= g(go,r) is a solution curve of (16) with X = 9(50'76)’

then solutions of the full problem lie on the rotation surface

of ¢, where ’r= ]%t) is implicitly determined by

T
dry'
b gl Sa(c(xi,f'),y') 5
To

and § is given by (15).

As a matter of fact, taking into account the smallness of eU/m cz,

which is the ratio of the particle one~turn energy gain to par-

ticle rest energy, relation (15) shows that T(t) is a slowly va-
rying function of time in comparison with g(t)

. Therefore we
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Fig. 1 Material lines for different values of T‘ together

with a guiding center trajectory (dotted).

will retain the time parameter t, and consider T(t) as a weak
function of time. Thus, instead of (16), we consider the polo-
idal problem

= A _u - (19)
i—‘)t( = % V” V% X {XVG = I—g—" V(%}} * Lr?REB2 VG = V(X,'U -

Solutions of this equation obviously represent the trace of gui-
ding center motion in a poloidal plane.

Let us, for some initial time t=to with Tb =]1t0), consider

a drift particle ensemble on an arbitrary closed poloidal cur-
ve C(Tb)' The poloidal trace of each drifting particle initial-
ly lying on G(Tb) with increasing fI= T(t) moves along one of
the above-mentioned solution curves x = E(EO,T(t)), and the
poloidal loci of the positions of all such particles for a given

value of T* constitute a closed poloidal curve @(T) (see Fig.1).

In hydrodynamics such curves which are carried by the poloidal flow
V(x,t) are called material lines /9/. The rate of change of the
area S enclosed by such a material line by purelvy kinematic con-

siderations is given by

4 df o QR(VExVIxt) dX (20)
C(y)

Now any poloidal axisymmetric velocity field V(x,t) can be re-

presented as




V= WVgxVe~ (21)

where W and G are two scalar functions determined by the flow
field V(x,t). The introduction of the representation (21) into
(20) gives

%HS: = — %@ % VG*- dx (22)
Cly)

If G¥ is single-valued and th;Tfunction W turns out to be of the

form W = C.R , where C is a constant, then the considered flow

is area preserving in the sense that the area enclosed by poloi-

dal contours carried by the flow is constant. The tokamak equi-

libria we wish to consider satisfy the above conditions for the

functions W and G* , so that relativistic guiding center flow

is characterized by that property. 5
In the case of weak electric fields (eU/mOc <« 1) we get from this

property, besides the constants of motion E and p, a third geome-
trical one as follows:

In concepts of motion of a continuous medium any particular po-
loidal guiding center trajectory x = g(go,r), by the definition
of stream lines, can be interpreted as the envelope of the one-
parameter family of stream lines through the points constituting
this trajectory. The parameter is ]ﬂ and the stream line corres-—
ponding to a particular value of fr consists of the points x'
satisfying the equation G*(g',T) = G*(E(EO'T)’T)' We especially
refer to situations with closed stream lines. Due to the small-
ness of the parameter eU/moc2 each member of such a family of clo-
sed stream lines, for times involving a sufficiently small varia-
tion of ]ﬂ , is an almost perfect representative of the guiding
center trajectory itself and for this reason also of a material
line. Therefore the real guiding center motion becomes the enve-
lope of such closed level surfaces of the function G*, whose cross-
sectional area is constant, i.e. this cross-sectional area beco-
mes a constant of motion in the sense of an adiabatic invariant.
By methods of classical mechanics (e.g. /10/) the latter can be
shown by performing a corresponding time average of dS/dt using

W = C.R for the motion (21). As the derivation is standard we

omit an explicit proof, but in the appendix give an example,




where the exact motion is known and the character of the adia-
batic approximation can be very clearly seen.

4, Curvature, Plasma and Electric Field Effects on Particle Drifts

{

A treatment of the full problem would consist (a) in the consi-
deration of a particular plasma equilibrium with prescribed pres-
sure and current distributions and (b), on the basis of the resul-
ting equilibrium magnetic field, in a solution of the equations
(12) to (15), whose free parameters are the loop voltage U, the
total particle energy E and the initial pitch angle o .

In order to simplify the equilibrium part of the problem we make
use of the customary approach to tokamak equilibrium and consider
equation (10), the equation for the poloidal magnetic flux, in a
large aspect-ratio approximation which gives results correct to
first order in inverse aspect-ratio /11/. The magnetic surfaces
are represented by non-concentric tori of circular cross-section.

These, and the co-ordinates naturally associated with them, are
illustrated in fig. 2.

[
(R,z)=(R,,01”
\

N2s?

For pressure and toroidal current we assume the following class
of distributions

Fig. 2 Illustration of the relation
between R-z and r-8 co-ordinates deter-

Ap(r)

mined by the displacement function Ap.

psiid=:pe)™ (23)
I {1-(- pz)"”‘”"JI (24)
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where p = r/a, a the small plasma radius, B the plasma pres-
sure on the magnetic axis+) and IT the total toroidal plasma
current. n and m are arbitrary positive integer exponents++)

describing the peakedness of the distributions.

Poloidal flux G and plasma displacement AP are then given by

G = 5 PRI Bl ¥

(25)

A &

" | !
2 - 20X = Ap) (26)
where 0
X = "—Pl (27)
m +4

_ Lg-xk

Fm+4(x) - giﬁm X) ' 5]

4
1 XMM— (M4 X% Faneq (X)- 7 F (wie )(X}
Fet) = Py + %(1_xmu)1) . 7 __,(fmuz)z 1

BP _ 81*a’p, (30)
(fmﬂ/uo ITz

(29)

is the poloidal beta at the boundary of the plasma.

The toroidal current density corresponding to the distributions
(23) ‘and -(24) is

: T (4 (-x)x™ " R2-RZ mm} (31)

According to our considerations in the preceding section the po-
loidal trace of a guiding center orbit is given by a solution
of the equations (19) and (17) which we re-write as follows:

% = %V” V"g' xVG* + M’VngG&- CAL S VG

: EEIAAMRES
di woselae IV
W me R (59

+) Note that the same subscript 'o' has different meanings de-
pending on the quantity to which it is attached.

++) The restriction to integer values is not essential.




where G* G*(X Y- ; i A(G (34)

For a determination of the functions X',V and v, entering the-
se equations we have to consider the relations (13), (14) and
(5). In the large aspect-ratio approximation, using (9) in (13),

we obtain for

m 4
. - 1__4_ﬂ.XqI_A(m+UX - 0() (35)

Z'HTG,)‘BTO i btm,C
A

R, 5 _
A= ] q == /4QE-R0 ] L€

S0 (36)
a
with aspect-ratio A, BTO toroidal magnetic field on axis, sa-

fety factor g and Alfven current I Thus the second term in (32)

A
is of second order in inverse aspect-ratio and therefore removed

from the present consideration.

The last term in (32) is in magnitude U/pOITAzqvIl times smal-
ler than the first one. As we consider only unidirectional mo-
tion of guiding centers with particle energies E:>kT/mo, this
term, which is the ExB-term, is negligibly small for typical to-

kamak parameters.

Thus, instead of (32), we consider

dﬁ 6&; ¥
T oy ARVngG (38)

where C¥ia G /(,LOITAA*R (39)

_ 7
A i{% T ¢ (40)

R=R(1+ —&-(prQ + N p) (41)

and G and v, are given by (25) and (5), respectively. In order

Il
to exclude terms of second order in inverse aspect-ratio from
consideration we must limit the initial pitch angle such that
A.sinzm,< 1. From (5) and (40) we obtain then that the coefficient

of the vector product in (38) is proportional to R.



Therefore the function W, introduced for the representation (21)

of the poloidal guiding center flow field, is indeed of the

form required for an area-preserving material motion. As we have

shown in the last section this means that particles lying at some
moment of time on a closed toroidal surface (e.g. a magnetic sur-
face) move in such a manner that the cross-sectional area of the

corresponding material surface remains constant.

Before making use of this property we go into a closer conside-
ration of the level surfaces of the function G*, which in fact
are drift surfaces at constant kinetic energy. They can be easi-
ly illustrated by adding to the (R,z)-co-ordinates of a poloidal
plane a third, auxiliary one labelling a stack of parallel (R,z)-
planes in upward direction. As such a co-ordinate we take the va-
lue G of the poloidal magnetic flux and consider (39) in the re-
sulting (R,z,G)-space. In this space the poloidal flux function
(25) is represented by a bell-shaped surface and, for particular
values of G* and T' relation (39) can be interpreted as an equation
for the intersection of this bell-shaped surface with the plane

G = G* + pOITAA?R. The projection of this intersection onto the
the actual poloidal plane characterizes then a level surface

of G*. The direction of the intersecting planes, for given

plasma parameters, is determined by the value of AL, a8 by

T and o; for q\= 1, that is the case of horizontal planes,

magnetic and drift surfaces coincide.

With increasing I‘ magnetic and drift surfaces through a given
point in the actual (R,z)-plane differ from each other more and

more and we expect conditions for the closure of the latter.

Analytically, level surfaces of (39) through the outermost
point (p,®) = (A,0) of the magnetic surface with the (normalized)
radius A (fig. 3) must satisfy the equation :

N*(pcos8 - A +A(p) - A(N) = %{FMM (xp)) - EMM(X(’A))} (42)

They are closed in the circular region O=<ps<1 if the function
A* is such that

e o (43)
A(4+A'M)

A (pe) < BN =
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} a%(a) e Bpl2,0)

z/a
o 1.6
plasma boundary

i
I
magnetic surface
1.2 |- :
08} 7 AR
flat
(m=0)
04 [ --f---e frrib s -
Fig. 3 The geometry of magne- '
tic and relativistic particle :

‘ A
drift surfaces through a given 0 0.5 10 ~+»
point (R,z) = (R0+a(1+A(A)),O) Fig. 4 The dependence of A:
in a poloidal plane. on the radial parameter A .

A' (A) is the derivative of A at p=A and according to (26) given
by
A'(A) = - %— F(x() (45)

The right-hand side of (43), which is proportional to the poloidal
magnetic field as a function of the radial parameter X

B,(4,0) (46)

N (A) =
s (W (1+4'(1) B, (1,0)

is plotted in fig. 4 for a flat and for a peaked current distribu-
tion. Fig. 4 illustrates the fact that for nonflat current distri-
butions there is a finite region inside of the outermost magnetic
surface with radially decreasing poloidal magnetic field. Closer
investigation of the contour equation (42) reveals that, for kine-

. . L] _ 2
tic energies Ek— mobr 1)c such that
* o P 47
N(po) = KM (47)
applies, which, in detail, means

(f—’l)ﬂzlﬁ 1 Tctpmsale”, 1= o 5 e
2A Ir{ 721 p e AA+D'N) '
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Fig. 5 The geometrical parameters of stag-

nation point and drift separatrix.

a stagnation point appears at (R,z) = (R0+a(x+A(A)),O). Fig. 5
shows the geometry of the corresponding drift separatrix. The

angle between the plane z=0 and the plane tangent to the drift
surface through the stagnation point can be calculated from

2 2\
L A 1.2 _ ~ 2(Wn&4)1,(4—1_) (48)
(' (R) Hg%gg = 1 T (R
The angle eL for which particles leave or enter the plasma at the
boundary can be calculated using formula (42):

018, = AbA) + 75z {0 -, (x0) (49)

Ie | has its maximum for maximum AS, i.e. for maximum poloidal
magnetlc field in the plane 2z=0.

Associated with this angle are two others describing the geometry

of the separatrix at the plasma boundary: The angle @p between the
inward normal to the plasma boundary and the poloidal velocity

field direction there, and the angular deflection PT of the partic-
le trajectory direction from the toroidal direction in (p,0) =
(1,8L). For these two angles it is found:

g Ns D, ¥,
C’MLFP (4 A ZA*SDLCGGQL +(A* D Z)’/z (50)
1- 2% D, con 6, + <2 D2)"
JC%('FT 8 qj_\ Dcm NIV (51)
L

where D, = 1+A (1) cosb, (52)




5. Electric Field and Current-Flattening Effects on Runaway Motion

The toroidal electric field typical for a tokamak causes g‘ to

increase according to

dy _
dt

Al ¢ (53

T

This expression is obtained employing in the considered approxi-

—

elt 1
m,C?

=)
el

mation the equations (33), (14), (37) and (40). For electrons,
due to the smallness of eU/mocz, this acceleration process is ac-
companied by only a quasistatic increase of the particle kinetic
energy. Therefore, together with the stated area-preserving pro-
perty of material motion, charged particles on closed drift or-

bits move around members of that subset of level surfaces of G%,

ETk Particle Kinetic Energy Ej
Mev as Function of the Radial
Parameter A
40 =3 Current Distribution: peaked |
(m=3)
Bl

30 - s

20 / /

10 MeV 15MeV L////

0 0.5 1.0
A —_—

Fig. 6 Runaway electrons of 10 Fig. 7 The A-values for
MeV and 15 MeV, respectively, on Ex=0 are equal to the nor-
drift surfaces touching the limi- malized radii of the magne-
ter. These electrons originate on tic surfaces on which run-
magnetic surfaces (indicated by away electrons of given
dashed lines). energy originate.




Runaway Electron Outward Drift
due to Current Flattening

Ex Particle Kinetic Energy E, E
MeV as Function of the Radial

Parameter A

= —

k4
®
<|

Current Distribution: flat 5 ’! ! : \«\‘0‘\
i (m=0) A : Ao
! i i L -
: ! ) ! i o
’ : ! | 2. ]
| i | : \ : |
30 : : 20 | —- - —---£- Radial Displacement AA 4~ - - -
i -n-)\ ! - 5
N3 7
o
&
&
109
0 0.5 10
A —
PP3 ZFD 387-79

.Fig. 9 Radial displacement of
electrons at a given energy

Fig. 8 As fig. 7, but for a (15 MeV and 25 MeV, respectively)
flat current distribution. due to current-flattening.

whose cross-sectional area is constant. Thus charged particle mo-
tion in a weak toroidal electric field establishes an equivalence
relation between usual drift surfaces of different energy and po-
sition which can be interpreted as a drift surface motion. Figures
6-9 illustrate this characteristic feature of weakly accelerated

a5

charged particle motion for a particular case . In fig. 6 runaway
electrons of given energy are observed in their motion on drift
surfaces touching the limiter. Figures in different rows correspond
to current distributions of different peakedness (m = O, 2 and 3).
Together with these drift surfaces the magnetic surfaces of equal
cross-sectional area are given (dashed lines), i.e. the locus on
which runaway electrons originate at the beginning of the accele-

ration process.

+) We refer to some calculations for the tokamak PULSATOR, for
which we have taken the following data: Rg = 0.70 m, a = 0.11 m

Ip = 60 kA, Bpn = 34, Gn- =35 Bp =1,01.




Fig. 7 specifies the details of such a drift surface migration
for an electron motion originating on different magnetic surfa-
ces. Here the dashed line indicates that condition (47) is just
satisfied: Electrons, after gaining sufficient energy, do not
leave the plasma at the outermost point of the limiting magnetic
surface, but move along the separatrix cutting the boundary at
an angle © = GL # 0. In the case of a flat current distribution
(fig. 8) the motion of closed drift surfaces ends always with

limiter contact, because there is no separatrix.

Fig. 9 is obtained from figures 7 and 8 and shows the effect of

a complete current-flattening resulting in an additional runaway
outward drift at constant energy over the radial distance AA.

Such a behaviour can be concluded from the above-quoted area-pre-
serving property of material motion and from the assumption

that the flattening process is slow enough such that particle mo-
tion can still be considered in terms of motion on drift surfaces,
but fast enough to have no significant change in the particle ki-

netic energy.

6. The Problem of Charged Particle Injection and of Slowing-Down

In the absence of a toroidal electric field and for constant par-
ticle energy the equations (1) represent the usually considered
drift equations. For the large aspect-ratio approximation of the
equilibrium magnetic field treated above their solutions are the ob-
ject of our investigations for the case U=0. As we have seen, for
sufficiently high particle energies, in regions with radially de-
creasing poloidal magnetic field, a stagnation point and a drift
separatrix appear. Depending on the stagnation point position A

the corresponding particle energies can be obtained from condi-

tion (47). Putting 7;=?“, equation (47) gives for the energy

Ek = rno(T-‘I)c2
% 211/,
- ([ BERET e

Neglecting plasma displacement and pitch angle effects this sim-




Drift Surface Structure for an
15.01 T Z/em | ASDEX -like Magnetic Field
Configuration (Deuterons)
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Fig. 10

T , Deuteron Trapping
due to Slowing Down
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Fig. 11

plifies to E,/MeV = ﬂ;AnIT/16.7 for relativistic electrons
and to Ek/ev = 1.93.(A.A%.I.2)* /M for nonrelativistic ions

(z is the ion charge and M the mass number, I, in kA), where A
according to equation (46), is given by A:= BP(R,+a.l,O)/Bp(R°+a,O).
For an ASDEX-like magnetic field configuration, for example, we
find for electrons 74-103 MeV, for deuterons 1.5-2.9 MeV (IT -

300 kA). Fig. 10 shows the resulting drift surfaces for deuterons
with an energy of 2 MeV (x= O, Ap= 0, m=3; 12 orbital points
correspond to one toroidal turn). Their geometry with trajectories

leading from the boundary into the plasma suggests charged par-




ticle injection for the purpose of heating. The heating effecti-
veness of the injected charged particles depends essentially

on the processes leading to particle slowing-down. If we, in the
case of ion injection, assume energy losses due to Coulomb colli-
sions, we must reconsider the drift equations (1) supplemented

by a slowing down law for - Following /12/ we may assume

dy _ _ 2(33—’1){4 + (Jl‘_")%} (55)
at t. T-ﬂ
with the Spitzer ion-electron slowing-down time ts = ts(Te,ne)
and some "critical" T-value 7% which corresponds to the energy,
where the differential energy transfer to the ions equals that
to the electrons. Solving the corresponding differential equations
we can achieve deuteron trapping as illustrated in Fig. 11, how-
ever, only under the assumption of an unrealistically high densi-
ty (ne = 1016cm_3). The introduction of anomalous energy loss
processes would make the slowing-down more efficient. Here par-
ticle-wave interaction and beam-induced return currents come
into question. For relativistic electrons the importance of these
effects is known /13/, for high-energy ions a theoretical treat-
ment can be found in /14/.
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Appendix

We consider a particular case, where the differential equa-
tions (16) for the poloidal trace of guiding center trajectori-
es allow an analytical solution which facilitates a quanti-
tative investigation of the effect of a finite toroidal elec-
tric field on the motion. We put the initial pitch angle

equal to zero, neglect plasma pressure effects and consider

a flat current distribution (m = 0).

Written in polar co-ordinates about the origin (RO,O) in a po-
loidal plane the equations (16) read

%% = UOA*(T)'MQ (A1)
a o

2 (A p) e
- 2 0 -
T~ o My J
where p is normalized by p = r/a and A* and w are given by

*x — I I 2 _
Bl = 2 R A

2T mocz L wp (A4)

ellq Awy

) (A3)

R =

For orbits closed in the considered region, W can be interpreted
as the ratio of the frequency (np of poloidal revolution to the
increase AUJT in the toroidal revolution frequency tuT du-
ring one toroidal orbit due to acceleration.

If in the R-z plane we introduce other polar co-ordinates (p¥, 6%
about the origin (R,z) = (Ro+a.X(T),a.Z(T)), which is shifted
with respect to the original one by the ?°-dependent distance

a.(X2+Zz)1/2, then the equations

¥

ap
y
g8~ _ (26)

o

i

0 (A5)
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are equivalent to (A1,A2), if the new origin satisfies the equa-

tions
QL—X = wl (A7)
ay
Az _ (A=Y (A8)
4

Using at 1’=]% the initial conditions
X(To) - A*('ro) (A9)
Z(To) = 0 (A10)
the solution of the system (A7,A8) is given by

T
() - )+ o {0 -2 smw(p-p) dpt A
f Io
Z{y) = w & A*(T N(To))-cmw(r{-r') d?p' (A12)
To

1
The flow associated with the kinematic equations (A1,A2) is non- |
stationary if U # O. Its stream lines are given by the level
surfaces of G* according to equation (39). They turn out to be

concentric circles about the center (R,z) = (Ro+a.£ﬁ(T),O).

The equations (A5) and (A6) show that - regardless of the loop
voltage-driven time-dependence of the accelerated co-ordinate sy-
stem (p*,e*) - any closed contour carried by the flow experien-
ces a rigid rotation by the angle —tu(T(t)-1;), so that the flow

is area-preserving in the sense of our explanations in section 3.

To investigate the nonstationary character and the geometry of
the flow we focus our attention on the dependence on the loop
voltage, i.e. on W.

For sufficiently high energies the integrals (A11,A12) are easy
to evaluate. For T2$>1 (A3) gives

’ Iy
A (TJ — QCYA g & where % =-—2A]% (A13)
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Fig. A1 Path lines, material lines and stream lines for
an analytical solution of the relativistic drift
equations. In (B) the electric field is reduced
by a factor 10 with respect to that in (A).

and the integrations in (A11) and (A12) give for X(T) and Z(T)

(A14)

Xy) = 2 (p- & amwip-1)
Z(y) Z (4 - cos w(f‘r-w) (a15)

I

The figure illustrates the motion associated with (A14) and (A15).

The first case (A) shows a path line (indicated by arrows)




- gL

starting in Po with T;which passes through the point PA with
T' The material line through PO was arbitrarily chosen to be
the stream line through that point for the initial T—value.

In the point P path line , material line and stream line are

AI’
all different from each other - the reason is the artificially

high electric field (W= 1).

In (B) we have the same initial and final values for 71, but
the electric field is reduced by a factor 10 (w= 10) with
respect to that in (A). Path line, stream line and material
line show a strong tendency to coincide and it can be seen that
the drift orbit cross-sectional area with increasing w (typi-

cal values of w are about 105) will become a constant of motion.
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