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Abstract

A 1/B3 scaling law is derived for anomalous diffusion
produced by the dissipative trapped-ion instability
in axisymmetric toroidal plasmas with shear. Our
theory helps to explain why transport of this type
has not been detected in the PLT heating experiment
so far [ 9 | . We prove, in addition, that the
Kadomtsev-Pogutse diffusion formula [ 3 | contradicts
the trapped-fluid equations from which it was deduced

[ 3], provided that the necessary boundary conditions

are observed.




1. INTRODUCTION

Numerical results on anomalous diffusion caused by

the dissipative trapped-ion instability have been pub-
lished elsewhere [ 1 |, [2 ]|. There the Kadomtsev-Pogutse
trapped-fluid equations [:3:] were solved in a 2D slab
model without taking shear effects into account. On the
other hand, Gladd and Ross [ 4 | have shown that, with-

in the linearized theory, magnetic shear introduces new

effects connected with strong Landau damping of the un-

trapped ions near mode-rational surfaces (where K, = o).
They find unstable trapped-ion modes which are either
confined between two adjacent mode-rational surfaces
("localized modes") or may extend over many mode-rational
surfaces, but have their radial nodes approximately

there ("extended modes"). It seems reasonable to take
this important shear effect into account by identify-

ing the radial extent of the model slab with the distance
Aa between properly chosen, adjacent mode-rational sur-
faces, rather than with the small plasma radius a. In this
way the values of the electrostatic potential ¢ at
mode-rational surfaces will approximately equal those

at the radial boundaries of the slab, viz. ¢ = O.

In this paper we show that a similarity analysis

of the trapped-fluid equations then leads to a new

scaling law for the trapped-ion anomalous diffusion co-




efficient of a toroidal configuration with shear.

This scaling law can be evaluated by feeding in the
numerical results [ 2 | obtained for the diffusion
coefficient of a toroidal configuration without
shear. The shear modifies the scaling of the diffus-
ion coefficient to change from 1/B (Bohm-like) [ 2 |
to 1/B3. It reduces anomalous diffusion by a po-
tentially large factor such that it falls below the

Kadomtsev-Pogutse value [ 3 j.

While we take into account radial mode locali-
zation caused by strong Landau damping of untrapped
ions near mode-rational surfaces, weak Landau damp-
ing of untrapped ions, far from mode-rational sur-
faces, and of trapped ions will be neglected. Here
we call Landau damping strong or weak, respectively,

and v << v The formulas for weak

th res th*
Landau damping [:5:] change their sign at

u
for v NV
res

ny = dan Ti/dzn Np = 2/3, so that Landau damping is
negative for ny > 2/3. On the other hand, Gladd and
Ross | 4 | show that the total Landau damping (= sum
of strong + weak L.D.) of untrapped ions may be
positive up to ny N 2. Considering these discrepancies,
it seems best to discard any correction terms for weak
Landau damping altogether, specifically in the case

g ™ 0% 1, which we shall treat exclusively. By dis-



carding weak Landau damping one gains because the
problem depends on a smaller number of equilibrium
parameters, while one apparently does not lose in
accuracy as long as the determination of Landau
damping effects is not in a better state than it is

now.

It should be emphasized that the Kadomtsev-
Pogutse fluid equations [ 3 | and their consequences
are only valid for a two-component plasma (one ion
species and electrons), with an ion charge Zi = 1.
Occasionally, application of this theory to plasmas
with impurities has been attempted by introducing
an effective Z and modifying the collision frequen-
cies accordingly, an approach which is open to serious
doubts. Linear theories for multi-component plasmas
also exist [ 6 |, [[7 ], but calculations of anomalous
transport were not made for these cases. Merely the
ansatz D ~ Y/K¢2 was employed [_6 |, but this ansatz
lacks sufficient theoretical foundation and, moreover,
suffers from the uncertainty what value of KL to

choose,




2., SIMILARITY ANALYSIS

In [:2:] a simularity analysis ("dimensional ana-

lysis") was applied to the trapped-fluid equations in
a slab geometry. As a result, the anomalous diffusion
coefficient (defined as the ratio of the radial
particle flux divided by the gradient of the equi-

librium density Np) was shown to obey
Biisml g8 Vs g(cl, cz). (1)

Here a is the minor plasma radius and the radial ex-

tent of the slab, Vs (60 cT) / [:2 e B r, (1—60):1 ‘

N
P

8
o]

B = magnetic field, T = 2 Ti Te/(Ti + Te) = effective

plasma density, n..m trapped particle density,

no/Np, r = no/né (prime = radial derivative),
temperature [:erg:], g is an unspecified function

of two dimensionless variables, viz. c, = vi/ve,

c, = vo/(ve a), vj = effective collision frequencies
of trapped particles. The density length scale r. and
the angular extent b of the slab had both been set

equal to a. For b ¥ a, eq. (1) must be replaced by

5 2 glcyr cj) (2)




with cé = vo/(ve b). For b > a this yields a smaller
diffusion than according to eq. (1), if g is a non-
—increasing function of cé (see below).

We shall now modify the above formulas in order

to include the shear effect mentioned above. To this

end the radial extent of the slab, now called &Aa,
is identified with the distance between two properly
chosen mode-rational surfaces (see below); i.e. we

have Aa £ a, with a = plasma radius. Two radial

length scales, viz., Aa and r s the scale of the

radial density variation, must be distinguished. This
does not hamper the similarity analysis because the
density no(x) itself does not enter the equations

for the perturbations gj = nj =y but only its gra-
dient né (x) . The similarity analysis is again
straight-forward (see [ 2 |) so that it suffices to list

the units employed, viz. ve-l for t, Aa for x (radial

coordinate), b for y (the angular coordinate), and

> g %E for the density perturbations Bj' The result
n
is
D, = § (Aa)2 29 g(c cYH (3)
s o b L
. s = . | J—— . =
again with c, vi/ve, c, vo/(ve b) ; Vi

(6, ¢ T) / [2eB Eos (X ~ 60):], but now aa # ro»




with r. of order a. It follows from the dimensional
analyses that the g-functions in eqgs. (1), (2), (3)
are identical. The result is remarkably simple in
that DS is obtained from D of eq. (2) by multiply-
ing by (Aa/a)z. That is, shear is shown to reduce

anomalous diffusion whenever Aa < a.

Comparison of eq. (2) or (3) with Kadomtsev
and Pogutse's |:3 j formula for trapped=-ion anomalous
diffusion, viz. DKP = 60 voz/(2 ve), shows that the "
Kadomtsev-Pogutse formula is generally in conflict
with these two equations and, hence, also with the
underlying trapped=fluid equations from which the
Kadomtsev-Pogutse diffusion formula was originally
deduced [ 3 ]. This is so because the necessary bound-
ary conditions are taken into account in our study,
whereas Kadomtsev and Pogutse have failed to observe
these boundary conditions. Consequently, the Kadomtsev-
-Pogutse diffusion formula {:3:] appears to lack theo-

retical foundation. Further use of this formula in .

numerical transport codes is deemed unjustified.

The validity of the above results rests upon

several assumptions [ 2 |. These are:



(1)

(2)

(3)

(4)

(5)

D and Ds are assumed to be independent of a re-
presentative class of initial conditions of the

plasma.

The linearized version of the quasineutrality

condition is used.

The approximations VGO = 0, Vno = const,
Np/T = const, i.e. n =1, with n =4 2an T/
d n Np, and ij = 0 are used (the latter
being somewhat in conflict with NP/T = const

for a real plasma).

Weak Landau damping, far from the mode-rational
surfaces, is neglected. This would be exact for
n = 2/3 rather than n = 1 if the pertinent
formulas used [ 5 ] could be considered to be

correct.

In accordance with numerical results [ 2 | ano-
malous diffusion is assumed to depend mainly on
the long-wavelength part of the spectrum and only
negligibly on the short-wavelength cutoffs at
>

vow

bi’ with RBi = ion banana

width, Wi = ion bounce frequency. This can

>
Kx RBi v 1 and Wy

only be valid if the distance Aa between the
adjacent mode-rational surfaces contains several

ion banana widths.
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These approximations appear to be justified in that
they yield an important reference case, with a
particularly simple scaling law holding for DS'
Indeed, egs. (1) to (3) are, in essence, one-para-
meter scaling laws because c, = vi/ve is constant
for a given ion species and a fixed value of Ti/Te.
Without the use of these approximations the result-
ing formula for DS will involve several additional

dimensionless parameters or profiles and, hence, be

of restricted usefulness.



3. SHEAR MODEL AND ANOMALOUS DIFFUSION

In order to further evaluate DS from eq. (3)
the distance Aa between adjacent mode-rational

surfaces must be known. It is [ 4 |:
pa % 1/(2q') ~ r /m (4)

for two components (m,%) and (m+1,2) of an eigen-
mode, with m = poloidal wave number, & = toroidal
wave number, g = safety factor, rq = gq/q' = radial
length scale of the variation of . Numerical results
(2], 8] show that, in the majority of cases, at
late times the m-spectrum is monochromatic in the
sense that it virtually consists only of the compo-

with m % max

nents m = 0 and m = mfinal' final

{1, a m } . Here m is the mode number margin
marg marg

of stability, viz.

Tmarg ~ VEl/(zmcé) = b \/(ve vi)/(2n v ), (5)

and o ~ 4 in the range 0.3 S m X 2.0. Remember-
marg
ing the condition Aa Za eq. (4) is to be replaced

by

o m . (6)
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It is this expression for Aa which must be in-
serted into eq. (3) in order to obtain the anomalous
diffusion coefficient in the presence of shear. The
function g was determined numerically [:2:], viz,

LY -2 <
g.% 6 X 10 in the range 0.3 — mmarg %:3,0 -foxr
2

B = vi/ Vg T 1.65 x 10 “. This value of vi/ve holds

for a deuterium plasma with Ti = Te and Zi =1, if
vi/ve = I/(me/mi) is used. By optimizing several de-
finitions used, the improved value g N5 X 10-2 is
obtained instead. We shali assume that this value is

>

also an upper bound for m = 3.0. If the minimum

marg
of the curly bracket of eq. (6) is given by a pr .y
a Bohm-like diffusion is obtained by inserting Aa
and g into eq. (3). This agrees with our earlier nu-
merical results [:2:]. A new and different diffusion
formula is obtained, however, if the minimum mentioned
is given by rq/(a mmarg)' It is this case which shows
the effects of shear most Strongly and which is dis-
cussed exclusively in the following. Inserting Aa

and g into eqg. (3) then yields the anomalous diffusion

in the presence of shear, viz.

) 3
r v
(@]
Dg 5 2.0 5 —%—- (-5—) : (7)
o, \)e\)i

with b = 27r, r = radial coordinate. Here the collision
frequencies vy and Ve @are not independent of each

other because ui/ve = 1.65 x 10_2 is implied.
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It is interesting to compare the new formula with

Kadomtsev-Pogutse diffusion [ 3] , viz.

B 2 . .
Dpp = 64 Vs /(Zve). This yields
DS 2 0.50
D " 2 ! (8)
KP m
marg

where the approximations rq = a, b = ma have been used.
Equation (8) shows that Ds is usually much smaller

than D_,_.. Note that m scales as
KP marg

B N (1-60) rn r
mmarg « 5/2 3 . (9)

An estimate of the scaling, in terms of experi-

mental parameters, of the anomalous diffusion in the

presence of shear can be obtained by replacing the

£ sign in eq. (7) by X. Then

T6 608 ?gf
DSK.' . > B3(1-6 )3 n 3 r3 . (10)
o) o n

For small B-values, the approximation 60 ~ V(r/R)

yields the simplified scaling formula

& 2
T rq r
8 "nN2p3(1-5)° 3 &?
P o n

Of course, egs. (10) and (11) hold only in the regime

where min{’a, rq' rq/(“ mmarg)l - rq/(OL mmarg)'
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4. DISCUSSION OF THE RESULTS

It is important to discuss several points re-
lated to evaluating the anomalous diffusion co-
efficients for specific plasma configurations and to
questions of validity. Equation (11) demonstrates
the strong temperature dependence of Ds of eq. (7).
Consequently, if T is not known accurately, a large
uncertainty obtains for DS. On the other hand, if
plasma heating is considered, the T6—dependence of DS
provides that a rather accurate equilibrium tempera-
ture can be obtained from an energy balance consider-
ation. Consider also the dependence of DS on the radial
coordinate. If the density and temperature profiles
are approximately triangular-shaped, a case found for
instance in the PLT heating experiment [ 9 | (see below),

then the radial dependence is comparatively weak, viz.

(1-p)p

oc _
® [C1- Yoo 73

with the definition ¢ = r/a, A = aspect ratio, and

D

(12)

the approximation rq = const. In other cases, however,
the radial dependence may be strong. Moreover, on
varying the radius, Ds may change its scaling accord-
ing to eq. (6), and the validity conditions to be

listed below may add further variations with r. Be-



cause of this potential sensitivity of DS it will
usually be advisable to evaluate DS by introducing

it in a self-consistent transport code that allows a
unified treatment of the various regimes. A related
point concerns the explicit way in which egs. (3)

and (6) can be evaluated. A simple, straight-forward
way is to evaluate "locally", i.e. for a definite set
of radii, { rK }+ In this case, however, the inter-
vals Aa(rK) éentered around the various radii rK will
overlap each other, which ought not to happen in a
physically adequate model. Hence one will prefer a
"global" evaluation, where one may start out by, for
instance, determining the maximum of Aa(r) and then
continue by repeatedly joining appropriate intervals
Aa(rv) left and‘right till one reaches the bounda-
ries. As a last point, egs. (3), (6), (7) hold, of

course, only if a set of existence conditions for the

dissipative trapped-ion instability are all satisfied.

K R. < 7 and

Theyare:Zﬁ\Jj<m.,w<wbj, v Ry

bj
Kx RBi < T , i.e. RBi < Aa|:4:], with mbj = bounce
frequencies of the trapped ions and electrons,
Ri = gyro-radius of ions, RBi = banana width of
trapped ions. If any of these conditions is violated,
then the approximation DS = O should be used instead
of egs. (3), (6), (7). In addition, Kadomtsev and

Pogutse [ 3 | indicate that a transition to the collision-




_16..

less trapped-ion instability should occur whenever

< > 1/2
Vg © ky vV, Or, equivalently, m A mmarg (ve/vi) .
For this case Kadomtsev and Pogutse suggest a Bohm-

-like diffusion [ 3 .

We wish also to comment on the validity of the
mode-rational surface, shear model of Gladd and Ross
(4], in the form in which we have used it here. Eiree,
one must be sure that for a given poloidal mode number
m = Mesoal the g-profile q(r) allows one to find a set
of appropriate toroidal mode numbers % such that the
consequent intervals Aa between mode-rational surfaces
(m, 2) and (m + 1, 2) cover the whole radial

extent of the plasma, where % is any member of the set.

It is easily shown that the g-interval 1 = q = - SR with
_ m=1
Inax = (M+1) /,{ 2 }+ (13)

can in fact be covered by overlapping intervals Aa

in this way. Here the bracket symbol { }+ designates
the smallest integer > the argument. Secondly, we

have to ask about the role of mode components (m, %)
which do not have any mode-rational surfaces in the
volume. Such modes have not been investigated by Gladd
and Ross [ 4 ]. It is easily seen, however, that usual-

ly, for Iqmax - qminl > 1 and m >> 1, such modes
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lead to |m - ¢ g| >> 1 in the bulk of the volume, i.e.
they are not flute-like. They can therefore be ex-
pected to have smaller growth rates than the flute-
-like ones [ 10 |, [[11 |, a fact that may justify
omission of these modes in the theory of anomalous

trapped-ion diffusion.
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5. COMPARISON WITH THE LITERATURE

The method of introducing an effective slab volume
limited by adjacent mode-rational surfaces in order to
take into account strong Landau damping near mode-
—rational surfaces as an important shear effect has
been used before in 2D, nonlinear, trapped-ion trans-
port calculations. Sugihara and Ogasawara [ 12 | have
simplified the Kadomtsev-Pogutse trapped-fluid
equations by keeping only the most secular nonlinear
terms and introducing a turbulent collision frequency.
They do not give a scaling law for the anomalous
diffusion, but compute D and DS for only a single set
of plasma parameters. Sugihara and Ogasawara claim
agreement of their results with the results of [ 2 ].
Numerical comparison shows, however, that the diffus-
ion coefficient without shear of [[12 | is a factor of
N 70 larger than the diffusion coefficient that is
deduced from [ 2 | with the b>a correction taken into
account. It is surmised that the rough approximation
of the nonlinear terms in [127] is mainly responsible
for this large discrepancy. On the other hand, if shear
is taken into account, the diffusion coefficient of
[[12 ]| is only a factor of ~ 7 larger than our value
deduced from eq. (7). We do not know why these two

factors differ so much from each other. It may well
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be that the k,~spectrum of [[12 ] differs from ours,
and in this way different effective values of Aa

turn up in the two theories.

On the other hand, Cohen and Tang [ 5 | have
recently published a 2D trapped-fluid theofy that also
contains several additional microscopic effects. Their
calculations of saturated wave spectra, however, use
restricted spectra and interactions only. For an
assumed three-wave interaction their result is incon-
clusive because the equilibrium spectrum turns out to
be unstable. No scaling law is given in this case. For
an assumed four-wave, one-mode self-interaction, the
result is applicable only for very small saturation
amplitudes close to marginal stability. Here a scaling
law is given, but that result cannot be compared with
ours because taking the limit of vanishing weak Landau
damping (letting n; + 2/3) in their formula 6]

would yield an infinitely large diffusion coefficient.
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6. PRELIMINARY APPLICATION

Our new diffusion formulas are to be inserted in
a numerical transport code [ 13 |. In the mean-time it
is useful, as an illustration, to consider the mag-
nitude of the anomalous diffusion coefficient and of
the resulting anomalous energy transport coefficient
in a simple example. We choose the PLT heating ex-
periment [:9:] because some publicity was given the
fact that trapped-ion anomalous energy flow could not
be detected there. At the highest temperatures the PLT
heating experiment shows Zegg > 1 (9], a fact which
by itself may suffice to stabilize the dissipative
trapped-ion modes under these conditions. Rather than
address ourselves to this question, which cannot be
decided anyhow merely on the evidence of Zeff’ we shall
demonstrate that the PLT heating experiment would show
an undetectable anomalous trapped-ion energy flow
(i.e., below the neoclassical value of heat transport)
even if one had Ze = 1 in this experiment. As

1 3

mentioned above, it is only for the case of Zi = Zeff =
that a nonlinear theory of the dissipative trapped-ion
instability and the consequent transport has been de-

veloped up to now.
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To make things explicit, we list the physical

parameters of the PLT heating experiment used by us.
4

They are r = a/2, B=:3.2:x:10" G, a =.40 &m;

R = 130 cm, Np = 2.2 X 1013 cm_3, Ti = 2.75 keV,

Te = 1.25 keV (all taken at r = a/2). In addition, we
use the assumptions rq =a, r =r,=a, q-= 2. The

radial profiles of density and temperature are taken
as linear functions of r in near agreement with ex-
perimental results [ 9 |. It follows that Moarg = 5°3-

We maximize the anomalous diffusion coefficient by

choosing o« = 1, i.e. rather than using

Meinal = mmarg
the value o« = 4 introduced above. We checked numeric-
ally that in the present case, with vi/ve = 5.0 x 10_3,
we still have g § 5 x 10—2. On using this value the

anomalous trapped-ion energy transport coefficient be-

comes

x; ¥ D_ =3.8x 10° cn®/s . (14)

We compare this with the neoclassical value of the ion

heat conductivity [ 14] , viz.

NC Vie By 4
i ' 3 '

(15)

NC

and obtain = 370 cmz/S, Xi/X§C A 1.0. The

Kadomtsev-Pogutse formula would have yielded instead

XI.{P G DKP = 2.2 x 103 sz/s, KP/X];.-]C

% X3 = 6.1. Note that
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KP o, i
PE DS/DKP = 0.17.

The reason is that eq. (8) was derived for vi/ve =

eq. (8) does not hold here for xi/x

1.65 x 10_2, while for the above PLT parameters one has
instead vi/ve = 5,0 x 10_3. The validity conditions of
Sec. 4 are satisfied for the above PLT values; hence

the instabilities should be there for Ze = 1, but,

BE
as eq. (14) shows, with small amplitudes and small
anomalous transport only. The calculated value of DS
[eq. (14) ] is so small and the r-dependence of D

is so comparatively weak [ see eq. (12) ] that eva-
luation of Ds for different values of r is not ne-
cessary in order to demonstrate our above assertion of
undetectable anomalous energy transport from the dissi-

pative trapped-ion instability in the PLT heating ex-

periment [ 9 .




7. SUMMARY

From a similarity analysis of the Kadomtsev-Pogutse

trapped-fluid equations [:3:], by incorporating the

mode-rational surface model of Gladd and Ross [ 4 ]

and using earlier numerical results [ 2 | we obtained

the following results:

(1)

(2)

A rectangular slab, with b > a, yields a smaller

diffusion than a quadratic one with b = a
(a fixed). This is an important point for numeric-

al calculations [ see eq. (2) |.

Shear decreases the diffusion by the factor

(Aa/a)2 [ see eq. (3) |, where Aa is the distance

of appropriate mode-rational surfaces. If min

q marg marg
follows for the anomalous diffusion coefficient

{a, r_, rq/(a m )} = rq/(a m ), then it

with shear, D_, that ordinarily D_ << pXFP [ see
eq. (8) ]. If min {a, Ty rq/(a mmarg)} = a or
rq, then Bohm-type diffusion prevails, in agree-

ment with [:2:], where, however, corrections for

b > a must be introduced.
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(3) If shear is effective, i.e. min{...} = rq(a mmarg)’
see above, then the diffusion coefficient obeys
a 1/B% scaling law [see egs. (10), (11) ]. Be-
cause the diffusion also scales as T6, the trapped-
—-ion anomalous transport will make its appearance
rather suddenly when T is raised. In the PLT heat-
ing experiment [ 9 | the anomalous trapped-ion
energy transport is still of the order of or

smaller than the neoclassical ion heat conduct-

ivity. )

(4) The Kadomtsev-Pogutse diffusion formula [3 ] is
shown to be in conflict with the underlying trapped-
fluid equations if the necessary boundary con-
ditions are observed. The use of that formula in
numerical transport codes is therefore deemed in-
appropriate. It should be replaced by Bohm-type
diffusion [ 2 |, corrected for b > a, or by the

new formula [:eq. (7) ], depending on the value of

min{a, rq, rq/(a mmarg) [ see eq. (6) 7. ¢
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