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ABSTRACT

This report deals with theoretical calculations of MHD pressure
losses of liquid-Tithium flows in tubes of circular cross-section
exposed to strong magnetic fields. Some simplifying assumptions
were introduced, yielding an analytical solution which allows the
pressure drop and losses in double tubes of coaxial geometry to be

compared with those in normal flow pipes.

The investigations show that coaxial ducts require much more
pumping power than normal ones under similar conditions. This great
difference of the properties of the two duct types will decrease

if the pipes are embedded in materials of good electrical conduc-
tivity. In this case the normal duct will afford a drastic increase
in the pressure drop, while the coaxial one will be nearly un-
affected. But even under these conditions the losses of the latter

will dominate.
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1. INTRODUCTION

In a steady-state fusion reactor, as envisaged at present,
a high-temperature reacting plasma will be confined by a magnetic
field with toroidal geometry from which the plasma can only slowly
leak by diffusion across field lines. One of the possible concepts
for the nuclear blanket of a fusion reactor fuelled with a deuterium-
-tritium mixture would be the use of Tiquid lithium as both a tritium

breeding and heat transfer medium.

The magnet coils used to generate the strong magnetic fields
must be outside the heavy neutron flux regions. As a result, they
have to be outside the 1ithium blanket. This, in turn, means that the
Li flow pipes must pass inside the magnetic field region. In this
way, there will be strong electric currents induced inside the Li
flows which result in an enormous increase of the pressure losses.
To avoid unrealistically high pumping power of the Li pumps, the
losses have to be minimised by finding optimal pipe configurations
inside the regions of strong magnetic field. These pressure Tosses
are influenced to a great extent by the geometry and the material
properties of the Li ducts, e.g. cross-section, thickness of duct

wall, and electrical conductivity of the duct wall.

In order to find criteria for optimal Li ducts, two different

concepts of conveying the Li to the blanket are compared in this paper:




(a) A single pipe of coaxial geometry is used to pass the Li from
outside the magnetic coils to the blanket and back again

(see Fig. 1).
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(b) Two pipes of normal geometry are used for the Li circulation;
they are placed close together, so that they are influenced by

nearly identical magnetic fields (see Fig. 2).

In this investigation the MHD losses, which are created in the
blanket segment itself, are neglected. The reason for the validity of
this approach is the much greater flow velocity of the lithium inside
the pipes compared with that inside the blanket segment with its wide
cross-sections. As the extent of MHD losses is nearly proportional to
the square of the flow velocity, all pressure drops created inside

the Li ducts will largely dominate.



2. CALCULATION OF PRESSURE LOSSES IN FLOW PIPES WITH COAXIAL
AND NORMAL GEOMETRY

2.1 Definitions and assumptions

With respect to the above-mentioned problems, the following

question has to be answered:

We have a coaxial flow pipe of length L (see Fig. 3). In the

inner part of the duct liquid-1ithium flows with the mean velocity

w2
Li-back- flow
V3,003

Fig. 3

vy in the x direction. The same amount of lTithium streams back in

the outer part of the duct with the mean velocity V3 in the -x direction.
The electric conductivity of the lithium is 6 , that of the duct

walls G“w. Along the whole Tength L the pipe is crossed by a strong,
homogeneous magnetic field § pointing in the z direction: ﬁ = Bgz.




What is calculated is the pressure drop between the ends of the pipe,
a
which is the sum of the MHD losses caused by fxB forces in the inner

part of the duct and those of the outer region.

This pressure drop, that must be forced by the Tithium pumps,
is compared with the pressure losses of normal flow pipes which, of
course, are of double length to allow for the fact that the 1ithium

must be forced into and back from the blanket segment (see Fig. 4).
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The equations necessary for solving the problem stated are

as follows:



Continuity equation

@%eriv(g\‘}ho : (1)

momentum balance
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Maxwell's equations
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and finally Ohm's law
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This system of coupled differential equations cannot be solved
analytically, but some simplifying assumptions will lead to some
differential equations with easy analytical solutions.

It can be shown that the velocity profile over the cross-
-section of the Tithium flow will approach a rectangular profile when
subjected to a strong external magnetic field. With magnetic fields
of several tesla, as in our case and as expected inside the blanket
region of a fusion reactor, we can assume the velocity profile of

the lithium to be ideally rectangular. The error of the calculated




pressure losses that would arise from this assumption together with
the necessary neglect of the friction term divlT will be less than
1 % under the above-mentioned conditions if the magnetic field is
homogenous along the duct. In the case of strong gradients of the
magnetic field (é—%%—::l), the additional error caused by taking the

mean value of the magnetic field along the duct length would be less

than 30 %, as is shown in /1/.

As these errors will tend in the same direction in both Tithium
pipe configurations (coaxial and normal tube), they will not be so
serious for the comparison of the losses of the two types of ducts.
For the purposes of this paper these uncertainties will be tolerable.
The errors given above are valid if we exclude the cases of isolating

duct walls and Hartmann numbers below 1000,

For the following analysis we make the following assumptions:

a) stationary conditions

D/gt =Os

b) isothermal conditions which lead to

const,

?

const,

<

const,

w0
L
1

c) electrical charge neutrality

get. =0



d) Magnetic field homogeneous and directed perpendicular to the

lTithium flow direction

e) induced inner magnetic field is negligible relative to the
external one, the Hartmann number Rm thus being much Tess

than unity

f) lithium flow velocity having only one component in the direction
of the tube axis and being constant across the length and
cross-section (rectangular velocity profile which is valid for
strong magnetic fields leading to H > 1000),

q) neglect of the friction term divT .

With these assumptions egs. (1-5) reduce to the following:

.|
grad P:-.'é'x‘z-, : (6)
Y=o (BeVxE) (7)
d'lVa'-:O ) (8)

E = -gradd g (9)




2.2 Solution for the coaxial flow pipe

2.2.1 Derivation_of_the_electric_potential @

To find a solution for the potential @ we use eqs. (7-9),

from which we get

div(-amd O+ VxB)=0 , ( qradev=0) (10)

A a
Because of the spatial constance of v and B we have inside each of

the four zones of the duct
div (YxB) =0 (11)

We thus find Laplace's equation in cylindrical coordinates:

A¢=ﬁ+%%(r%ﬁ?})+"—,ﬂ=o‘ (12)

0 x* rt g2

The influence of the (V x E) term will enter via the boundary conditions.

Under the condition of constant B field and the further
assumption that no external electric field (EX = 0) exists, the
potential § will be independent of the variable x because of symmetry.

Equation (12) thus reduces to

:"1_%; (Y-’D%E_nw))Jr 4 Dzd)(r.tP) = 0 (13)

Yz Y2 "



If we set

dlr¥)= Re(¥) sl + Re(r)cos Y (14)

we get two identical differential equations for R¢(r) and Rq(r):

szo(-"‘) & a4, dRe (-r) -~ ﬁ;';. Qc. (,\’) = O

dr? r o dr 5
(15)
AR Cr) o 4 dRs(¥) _ 2 _
Hn YT Td T mR)= 0
The general solution of this Euler-type differential equation is
Q= A v ger (16)
The eight coefficients, Asl A A52 F AS3 s A54 : le i B52 , Bs3 , Bs4 s
of the Rs(r) and the eight Acl . AC2 , Ac3 5 AC4 : Bcl . Bc2 . BC3 5

BC4 of the Rc(r) are determined by the following boundary conditions

(see Fig. 5):

Fig. 5
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finite value of @ in the tube centre

r=0: [Pp(r=0)]< o

continuity of @ at the points:

T‘=R1,Y‘=R2,Y‘=R3

for al1¥Y and x :
=Rz Ryls
= B3 (R2)=
P, (R3) =0, (R3);

which leads to:

Rg1 (Ry) = Rgp (Ry) and Rey (Ry) =R.p (Ry)s
Rsp (Rp) = Rg3 (Ry) and R, (Ry) = Reg (Ry)s
RS3 (R3) = qu (R3) and Rc3 (R3) = Rc4 (RB);

continuity of radial current density at the points r = Rl’

r =Ry, r =Ry forall ¥ and x:
o Lo (- 28+ (k) °""> = 0%, - e (R)) ;
& (‘Q 0(5_?_(22)) = 0% (— (()d)@rgﬂz) +(VaxB)|o; é‘.—) ,
6\1L13("0—%3—‘__(3ﬁ'\’(.61¥§)\é3€r) = Gy "3%—*:3‘32 .
from this we get for the R, R ; with V3= vy e

) s2 (Rs)
@’Lil(gﬂs‘r-m‘ e =G;l(0§;(ﬂ )

&\ (Q 1;(’5: (Re 2) - O%in (Ofesi () 4315> ol Gy DRz (R)

omd O3, D Rea (R4) "'WLQQCZ (91)

r r :

— e

Qv

0\:;3 ra ?OCS(Q; ,
|

)

611( 2222 g = o (28] ond o, Vo 0 g, D)

Or
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d) the radial current density must vanish at the tube edge
= R, for all Y and x, which leads to

Odyq. (.Q'l) = O

or )

and so one gets for the RC4, R54

DRse(Ry) _ 0 Rex (Ry) =0
Or ’ Or

These sixteen equations resulting from the boundary conditions a) - d)
completely determine the sixteen coefficients Asi’ Bsi’ Aci’ Bci'

It turns out that all Aci’ B . must vanish to satisfy the boundary

ci
conditions so that only the Rsi terms(representing the sin¥-part)

will remain in the potential function .

The eight Asi’ Bsi must be found by solving the remaining eight
coupled linear equations of a) - d). The following relations (from now

on the Asi’ Bsi are replaced by the shorter notation Ai’ Bi):

A =0, (16)
b= (4B RS, (19
V) g (B w] o

3 = Az*‘(gz‘33)ﬁf, (20)
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2
Ay =By Ry . (23)

A1l these coefficients can be calculated successively if B1 is known.

It can be expressed by

B L Bz (24)
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The Rsi(r) are thus determined for the four zones i =1 to 4:

Rsl(r) = B1 i , (27)
Rsz(r) = 82 r o+ Az/r 5 (28)
Rg3(r) =By r + Ay/r , (29)
RS4(P) = 84 r o+ A4/r : (30)

2.2.2 Pressure losses_and optimal ratio_of duct_radii

The power Pcoax lost inside the coaxial tube because of the

Ehx B forces of the induced electric currents, which must be compen-

sated by the Tithium pumps, can be expressed by /1/

Ra
Proms= + ST L [ (QRe2lr) , Roa(r) +2vR)ViB rdr ¢
0

(31)

Rs
+0i L | ((‘)%":@ + Qs\i(‘")-2v3‘ﬁ)(~v33> ror
Rz .
Integration leads to

Peoox =) [@(&w&)wm} + 03 (R34 B) VSB(??'QJL)] . (32)

The pressure difference A PCoax which must be established by the

_ . . . 0 s
Tithium pumps to force a given mass input per time m of Tithium
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through the pipe is given by /1/

Apcome = 35 Pegax (33)

)

where 9. is the mass density of lithium. The fact that m in
eq. (33) appears in the denominator does not mean a decrease of

X PCoax with increasing m because in eq. (32) m s a quadratic

factor hidden in that equation so that Apcoax is, at Teast, about

linearly proportional to ﬁi

We are now able to find the optimal values of R1 to R4 which give
minimal pressure losses for a given outer radius RA = R4, wall thick-

ness d and 1ithium mass flow rate ﬁ.

To do this, a parameter*Ck , Which characterizes the relative

positions of all radii (see Fig. 5) is defined:

Ry =ARy (34)
Ry =Ry +d, (35)
Ry = Ry - d (36)
Ry = Ry (37)

The equation of continuity (1) gives for our case of the same Tithium

mass flow in the inner 0 < r < R1 and outer sections R2 Lr & R3 if

Q |; = const

VaRs = Va (R-R) . (38)
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This yields the two velocities v, and vy as functions of 4 , Rps
d and f:

0

1 39)
Vis P2 (
B ga..i T &1 ‘E: )
% 40
Vae VO . A (40)
QT R (1-a¥)-2Rad (14a)
The dependence of the power Pcoax on K required to maintain

stationary Tithium flow for given 1ithium mass input per time is

shown in Fig. 6.

50 T

T T T T T

Ry =25cm

L =1m

+ d =1mm

. B = 35 Tesla
Fig. 6 i fi - 025k s
p,=05-10% kg m3
d,=282-10°Q ' m 4
Oy =943-10°Q ' m1
25

T

Pcoux”mw T

To determine the minimum of the losses, the parameteruklnjn

has to be adjusted according to

dPuax () _ d Apwnt) _ (41)
da da
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In the following investigations the optimal value & min is
calculated numerically. It turns out that the optimum is reached when
the magnitudes of the two velocities are about equal. This holds if
the thickness of the wall is small compared with the cross-sectional
dimensions of the duct and if the ratio of the electrical conduct-

ivity of the duct wall and lithium is about unity.

2.3 Solution for normal flow pipe

In the case of a normal Tithium duct (see Fig. 7) under the
same conditions as for the coaxial flow pipe we get for the electric
potential @ (neglect of divT , constant magnetic field) using the

results of /1/.

Fig. 7
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$ =R, (r)sinY (42)
with
Rs=bar (43)
and
T
-
b, = vB| ZX = - (44)
G 4R\~ Roy
Bl .
The power Pnorm’ required to maintain stationary flow follows from
”:
Purmz L [ [( L2 RO R vE] vdr (45)
r {a\" r
Integration gives
2
Puorn = LT LR (VR) 1 (46)

4- 0T R +Ret
T TR

The velocity of the lithium flow for a given lithium mass flow %,
duct outer radius RA and thickness of duct wall d is

xfﬂ A
ST (By -d)?

Y=

For a meaningful comparison of the MHD losses of this normal flow
pipe with the coaxial one, the losses of the normal duct must be
multiplied by a factor of 2 because the flow to the blanket segment

and back again must be taken into account.
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Finally, the pressure difference A[gwnto be covered by the

lithium pumps is

Q; 2 Ritadk ( 1 1 (48)
rmx =L Piom = — 07 L .
Apre " Lo T Yo & (€-d)* 4_OU (%a-d)*+R4 /|

0w (», AL 7%

3. RESULTS

By using the egs. (16) - (30) for the electric potential it is
possible to calculate electric current flow and potential line patterns
in the cross-section of a coaxial duct. Figure 8 shows the results

under the following conditions:

B = 3.5 Tesla Rl = 4.8 cm left: eleckric curreut
Vi =7 cm/s R2 = 4.9 cm right: eleckric potevtial
V3 =-7cm/s R3 = 6.9 cm

¢, = 9.43:1022 71 7! Ry = 7.0 cm

o= 2.82.10°7 7

vi=Tem/s 4y
vy=-Tem/s I___ ;

Fig. 8




The perpendicular distances of lines of constant electric
potential are inversely proportional to the strength of the
electric field, and the density of current lines reflect the local
current density. Furthermore, Fig. 9 refers to the state of a duct
identical to that above except for the fact that in this case there is
a lithium flow only inside the inner part of the duct while in the

outer part the lithium is at rest (v1 =7 cm/s, v3 =0 cm/s).

N

Fig. 9 |

By contrast, Fig. 10 shows the opposite case: now there is no flow
inside the inner duct (v1 = 0 cm/s), but in the outer part lithium

flows with a velocity of N = -7 cm/s.

In all these three cases the patterns of electric current are
very similar. This shows that it is essentially the electric poten-
tial which will be influenced by the different ¥V x B terms in such
a way that the electric current may follow the paths of minimal i

net resistance. ?



= 90 =

V.I.:B y
vy=-Tcm

1l

| I—

Fig. 10

The essential difference between these three figures, however,
is the density of the electric current. In Fig. 8 (Tithium flow
velocity in the inner part as well as in the outer part of the co-
axial duct) the current density is highest all over the duct. This
leads via '3 x'ﬁ forces to a stronger pressure drop along the length
of the flow pipe than in the case of Fig. 9, which reflects the

properties of a normal single duct with thick walls.

This behaviour is confirmed by Fig. 11, which shows the pressure
losses of the two types of lithium flow pipes, depending on the
outer radius and wall thickness of the duct for a given lithium
mass flow m. The losses of the coaxial duct are those for the optimal

ratio of the duct radii according to eq. (41).

It turns out that the pressure losses of coaxial flow pipes
are much higher than those of normal single ducts. This obvious ad-

vantage of normal single flow pipes compared with coaxial ones will
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fade if the ducts are embedded inside a surrounding material of

good electrical conductivity.

It is obvious that each material of high electrical con-
ductivity surrounding the 1ithium flow pipes is equivalent to an in-
crease of the effective thickness of the outer duct wall. Figure 12
shows the influence of the ratio of the thickness d of the duct
outer wall to the duct radius on MHD pressure losses for the two
types of flow pipes. In the coaxial configuration nearly all electric
currents will form closed loops in the inner region 0< r < R3 (see

Fig. 8) so that the thickness of the outer duct wall will have




|
10+ APeoas -

—
(=]

Ap,en/bOT —

Aprorm L =1m
r Rj =Ry=10cm 1
- (R; - Ry) = 1mm :
5k B - 35 Tesla _
m =025 I»(gJ sl
py =05-10°kg m3
- M, =035- 10%kg m's"
o gy = 282 -105 Q" m? B
L Gy = 943-10°Q"'m"
0 1 1 1 1 1 1 1 1 1
0 10 20
d/Ri —=

Fig. 12

o
wn

nearly no influence on the intensity of the electric current inside.
The losses of the coaxial flow pipe will thus be nearly unaffected
by the properties of the surrounding material, as is seen in Fig. 12.
Instead of this, in the normal duct electric current can only form
closed loops by following the paths inside the duct walls (see

Fig. 9). As a consequence pressure losses of normal flow pipes are
strongly influenced by the geometry and electrical conductivity

of surrounding materials.

4. CONCLUSIONS

It is thus concluded that the coaxial flow pipe will have
much higher MHD pressure losses than the normal duct under similar
conditions. The great difference in behaviour between the two duct
types will get smaller if the ducts are embedded in surrounding lead-

ing structures of good electrical conductivity. In this case the
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normal flow pipe will suffer a drastic increase in the pressure
drop, while the coaxial one will be nearly unaffected. But even under

these conditions the losses of the latter one will dominate.

Consequently, the optimal configuration would be obtained by
using thick flow pipes of normal geometry with nearly insulating
walls that are as parallel as possible to the magnetic field lines

and are electrically insulated against surrounding materials.
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5. TABLE OF SYMBOLS AND DEFINITIONS

Vector quantities

magnetic flux density
magnetic field

electric field :
current density

<L <4 My x|, @)

fluid velocity

Scalar quantities

Ri’ RA’ Rl’ R2 radii of circular duct

L length of duct

d thickness of duct wall

M. mass flow per time of Tiquid 1ithium

@ mass density of Tithium §
Y,Li viscosity of Tlithium ‘
Li electrical conductivity of Tithium

GV electrical conductivity of duct wall

M magnetic permeability of 1ithium

P electric potential

Non-dimensional quantities

H Hartmann number
(eTectromagnetic stress/viscous str‘ess)l/2 = Ri B | 9%

Rm Magnetic Reynolds Number
(ipduced magnetic field/imposed magnetic
field) = R1‘fctffxu
C Conductance ratio
R T
(conductance of duct wall/conductance of fluid) - 2
L Ko

MKSA units are used throughout the paper.
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