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Abstract

The characteristic data of tokamaks optimized with respect to their
power density or wall Toad are determined. Reactor relevant constraints
are imposed, such as a fixed plant net power output, a fixed blanket
thickness and the dependence of the maximum toroidal field on the
geometry and conductor material. The impact of finite burn times is
considered. Various scaling Taws of the toroidal beta with the aspect
ratio are discussed.

The analysis is performed analytically and numerically with the
SISYFUS-T power plant model.

The systems with maximum power density or wall load are essentially
completely characterized by their aspect ratio and the scaling of
toroidal beta with the aspect ratio. They depend only weakly on the
plant size, the absolute value of the maximum toroidal field and the
factor of proportionality in the scaling laws for beta.

For the various assumptions on beta scaling the maximum typically
occurs in the range 2 ~ A~ 4.5. The impact of finite burn times is
modest. There is no essential difference between power density and
wall load maximization. In the range 2 N A~ 4.5 the power density
or wall load may deviate by roughly 50 % from its maximum value.
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1. INTRODUCTION

Fusion reactor studies during the past few years have greatly enhanced
the trend to more compact systems. In this context "more compact" is
often understood in the sense of higher power density or wall load.
This trend is based on the assumption that the installation costs of a
reactor are the lower the more compact the reactor is. However, one has
to bear in mind that a reactor layout optimized with respect to its
installation costs is not necessarily identical with a reactor layout
which achieves minimum power production costs of a fusion power plant.
A higher wall Toad probably requires more often replacement of the
first wall, thus Teading to longer outage times. These may even be
prolonged by the compactness of the reactor. On the other hand, it
cannot be excluded that systems with maximized power density or wall
load at least approximate overall optimized designs. In any case they
are natural prominences worth studying as points of reference for
optimization studies.

Here we determine the characteristic data of tokamak plasmas which
are optimized as to their power density or wall load. The position in
parameter space where the respective maximum is reached obviously
depends strongly on the constraints imposed on the system. Besides

the plasma particle and energy balances, the essential constraints
considered in this paper are a prescribed net power output, the
relation between BT and geometrical parameters, and the relation
between the toroidal field and geometrical data or conductor material.

We proceed in two steps. The first part of the paper is an approximate
analytic discussion giving a general overview and allowing easy
comparison of different scaling laws of, for instance, By with A etc.,
which have still to be verified in future experiments.

The second part presents calculations with the SISYFUS-T fusion power
plant model /5/ /6/ within which the above-mentioned constraints are
incorporated. By means of these calculations the assumptions under-
lying the above analytic considerations are checked and more specific
questions are handled for a variety of examples.




2. ANALYTIC TREATMENT

In this part we consider systems that are characterized by the
following conditions:

a) They are pulsed with a burn time T such that Ty >> Tgs Tys where
s is the start-up time and T the going-down time.

b) BT is kept fixed by a controlled refuelling procedure.

c) The transport laws are such that the plasma burns in a stable
manner.

d) The pulse duration is determined by wall impurity accumulation.
a-particles are assumed not to accumulate.

Conditions a) to d) obviously select a representative class of systems.
The same class of systems was studied in Ref. /1/, which we shall
occasionally refer to. As was shown in Ref. /1/, the mean (time and
volume-averaged) fusion power density can be approximated by
=2 .4 b

pe v B Br —— (1)

f T T T, + T,
for these systems, where E} is the volume-averaged toroidal beta,
B; the toroidal field on axis, Ty the burn time and T the idle
time.

In Ref. /1/ Ty, Was studied for the systems under consideration

within the framework of a global particle and energy balance /2/.

It depends on, among other parameters, BT’ BT’ A, a or equivalently

on BT, Brs A, V, where A is the plasma aspect ratio, a the plasma
minor radius and V the plasma volume. In a real system these para-
meters are no longer independent owing to additional constraints

which further restrict the space of admitted parameters. pgc has to

be maximized in this reduced parameter space. The following constraints

have to be taken into account: P = const, which means that

e,net

Pe has to be maximized for a prescribed power output P, et In a

system with Q >> 1 this condition is approximately equivalent to



Pf = const, where Pf is now the mean fusion power /3/. Q >> 1 is given
for systems characterized by a) to d). By definition one has

Pr=V ps. (2)

An additional constraint stems from the requirement that the toroidal
field at the inner coil must not exceed a limiting value. This con-
dition can be put in the form

r (- E) = Bhax: (3)

where f =1 +—% and A is the distance between the plasma boundary and
the inner coil. Bmax is determined by either the critical field BC of
the respective superconductor material or the maximum admitted strain,
which depends on the coil geometry in addition to the coil material /4/.
From the more general result of Ref. /4/ the following simplified

expression for B is obtained in the Appendix:

1/6 1

Bmax = min (BC’ k (A/V) FW—*-A—) (4)
For NbTi Bmax is typically determined by the critical field BC, whereas

for Nb3Sn the strain condition is generally more severe. The situation
is made more complex by the fact that the coefficient k in eq. (4)
depends on, for instance, the coil thickness. It is thus possible, for
instance, to shift the threshold of the strain condition by readjusting
the coil thickness. This scheme will be discussed in the context of the
numerical treatment. To simplify the evaluation of eq. (4), we shall
treat the cases

|
lov)

Bmax = B (5)
and

1/6 1
max = K (MY e

o
1]

(6)

as alternatives. This will be justified by the fact that the results
differ only slightly for these two cases.
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Finally, for each geometry there exists an upper limit for ET resulting
from equilibrium and stability considerations:

By = C(As....), (7)

where .... indicates other parameters such as the eccentricity in the
noncircular case, the safety factor q(a), etc. The A-dependence is
assumed to be dominant. A1l concrete relations that will be discussed
later are of the form

By S c'/A" (8)
or

— < Ay s aM=2

Bp < C!'/ATC. (9)

As noted above, one has A = as+df%, where ag is the plasma wall
distance, d the blanket thickness and b the coil thickness. Typically

d >>asf% . Furthermore, the blanket thickness for a given blanket

design “ is essentially independent of the plasma size. In what follows,
we shall thus assume

A = const (10)
as an additional constraint.

For convenience we now write eqs. (3) and (8) in the form

By =2z, B (1-f/A) =12, B$ (11)

and

ET=22 CI/AR“: Zzﬁ? 5 (]2)
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with 0 < Z152p < 1. The values 29,29 = 1 correspond to equality in
eqs. (3) and (8). Eliminating B and'Bf from eq. (1) by means of
eqs. (11) and (12), we get the following expression for Pes

6 '|40 Th

AOATE | BT
=01, (13)

pe nzy 25/ (1-57a)" | (arv)!/

where o= 0 characterizes the critical field
condition and o= 1 characterizes the strain condition for the maximum
field at the superconductor.

As is obvious from eq. (13), in the case'q)§>T0 pg has the maximum
value if z,=2,=1, i.e. if equality holds in egs. (3) and (8).

In the case of finite burn time 7, = 1, (A,V,Bg,Bys...) =

= T} (A,V,22 E?, 21B$,...). In Ref. /1/ it was demonstrated for trapped
particle transport that 7, monotonically increases with Bf and BT,A,a,...
being kept fixed. From the results presented there it is easy to conclude
that the same holds for A,V,... being kept fixed. Hence

Tp (AsVs2Z5 B?, 21B$,...) 5-%b (A,V,BO, B?,...) and consequently with

eq. (13) Pt again has a maximum value if equality holds in egs. (3)

and (8). The situation may be different if other transport laws prevail
and must be discussed specifically. In what follows we shall assume

as an example that the above situation is given in the case of finite
burn time and shall take equality in egs. (3) and (8) throughout. We

now have

. g
pe v 1A (1-/A)" (YA A — 2 (14)
f= (1-f/A) B, B s
o= 0,1,
where Pe is a function of A,V, ,... . To find the system where Pf

has its maximum value, Pg and Abeing kept fixed, one has to solve

2 Bg |

5 A | ﬂ” =i e (1%)




If T, and Bmax = B.s Pg as given by eq. (13) no Tonger depends on V.
Hence p, does not depend on P in this 1imit and the expression for
pf as given by eq. (14) can immediately be inserted in eq. (15). In
general, it is difficult to get a manageable expression for Pe as a
function of A, Pf, Ay... . This problem can be circumvented in the
following way. Differentiating the identity P = e (A,V (A,Pf)) with
respect to A yields

9 Pe 3 Pf‘ 3V
O=3nivatav 'A,p "aAi P, A (16)
From eq. (2) we have
op
vy f
0 == pe + V —= . (17)
aAin,A f B‘\nP_F’A

Hence from eqs. (16) and (17), again using eq. (2), it follows that

P 10 o i
B \V.A T Py BViALA BRLPeAT

From eq. (18) we conclude that eq. (15) is equivalent to

Pf
A |v,a7 0 (19)

We now evaluate eq. (19) using the expression (14) for Pg- At first
the Timit 7y >> 1 will be considered. Some qualitative conclusions
will then be drawn as to the impact of finite burn times.

Inserting eq. (14) in eq. (19) results in an equation for the
values A, V, Afor which Pe has a maximum. By elementary methods one

gets
fr2/3 4 o =0,
A - (20)
2(2f+1 B
f+ 3m-2703 ) 8= s

where A is the aspect ratio for which, for given A and V, and hence f,
Ps has its maximum value. The typical value of f is f v 1.4 -1.8.
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In Table 1 some values of Am are summarized for f = 1.6, o = 0,1
and m = 1.3/2,2.

Table 1
m=1 m=3/2 m=2
o A, = 4.40 = 3.47 A, = 3.00
By =0.036 By = 0.025 By =0.018
A, = 3.37 A, =2.68 A, =2.38
o7t By =0.047 Br =0.036 By =0.028

The result as given by eq. (20) is remarkably simple insofar as A

does not depend on the coefficients of proportionality in egs. (6)

and (8). Furthermore, it depends on A and V only through f, this
quantity varying only slightly with the size of the system. A always
increases with increasing f and decreases with increasing m. The

values of Ay are roughly 20 % lower in the case g =1 (strain

condition) than in the caseo = D (critical field condition). If compared
with typicat values of A in present reactor designs Am is rather

high if o= 0.

In Table 1 the values of BT are added that correspond to Am AR
set equal to 1 in eq. (9). Then m=1,3/2,2 corresponds to Bp = A, /R, 1.
It was assumed in all cases that q = 2.5. In all cases the values for
BT are rather Tow and would not exceed 10 % even if some elongation
effects were taken into account. This illustrates that BT alone is

not a good measure of the power density obtainable in a tokamak.

In the case of finite burn times the factor de%b+10)becomes relevant

in eq. (14). In the case under consideration it is a monotonically
increasing function of A. From the explicit form of pg as given by

eq. (14) it is obvious that V and hence f being fixed, it shifts Ap

as given by eq. (20) to higher values. On the other hand Tb/ﬁb+To)< 1
requires an enhanced volume to achieve the same power output. An
increase of V makes f decrease. As noted above this shifts Am to Tower
values. As we shall find numerically both effects compensate in practice.




We now return to the problem of maximizing the wall Toad a, for
fixed A and Pf. By definition one has

Pe =0 qys (21)

where 0 is the plasma surface. (For simplicity we assume a, << a.)
With V 03/2/:9\1/2 we get from eq. (14) for q, as a function of A,0,A

e
q N,
W A2m+1/? fZO

(1-f/m)+7%° 5 =o,l. (22)

By complete ana]ogy we can now deduce from egs. (21) and (22) that
solving equation "%¥/P A=O is equivalent to solving
f9

qu )
7¥T/0,A' 0. (23)
Inserting eq. (22) in eq. (23) yields by elementary methods
14f .
f+ w7 i = S
AL = (24)
1+f _
f + SRrI7E)-I7F o=1

where Aﬁ is now the aspect ratio such that Ay for given A and 0
and hence f takes its maximum.

Table 2 gives some values for f=1.6,0 = 0,1, m = 1,3/2,2. The values
of Aﬁ as given by eq. (24) are slicghtly lower (typically less then
15 %) than the values Ay given by eq. (20).

Table 2

m=1 m=3/2 m=2

o=0 Aﬁ = 3.68 Al

n

3.09 Ay

n
~no
~J
[e)]

2l

o =1 Al = 2.99 Al

2.50 An




It thus makes no essential difference whether the system is optimized
with respect to its power density or wall load.

3. NUMERICAL TREATMENT

In this part we discuss some calculations with the SISYFUS-TE code.

——L »A without
making any of the simplifying assumptions of the foregoing section.

It allows the computation of p. and q, for given P
f W

Hence, besides checking these assumptions, we can study the behaviour
of Ps and Ay in the vicinity of the maximum as well as the quantitative
impact of finite burn times for specific cases. In addition, some cal-
culations with a-particle accumulation were performed where the simple
expression for pc as given by eq. (1) is no longer valid because of
fuel displacement effects.

A description of the SISYFUS-TE code (Simulation model for systematic
analyses of fusion power plants, T = tokamak; E = energy balance),
which was developed at IPP Garching, is given in /6/. The main features
of this code are:a one-dimensional time-dependent plasma model
including control of B by refuelling during the burn phase and the
possibility of taking into account impurities from the wall and either
accumulation or anomalous outward diffusion of a-particles. In this
application the option of the trapped-ion mode is used. The blanket
calculations assume stainless steel as structure and wall material

and liquid Tlithium as coolant and breeding material. The blanket geo-
metry is fixed at a constant thickness of 0.75 m with 6 %

structure material yielding a tritium breeding ratio of 1.25. The

heat transport system is without an intermediate loop. The energy
conversion system is a steam turbine cycle with an upper steam
temperature of 500 v resulting in a gross thermal efficiency of

39.8 %. For each combination of input parameters the minor plasma
radius is adjusted iteratively so that the required net electric

power output P of the plant is achieved; in this case this out-
anet - 1500 MWg. The number of toroidal coils is
determined within the model of the toroidal magnets according to a

e,net
put was fixed at P

given ripple coefficient for the magnetic field. In addition, this model
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affords two options for calculating the maximum magnetic field at the
superconductor. With the first option this field is calculated according
to the kind of conductor material and cooling temperature. The thickness
of the constant-tension D-shaped coils is adjusted so that a given

value for the strain in the conductor is utilized but not exceeded. By
means of this adjustment it is possible to realize the maximum magnetic
field given by the conductor material and the cooling temperature. This
case corresponds to the case o = 0 in the foregoing section. With the
second option the thickness of the toroidal coils is fixed so that it
may happen that the maximum magnetic field has to be Tower because of
the strain limit (o = 1).

In Fig. 1 the plasma power density is represented as a function of the
aspect ratio under the condition of the material's limit (solid Tine)
and the strain limit (dashed lines with the designations of different
toroidal coil thicknesses D). These curves are based on the following
assumptions: anomalous outward diffusion of a-particles, no impurity
accumulation within the plasma (impurity reflux coefficient y = 0),

Bp = A (m = 1), superconductor material NbTi with Cu as stabilizer
material, maximum temperature of the conductor 5 K, yielding a maximum
admissible field of 8.46 T if the thickness D can be adjusted under
the condition of a strain limit of € = 0.1 %. Along the solid line in
Fig. 1 the coil thickness D slightly increases with increasing aspect
ratio. At A = 3.85 this thickness is D = 1.1 m, at A = 4.5 it is
D=1.13and at A =5 it is D =1.15m.

The strain limitation becomes effective when a maximum coil thickness
D is fixed at a value which is lower than that necessary to utilize the
material's capability at € = 0.1 %. In this case the maximum magnetic
field at the superconductor was adequately reduced, thus yielding a
reduction of the magnetic field at the plasma centre and consequently
of the power density in the plasma. The results are represented by the
dashed lines in Fig. 1. A maximum value of D = 1.1 m (upper curve)
allows utilization of the superconductor material's capability in the
range of A = 3.85. Higher aspect ratios yield a reduction in power
density, and lower values for the coil thickness D yield additional
reductions.



=T

As regards looking for optimum aspect ratios, it is interesting to know
from Fig. 1 that these values in the cases of material and of stress
limitation differ only slightly, and that in addition - in agreement
with the analytical result - the maximum power densities at stress
lTimitation occur nearly at the same aspect ratio. It is thus sufficient
to base the following considerations on the material's limitation of
the magnetic field.

In Figs. 2 and 3 the plasma power density and the wall Toad are
represented as functions of the aspect ratio on the assumption of
anomalous outward diffusion of the a-particles. Each of the figures
contains three triples of lines, corresponding to Bp = A, By = VA
and BP = 1 respectively. Each triple itself comprises a solid Tine,

a dashed line and a dashed-and-dotted line. The solid line represents
the clean case (y = 0). The dashed line refers to an impurity reflux
coefficient of v = 1.25 X 10—4 and the dashed-and-dotted Tine to

v =5 x 10°% /67

In Fig. 2 the steps from the solid lines (infinite burn time) to the
dashed lines and to the dashed-and-dotted lines (finite burn times)
show that the power density (cycle time averaged) decreases with
increasing y in all cases of BP scaling. This is due to the fact that
the burn time decreases with increasing y thus giving the idle time
T, an increasing percentage of the total cycle time. The aspect ratio
for maximum power density shifts only slightly to Tower values with

increasing impurity contamination.

Figure 3 shows that the wall load (burn time averaged) increases
with increasing impurity contamination of the plasma. The maximum
wall Toad values occur at lower aspect ratios. Nevertheless, the
curves are sufficiently flat so that a 20 % deviation of the aspect
ratio from its optimum value is relatively meaningless.

In Figs. 2 and 3 anomalous outward diffusion of the a-particles was
assumed. The real behaviour of a-particles in a reactor plasma is

not yet known. As an alternative the complete accumulation of the
a-particles within the plasma was therefore considered, too. The power
density and wall loading in both cases are compared in Figs. 4 and 5
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respectively at vy = 0, the scaling of BP being varied again. The
reference case of anomalous outward diffusion of a-particles is given
by the solid lines identical with those of the corresponding Figs.i:l
and 2. In Figs. 4 and 5 the dashed lines refer to complete accumulation
of a-particles.

The comparison between the different assumptions on a-particle behaviour
shows that the aspect ratios that are optimum with respect to the

power density (Fig. 4) shift to lower values in either case of Bp scaling
by less than 20 %. As the curves with complete a-particle accumulation
are flatter, deviations from the optimum aspect ratio are less effective
than in the other case. In addition, the influence of the choice of A
again decreases with the steps from BP = A to Bp = JA and further to

Bp = 1. Nearly the same is true when considering the influence of the
a-particle behaviour on the wall load (Fig. 5).

Some of the foregoing calculations admit direct comparison with the
analytical results. The values of A, and Ap as predicted by eq. (20)
and eq. (24) for o = 0 are marked by vertical lines in-Figs. -2 and 3.
In applying eqs. (20) and (24) the values for f were taken from the
numerical calculation at the maximum point. There is complete agreement
between the analytical and numerical results. As pointed out earlier,

f varies only slightly in the range considered.

The dashed lines in Fig. 1 correspond to o = 1. The values of A, as
predicted by eq. (20) for o = 1 are marked in an analogous way. The
somewhat worse agreement is likely to be caused by the approximations
made in deriving eq. (5) of the Appendix.

4. CONCLUSION

The power density pg and wall loading q, of tokamaks underlying reactor
relevant constraints have been studied. The constraints considered are:

a burn cycle with By controlled at a prescribed value

- fixed plant net power output

- fixed blanket thickness

- a prescribed scaling of By of the form B v /A"

- a maximum value for the toroidal field at the coil, given by the
critical field or a strain limitation.
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The discussion is performed analytically and numerically.

From the analytic discussion it follows that the aspect ratio for
which the power density or wall load attains its maximum value
depends on the system's parameters only through f = 1 + A/a.

f varies only in a narrow range. The systems with maximum power
density or wall load are thus essentially characterized by their
aspect ratio, independently of the net electric power output (that
is the size), the absolute values of By and the absolute value of

Brax

There is not much difference between the optimum aspect ratio with
respect to power density or wall Toad. Whether Bmax is determined
by the critical field or the maximum allowable strain is also of

minor importance.

The main impact stems from the scaling of BT with A. For

Br A m = 1337252 , Am typically lies in the range 2 ~ A N 4.5,
Am decreasing with m. The maximum is thus generally attained in a
range which is technically accessible.

For special examples the above results have been verified with the
SISYFUS-T power plant model. This code, in addition, gives the
behaviour of the power density or wall load in the vicinity of the
maximum. In the range 2 ~ AN 4.5 Pe and q, do not decrease more
than roughly 50 % below their maximum value.

By means of this model the quantitative effect of finite burn times
has been found to be modest. These calculations were based on the
trapped-ion transport model. However, it is easy to see that the
result is independent of the respective transport law, provided that
Th 5= Ty holds.

Our results, of course, permit no direct application to power plant
overall optimization. But since maximum wall load implies maximum
neutron yield they are of interest for the layout of future experi-
mental devices.




s 1ilbe

Finally, it is worth noting that for B; ~ 1/A, which is widely
accepted as the most probable scaling law, Am typically lies in the
range of 4. OQur conclusions thus support the trend to higher aspect
ratios in more recent designs.
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APPENDIX

The maximum field obtainable at the inner coil is either determined
by the critical field Bc’ this being a material constant, or by

some maximum strain, depending on the coil geometry, too. The latter
dependence has been studied in Ref. /4/. The following expression
for Bmax is given there:

(21 ry - n2) b

(1)

Lol (r, + b/2)° X

Here n is the number of coils and 7 the gap between two inner legs.
A1l other important quantities appearing in eq. (1) are explained
by Fig. 6.

Instead of rys rzs 2 we introduce A,f,V as new variables. We then
get with

ry = R-a-A = (A-1) a-A

and
r, = Rtatd = (A+1) a+A
1 T2 1. A+lef-l, | 1 1;£ 2 f
K=zangz==5n (o) =30 ()~ g - (2)
1 1--
A
Hence
' i \
s oo b en (A1) a-alen€ bA
X (ry + b/2)% K [(A-1) a-a +b/21% T
— ng [
2n (A-L+1-f - 5) -
(A-1+1-f+b/2a)®  af
. n?
Assuming e i 1 and b/2a << 1, we have




With a~ (V/A)

B ~

1/3
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we get, furthermore,

1 1/6

A
max " (I72 1172 (¥
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Visualization of notations used in the Appendix

Fig. 6
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