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Abstract

A mathematical model of the pulsed magnetic circuits of a tokamak
is set up for use as part of the SISYFUS comprehensive computer code
of IPP, which models a complete tokamak fusion power plant and is to
be used for parametric systems and design studies.

The first section gives a brief review of the features characteristic
of pulsed tokamak coil systems and their mathematical description by
flux functions, magnetic field distributions and stored magnetic

energies.

In the second section a tokamak is treated simply as a system of
resistive coils which are inductively coupled. The definition of
inductances and the derivation of circuit equations which allow time
dependent inductances, is followed by specialization of these equations
to tokamak applications and by the solution concept, which starts from
a given time evolution of the plasma current.

In the following, the circuit equations are prepared for numerical
integration by normalization, the initial values are specified and the
equations which give the currentsand voltages as functions of time are
supplemented by the differential equations which describe the time
evolution of the energies supplied to and consumed in the coils.

The next section is devoted to determination of the magnetic
circuit parameters, such as self-inductances and mutual inductances,
and to coefficients which describe the contributions of all coil
currents to the vertical fields at the plasma centre and the inner
edge of the transformer coil. A1l these calculations are based on an
approximate solution of the Grad-Shafranov equation, which describes
the magnetic flux functions produced by the various coils. The approxima-
tion mainly consists in truncating series expansion with respect to the
inverse aspect ratio and harmonics of the poloidal angle after the
second and third terms respectively.




In the final section the analytically calculated inductance values
are compared with numerical calculations which were made for the ASDEX
large divertor tokamak now being constructed at IPP. The accuracy of the
inductance calculations can thus be assessed. Finally the result of
a circuit calculation based on ASDEX parameters is given for illustration.
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1. Introduction

A mathematical model of a tokamak fusion power plant is now being
developed at IPP for the purpose of systems studies /1/. This SISYFUS
computer model is aimed at taking into account the complicated
relations between the various plant components as far as possible and
at studying the impact of parameter variations on figures of merit
(such as energy amplification, plant net efficiency), cost structures,
plant layout, etc.

For use in the SISYFUS computer code a model of the pulsed
magnetic circuits (plasma ring, transformer, vertical field, magnetic
Timiter, plasma chamber) is needed. This requirement arises from the
strong impact of these circuits on plant energy balance, technology
and economy. The strong bearing on the energy balance stems from the
mere magnitudes of the energies and powers involved, which lead to
significant losses during transfer, switching and storage. The
technology aspects arise from the magnitudes of currents, voltages,
fields, and energies to be handled. It is obvious that all these
features finally have a strong influence on the plant economy via
the cost of installation and operation.

Because of the numerous components involved it is inevitably
necessary to restrict the numbers of parameters characterizing an
individual component. In treating the pulsed magnetic circuits, this
calls for an appraoch which emphasizes the modelling of the mutual
relations but does not strive for utmost precision. This goal can
be achieved by calculating the inductances and other magnetic circuit
parameters from approximate solutions of the Grad-Shafranov equation
describing the various poloidal field coil systems of a tokamak. As
is well known for the case of the plasma ring, the simplifications
are mainly due to assuming ideal toroidal symmetry and small values
of the inverse aspect ratio. The errors mainly stem from extrapolating
the results to appreciable values of the inverse aspect ratio. The
advantage of the method lies in the possibility of characterizing
each poloidal coil system by only two or three parameters.
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This report is devoted to obtaining the electric circuit
equations,solving them, determining the circuit parameters and
describing program tests which use the ASDEX tokamak as a practical
model .

A1l calculations use the MKSA system of units.

2. Coil system

2.1 General description of the coil arrangement

For the purpose of this paper we regard a tokamak reactor as a
system of mutually coupled coils operated in a pulsed mode. We there-
fore do not include the toroidal field coils, which presumably will
have to be superconducting and will operate in steady state. The
plasma and its chamber are also treated as pulsed coils because
within our context they are reduced to being current paths inter-
Tinked with time varying magnetic fields.

We restrict the coil system to be modelled to the following
components:

- plasma loop (index "1p"),

- primary winding of the transformer, which induces the plasma
current (index "tr"),

- vertical field windings, which provide the plasma equilibrium,
and which control the position of the plasma centre (index "v'"),

- magnetic limiter coils, which define the plasma edge by pro-
ducing a separatrix (index "m1"),

- plasma chamber with or without poloidal slits (index "c").

Figure 1 shows schematically this system of coils with respect
to the right-handed cylindrical coordinate system R,\p, z. Also shown

pl? Tips Iy Im]’ Ies p]’Btr’ B
BC, and the numbers of turns (Ntr’ Nv’ Nm]), which are not

are the currents 1 the inductions B

B
ml?
physically unity as in the case of the plasma loop and chamber.
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Fig. 1

2.2 Assumptions and definitions

We assume that the whole arrangement of coils is rotationally
symmetric with respect to the z-axis, which means that none of the
functions we use in our calculations depend on the azimuthal angle ¢ .
This symmetry is usually called "axial symmetry" in the context of
tokamaks. Furthermore we assume that all currents only have P-components.
This assumption is most important for the plasma because it implies
operation at Tow plasma B.

Whether a current encircles the z-axis in the positive or
in the negative -direction depends on both the winding direction
and the direction of the current with respect to this winding. We
therefore attribute a sign to the number N of turns to describe
the winding direction and to the current I itself according to the
following definition: in a winding with N>0a positively
counted current flows in the positive {-direction, whereas in
a windingwichN<0a positively counted current flows
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in the negative Y-direction. The sign of the current is thus
defined with respect to the winding direction. The sign of the
product NI decides whether the current encircles the z-axis in the
positive (NI > 0) or negative (NI € 0) ¥-direction.

Besides the cylindrical coordinate system (R, \, z) we shall use

the so-called pseudo-toroidal coordinates (r,!f,n?) shown in Fig. 2.
The radial coordinate r is
counted with respect to a point

Tz with the cylindrical coordinates
R = Ra, z =0. In the

< 9 Ra will be chosen in different

ways according to mathematical

R=0  R=Rq R— convenience in the treatment
of the various coil systems.

<:_:> In the following we shall call
I the circle r = 0, z = 0 the

course of subsequent calculations

"minor torus axis" in contrast to

Fig. 2 the"major torus axis", which is

identical with the z-axis.

2.3  Mathematical treatment of axially symmetric magnetic fields

In the following,we only treat poloidal magnetic fields,

which are the fields produced by the currents flowing in the
p-direction. The mathematics of these fields is well known and will
be repeated here only briefly for reference and to define the nomen-
clature.

The magnetic induction 5351 of the poloidal field is derived
=)
from the vector potential A by

e

A 1
Bpo] = rot (1)

to satisfy Maxwell's equation

-—

divB oy =0 . (2)



=B

-Ibis can be done because the divergence of the toroidal induction

Btor vanishes separately owing to axial symmetry. Because of this
—

symmetry the vector potential A has only a {p-component:

- -
A =

Agy (3)

( E§}= unit vector in the ?Ldirgsgion). From (1) and (3) it follows

that the R- and z-components of B are

pol

dAy
Bp01,R T “'a_z

L. 1 3(RAs) .
iz * 77 IR ol

From (5) it can be seen that it is convenient to use RAy instead

> (4)

of A . Usually this is done by introducing the "flux function"

Y = 2% Ay . (6)

The factor Z# will be useful in interpreting f/ by means of the
magnetic flux enclosed by a circular filament.

From (6), (4), and (5) one gets

7 Y

"o, R™T2FR G2 i
SR . - s
POls 2.0 Z9M- @ ©

The two -component equations (7) and (8) can be combined to form the
vector equation

s - (T
ot i B X §HAY ©)

The flux function ﬁV'follows from a partial differential equation which
can easily be set up for the case of constant magnetic permeabiTity)J.




L

For/.,-?l.,' (/h.ais the vacuum value of/h, ) one gets from

:5?’1/"0 * (10)
Nt‘#-‘-‘fy (11)

with (7) and (8)*

23 3 (13,
ro¢ 8o il R 32t 972(72 322!78" /o dy Co (12)

(cﬁp = toroidal current density). Equation (12) leads to

2 7 ¢ 67822f VR ]

Equation (13) allows the ¢/~field to be determined if its sources
(the spatial distribution OfGGP ) and appropriate boundary conditions
for 9/ are specified.

In any plane @ = const the lines defined by ?/= const coincide

—

with the field 1ines of B . This is due to

pol
-
Bot * grady =0, (14)
—
which follows directly from (9). Equation (14) states that Bpo]
is normal to grad (Id and hence parallel to the lines @ = const.

Being rotated around the z-axis, the lines 9£=const sweep the
so-called magnetic surfaces. For the special case of a toroidal plasma
in ideal MHD equilibrium these magnetic surfaces have to be normal
to the gradient of the plasma pressure p because of the condition

grad p =fx3 (15)

Thus the lines ¢/ = const in any cross-section = const are also
lines p = const.



The flux function §/ and the poloidal
magnetic flux ¢p01 are closely
connected. This can be demonstrated
by calculating the flux ¢p01 which
penetrates the circular Toop R = Rf,
z = 0 shown in Fig. 3. This flux

9%01 is given by

¢po] =£f-§;o} : C“_FA (16)

By inserting (9) and
—
dF = RdRdip. €5 (17)

in (16) one gets

X,
¢p01 =f;"“‘(p¢/- 4 =§”/’?!/'§”/0/' (18)

Because ¢po1 becomes zero for p@ > 0% one gets

@(oa) = @ (0). (19)

From (18) and (19) follows

Bt = (%) plog) . (20)




2.4 Magnetic energy

-
If the vector potential of a magnetic system changes by §A
this is associated by the following change of energy density:

5o "c?‘ J‘Z. (21)

-
This variation 6;_15 made up by changes in the currents producing A
and by variations of the geometrical arrangement which may occur.

Equation (21) is valid if no polarization of matter has to be
accounted for (this means/n=/a,) and can easily be transformed to
the well-known formulation

Jo =#.4% (22)

—
by JuhS'iilg ?-‘- %‘f H together with the rapid spatial decay of
64 x# . The latter is due to the dipole character of magnetic
fields produced by electric currents which are constrained to finite
volumes.

Generally 6& is not a total differential because of the polari-
zation omitted.

- -—
An important exception is when B is strictly proportional to H

BN

\777=/‘!r~/to # (23)

(/‘, = permeability of the vacuum,/c,,,= const = relative permeability).
Equation (23) is valid for the vacuum (/a,,z 1) and fotafll substances
which display an induced dipole moment proportional to H . By in-
sert1n91§ from (23) into (22) and integrating over the volume V

we get the total stored magnetic energy

-—
7
G L [HBAV. (24)
- -
The corresponding formula for Em in terms of J and A s

[
<2 - Al (25)
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For our special case of the poloidal field (25) reduces to
f/'-
= = 26
mLV@44V (26)

i} ' %’y av. (27)

Equations (26) or (27) can be used for calculating the stored magnetic
energy Ej  due to the interaction of two coil systems "j" and "k".

With 4:4, , W , and Apk q/,q- being the vector potentials and
flux functions produced by the current dens1t1esd‘? andfs,‘,
respectively, one gets from (26) and (27)

é';‘k =f./;&’.93-47k. dV"Z"’[’J'W,AW. dV . (28)

This 1is equivalent to

Ev=ir 134 dyi .4V~ 4,fww v, (@)

éakis the stored magnetic energy due to the interaction
of the vector potential Apk (produced by oi!rk ) with the current
density Cf‘P 3 5‘? is the magnetic energy corresponding to the
reverse 1nteract1on

The total stored energy Em is given by
& = é;,-k +543- = Zég,x. . (30)
The energies obey the symmetry relation

é%‘%j (31)

-
which can be derived on the basis of the vector potential A . Equation

(31) has already been used in (28), (29), and (30).
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3. Electric circuit

3.1 General equations for magnetically coupled coils

A11 coils of our system are mutually coupled by magnetic
fields. This is shown schematically in Fig. 4. The coupling is
quantified by the mutual induc-
tances Mjk between the coils
"j" and the coils "k". A current
Ik flowing in coil k produces
a magnetic field which inter-
acts with the current Ij flowing
in coil "j". The corresponding

energy of interaction Ejk is
written as

Fig. 4

SR AT "R P (32)

The energy Ekj of the reverse interaction is given by
7
Ekj-z-/%d._z;.l‘k ) (33)

The mutual inductance Mjk can be determined by using the field
theory result for Ejk given by (28). For Mjk’ for instance, one gets

7 :
/L’d'l- - IT—I" [, q/% Aw, aV. (34)

The vector potential 44(94(- is a functional of Zek and of the
geometry. The dependence is always of such a kind that

Mjk is invariant with respect to interchanging j and k. This
symmetry relation

ik = M (35)

follows from (31).
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The currents I and Ik which result from integrating f@
and 3% over the conductor cross-sections disappear from (34) in
actual calculations if the distributions of fw and 1"& over these
cross-sections are fixed. There may be a certain arbitrariness in
calculating Ij and Ik if they result from continuous current distri-
butions such as pertain to, for example, the plasma chamber. In such
cases, the Ij's and Ik's are defined as integrals over certain cross-
-sectional domains which can be chosen according to mathematical con-
venience. Once these domains have been chosen, however, they have
to be used consistently for all calculations which involve Ij and
Ik’ as, for example, the determination of M. ik from (34).

To derive the circuit equations, we consider the energies
exchanged between an energy source j, the coil system j and the
resistor Rj (see Fig. 4).

The electric energy qﬂf%i delivered by the source is given by
JE; =U; $6; = U; T, &t (36)
& dVd¢ d7d
where S@d is the electric charge entering the system.

The corresponding energy variation 5&; of the coil system
follows from (21) by volume integration:

cfE f JA aV. (37)

The equivalent to (37) in terms of circuit parameters is

JE -=f cf("'kl') (38)

k=2

The sum (38) has to extend over all coils of the system because of
their interaction with coil j. The energy variation 657 due to
dissipation in the resistor Rj follows from

<;u5%7 “‘247 <{2;97 . (39)
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With the resistive voltage drop

4,.6,- =L & (40)

and Jod = 1:1 ¢ we get from (39)
I&py = -E-LP' . (a1)

Up to now the energy variations JE.-) JE( and JE,-' have been
treated as uncorrelated. In fact, they have to obey the energy balance

=i E; e
E"’d J’d +J573 (42)
By inserting (36), (38), and (41) in (42) we get

;J(/\f kI) *"I Qq' /{d . (43)
The variation J/ kl}) is given by

Mk ) = d[h 2 54 (44)

Equation (44) inserted in (43) leads to the circuit equation

Z( tite Te) + %I Z{d (45)

(the dot means differentiation with respect to t).

Because the above derivation applies to each of the n coils
equation (45) is valid for j =1, 2, ... n, which means that we have
n equations to correlate the voltages Uj with Ij and Ij-

The set (45) of circuit equations was derived within a frame-
work of energy exchange. This shows that (45) is not restricted to
filamentary current loops interlinked with magnetic fluxes but also
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applies to the magnetic interaction of spatially distributed currents.
Obviously, these current distributions have to be reasonable within
the framework of magnetic circuits, which means that it must be
possible to define closed currents by integrals over appropriately
chosen cross-sections. The plasma current and the current induced

in the plasma chamber are of this kind. Equations (45) allow the case
of Mjk's varying with time to be treated. This is an important
feature for our application, where the plasma major and minor radii
may vary with time, thus causing variations of the inductances.

3.2 Specialization to the poloidal field system of a tokamak

We now specialize the circuit equations (45) to the poloidal field
coil system of the tokamak described in Section 2.1.

To avoid complicated indexing in the circuit equations the coils
and corresponding currents and voltages in this section are numbered
according to the following scheme:

DIASID:  pewns Do R wobmhenies be 15 pl -
EransTomMIer ssoeevas s s pommuens i b & 5 Ir o072
vertical Fleld ...cieempepelofiosacsses v i
MAGHERIC TIMITEr it . itvnmmmnibnnssus s m1 o i
chamber,; mean Yalue :::sssvwonsssases Cl 45 B
chamber, dipole component ........... cl « B
chamber, quadrupole component ...... 2, 2aq 1

The chamber current has been subdivided into three components
ICO? Icl’ IC2 (here named Ig, I, 17), wbich takes into account
the fact that the chamber current density Cfc'f’ depends on the poloidal
angle n}L owing to toroidal curvature. The three components emerge
from a Fourier expansion truncated after the third term of the
current IC which results from integrating va over the chamber

cross-section (see section 5.4.4).

The transformer, the vertical field coils and the magnetic
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limiter coils are powered by energy sources with voltages Utr’ Uv’
and U, (here named Uy, Ugs and U,).

A1l coils have ohmic resistances Rj. The plasma resistance
Rl(t) wj11, in general, be a function of time and will be given
as input (see Section 3.3). The remaining resistances will either
be given as input or calculated from input data.

3.3 Compilation of the equations to be used

The coils, currents, voltages, and resistances are schematically visua-
lized in Fig. 5. The corresponding circuit equations based on the
general form (45) are

/lzli)'v*éd”f”l})?l; =N,y (47)
/4:1&}.*%3/"’34—4)'1‘1}% =4z (48)
4 n)'+§f//‘mlz)'+ L%l > (19)
//e-Ie‘)'v‘é?[""ka*)'*Ié?s‘ 2, (50)

/lcfc)'v‘-g*‘/"ffkffr/*@@' =0, (51)

=4

¢
(4; 1;7)"“’2_;/"7#4/ + L% =0 . (52)

When going from (45) to (46) - (52) we have introduced the usual
nomenclature

L, = M,.. (53)
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J
for the special case j = k.

vertical
field

chamber,
quadrupole Ry
component
I R
chamber,
dipole
component
Fig. 5

magnetic
U, limiter

chamber,
RS mean
value

L. is the self-inductance, the value of the mutual inductance Mjk

We shall not use
(46) to (52) to cal-
culate the currents
Ij for given voltages
Uj but to determine
the voltages which
correspond to a
plasma current pre-
scribed as a func-
tion of time. This
procedure accounts
for the fact that
the plasma is the
most sensitive
component of the
system and there-
fore, in general,
calls for a cer-
tain kind of time

history. Because the plasma has to be maintained in equilibrium and

its boundary is assumed to be defined by a separatrix, prescription

of the plasma current has to be supplemented by specification of

the plasma position, piasma shape and plasma dimensions. This, in

turn, imposes conditions on the variation of vertical field and

magnetic limiter currents with time.

We shall now describe the procedure which Teads from the given

information to determination of all currents and voltages involved.

The scheme is shown in Fig. 6 (the small numbers designate the

equations used).

The procedure starts from




-16-

Z,=Z,(8)=Tppry ) > Sa
=7 (Y- Z“ep-;ﬁ., (4 , (55)

?ﬁl:?ﬂ’fﬂ/’ak'éc &) (56)

oot = ot (=15, ) (57)
R=RE) =101, (4 .

(58)

The above equations give

L (t)=Ip(t) = the plasma current I,
the plasma minor radius rpl’
A L)y (1) b (1) the plasma major radius Rpl’
_ fe6) (55) the poloidal B and the
R () plasma resistance as functions
pl :
(282) (56) of time. I,4, olo® Rpm,
Bpo’ and RTO are normali-
282) Brol (t) &7 zation values introduced
o - to keep the functions fI1(t),
produced Bz:| | ¢ necessaryB;] ,
B (0 63 B0 [0 B () | re1¢)s FRer(E)s fplt), and

le(t) of order unity.
These functions will, in

Lt=1t)-

LI Js.Is )| (65) general, emerge from calcu-
___} lations with a computer pro-
} gram modelling plasma per-
I (1) formance such as the NUDIPLAS /2/
I3(Is,15.17) | (69) or WHIST codes.

- I5(1)15(1), 1, {t) We shall assume that the
L (t) h@l L) (70)-(73) plasma minor cross-section
will be of circular shape, as
g has already been tacitly
(47)-(49)

tr('

AL
U.(t)=U

;HH done. When introducing the

plasma minor radius ST For

Flg. o
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this case the vertical magnetic field Bz at R = Rp], z2=0
necessary for plasma equilibrium is given by /3/

&y = %o, = VI, (59)

with = — /:% /f _;fi.;ﬂ 4/Z) , (60)

Ag=fou +lle -7, (61)

g G
€ gl 7 (62)

11 is the internal plasma inductance in units of A, ?,,( /z, ;
which is twice the zero-order approximation for 11 in the case of a
uniform spatial distribution of the plasma current density.
Accordingly, one gets ]i = 0,5 for a uniform current distribution;
]1 = 1 is valid for a parabolic distribution. There is therefore a
slight dependence of an on the plasma current profile. Equations
(59) to (62) are the transcription of equation (37) in /3/ to

MKSA units and our coordinate system (Fig. 2).

The vertical field BZ contains contributions from the currents
flowing in the various coils, as is expressed by the following
formula for the produced vertical field Bz:

?Zp=l{?r.? t G L te Lot G L+ BRI, (63

The transformer current is assumed to produce no contribution to
?3_ (({,_ = 0) » The parameters § depend on the position of the
coils relative to the plasma centre. The determination of the )
will be described in Section 5.7.

By using
B, =B (64)
we get from (63) an equation which gives the necessary vertical

field current I3 as a function of the plasma current Il’ the
magnetic limiter current I4 and the chamber currents Ig, Ig, and 17:




=]8s

- g (L -4 L4540 T) )
To eliminate the magnetic limiter current I, from (65), we use
the fact that 14 is proportional to the plasma current. The factor f
of proportionality depends on the plasma major and minor radii,
on B as well as on the positions of the stagnation point and the
multipole windings. From

Zy=f. I, (66)

and (54) we get

Ty = By @)

with

/_}4 = 1_0-[,, R (68).

In Section 5.9 we shall give a formula for calculating f. By
inserting (66) into (65) we get I3 in terms of the plasma current
and the chamber currents:

A
Ly = ;:,; (V-"-','L’rfr,—l%.z;— P‘l;—%],";) . (69)

Up to now we have not used circuit equations out of the set (46)

to (52) but have determined Il’ I3 and I, in terms of input data

and the chamber currents 15, 16’ and 17. To calculate Ig, Igs I and
the transformer current I,, we use (46), (50), (51),and (52) out of
the complete set of circuit equations, supplemented by 11, I, and

I, according to (54), (69), and (66). We thus have to solve a system
of four coupled, linear first-order differential equations. This can
be done either by directly solving the complete system or by an
iteration procedure.
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From (46) we get for (M 1)’
(P )= =412, + T Ly + T4 Ty + Py Iy
r
,L,‘?;‘:ZZ, f"%&; JEL) -'_Z;;E; . (70)
The chamber currents 14, 15, and Ig influence I, explicitely and
via 13 according to (69). In any calculation of 12 from now on we

shall treat 15, 16’ and 17 as given by a previous calculation. In
the first step we set I4 s I5 , and I6 equal to zero.

For 14, I5, and I6 we get from (50) to 52)

4,-.1‘5- '/'/7;"'1-‘ -/'/75; 7"? 'l"ks- » -

Fig Lot LeZ,+ M;;I;»LP;Z}— "l (72)

MesZg+ Mzl + 43T, 4 &, T, =Z, (73)
W1th

Ze=l"n L+ L+ Mes T+ g 1y ) 5, ()

75

;: ="l T+ M L+ Ppe Ty b Mgy ,)
Far == (112, T, +- Mg Ty # P35 T3 4104 T4)

Here we have used the fact that all inductances of the chamber

(L5, L6’ L7, M56’ M57, M67) do not vahx with tipe because of the

rigid geometry. The right-hand sides 'Eb' to E-?— are given functions
of time because of (54), (70), (65), and (66) if we treat 15 to I7

as described above. We thus get 15 to I7 from the ijterative solution
of (71) to (73) and finally I3 from (69).

Up to this point the three equations (47), (48), and (49) have
not been used. They now serve to determine the voltages U2, U3, and Uq
necessary to drive the prescribed plasma and magnetic Timiter currents
(I1 and 14) together with the necessary transformer and vertical field
currents (I2 and 13) and the currents induced in the chamber walls

(15, 16’ and 17).
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4. Solution of the circuit equations

4.1 Initial conditions for the currents

We choose t = t0 as starting time of the calculation. The
values of the currents I] to 17 for t = to are

Z, (¢, ) =Ty £ (4) (77)
j:; 6(14’4) 7 (78)

Lg ({'9}:% Zi}/‘éﬂ)‘z: th)-v 4 ('!'o)_/ > (79)
Z4 (4)= T, l4,). £ (4) > (80)
Zslb)=2 (81)

_7,;/{'0/=0- (83)

Equation (77) follows from the given plasma current distribution (54).

I, (t,) is an input parameter. In general, I, (to) will be chosen
such that a symmetric magnetic flux swing during one burn pulse
results. I5 (to) follows from (77) and (80) to (83); l?(to) is
calculated from (60) by using Rp](to)’ ro1 (t,), and Bpo1 (ty)s

which are input data. I, (to) follows from (66) for t = t,. 15 (to) =
Ig (to) = I7 (to) = 0 describes the assumption that chamber currents
induced during a previous burn pulse have already completely decayed
at the beginning of the pulse considered.

4.2 Normalizations

We introduce two characteristic times?;_and?" :

- 7;;15 a time inverval characteristic of ~major plasma current
changes such as the current build-up time.



DR

Pl

- iafis a time interval of the order of the burn pulse length. It
will later be used for the normalization of energies.

In the differential equations we normalize t to'?;:
¥ =4/ (84)
Aot ¥* = D5 A/t (85)
In all subsequent normalized equations " . " means differentiation

with respect to €% !

The currents I] to I7 are normalized according to the following
Scheme:

Y1 =Z, /L35 >
e =Z,/Zs,
?3 =I€/—T¢o 2
34 =2y /Ifa )
4 = T/ Tg
?‘ = IC/Iﬁ )
gz = Z; /1 z¢, -

I10 is the normalization value for the plasma current introduced by (54).

120 and 150 give the order of the transformer and chamber currents due
to varying plasma current:

£520
2, ’,1'7';; Ly > (87)
zg, = 200 Lo
< e G (88)




90

The choice of 120 reflects the fact that the transformer voltage drop
for rapid plasma current changes is mainly inductive.

150 emerges from the assumption that the chamber voltage drop is
mainly resistive.

Ligs Myoge @nd Mg, are the inductances L;, M;,, and M, calculated é

for
gl /[.) ,lo)) (89)
“lty = " (34, "?04) Y (90)
160 = o5 (58, %00, ). (o)

RC is the ohmic resistance of the chamber the long way round if no
poloidal slit is present.

4.3 Normalized differential equations for the currents

We solve (71) to (73) for Ig, Ig, and I.,. The result is

o

-‘,4 il -;‘-45-‘.'[ + A T, + 4;- o (92)
—7-}='4:¢--Z‘ +As I, s *A¢ I, +#} > (93)
.Z;_"/-?;I; *4,7(-7-} *'4?7I; *#;z (94)
with the coefficients A given by
/453,1- -Aﬂk Aﬂ;.cﬁi—lfzgi)kiivfiﬁ,, 4z4r=='4%2'4&‘2%7/67)
A5 = M5p Ly W /9 5 A=tz R/,
'46-'?" ”767:/"4;?;!/9) 4:;"4""4?2/9; (95)

44%q;~"/‘7%z'/%a;;_;;%r/IG')
Az = 45 # % /9 5
Arg = L5l (-4, )%/
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D= L2s4p L3 (7- 4545 ),
£ = g Mlsle et
£y = P95 /e La -

In the calculation of the Amn we have already used the special result
M57 = M75 = 0, which is due to the approximate method of determining
the inductances (see Section 5.5.7).The Amn do not possess a symmetry
property. It should therefore be borne in mind that

ﬁnniﬁ Anm' (97)

The functions #;,-; 44) and A’; are given by
4 '_'/2"/3(7"{2:) o Zs g Mg ,,;]/3 3
4‘4"/—/’07/# 25 *4-4 ’7‘::: /e-/”;,z Z2779, =2
b=l P15 #4s Zog =L Mz % g + Lsdy 743y Fur ]2

Normahzatmn of #6'/ 4‘-) and 4 to I and bhyields

46— df’*/ €/If)= ‘&46"/-2—@ >

% *“,:,7,;(6‘;/193/ =2, 4’;/7‘6-,, )

(99)
4’ d{*‘ (4?-/‘2-;0) = t‘t« /—Z—‘fb
The orders of L/R-times are given by
o 7 = ‘éé%"{'d; ‘e
‘;‘“/2 = 2 . 4
i 7"'(74 2
o~ 7 / *C- z Z{ X
ﬁ‘ = - 4{( = 7- 74 e A ?;— ) (100
ci i Al
(25_ r 7/4# - (74 éz v




= .

By introducing ¥¢, 4z, 43  according to (86)
together with (99) and (100) into (93, (93), and (94) we get the
following nonnaHzed differentia] equations for ‘;5— to 34.

?;‘ 36' 4 ?; 4” ﬁ;l—é ), (o1
(4“ ?‘—-/-? + 7— 3;4-/;‘), (102)
*-—( By gt h) O

If we treat a chamber wh1ch prevents a toroidal current I by means
of a poloidal s1it, we only have to set Q‘_!-O and solve (102), (103)
with the terms containing ?Fomitted (formally a poloidal slit leads
to Rg=> &v ).

The functions h5, h6, and h7 depend on I, to I, via :6'/ E‘-
and J-' , which means that they depend on &, to ?4 We shall not
write down here h5 to h7 in terms of ? to 4,

the equations for 71 to 34

gf /-.Z? **‘)’ (104)

0= 069~ 2 [ 2 Lo ) T 4, 4 "”"‘[ i)/

"7'6' l"fé /71; ltff"‘ ﬁg M, Za /7 .
J-ngza:ii & 44;22.2%. 45;27¢ﬁ£?bé&j( 7 ﬂf /?fT‘igF

(105)

but shall only give

?‘z o-0,- ¥, %6 ¢ _ - .’17.!_1 106)
¢ U&/ . 6-'67\.@?‘_ &;,? ghﬁ?‘._e) (

Yo = Fo4 (£%). (107)

74 according to (104) is the normalized form of (66) transferred
9
to the € -scale.

Q&according to (105) results from the integration over ¥ of the
normalized form of (70). The initial conditions (77) to (83) have
been accounted for in normalized form.

?3 according to (106) is the normalized form of (69) transferred to
the ¢ %scale.

§4 according to (107) is the normalized form of (67) transferred to
the t¥-scale.
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The set of equations (101) to (107) can be solved by any numerical

integration procedure and yields & ({9. ?3 ({'9 s ?‘-{-(-"9 ,
?; ({"‘) , and 7} ({“) The currents &  and 44 are input

functions. The voltages U, to U4 follow from inserting thed:/dé*into
(47) to (49), taking into account the normalizations of currents and
time.

4.4 Normalized differential equations for the electric energies

During one cycle of tokamak operation the power supplies "2",
"3", "4" with the voltages U, (transformer), U;(vertical field),
and Uy (magnetic limiter) shown in Fig. 5 deliver energy to (or get
energy back from) the coil system. Part of the energy supplied is
dissipated in the various coils. We calculate the following energies
as functions of time:

E1 . . . energy supplied by the transformer power supply,

E2 . . . energy supplied by the vertical field power supply,
E3 . . . energy supplied by the'magnetic limiter power supply,
E4 . . . energy dissipated in the plasma,

E5 . . . energy dissipated in the transformer windings,

Eg - - . energy dissipated in the vertical field windings,

E7 . . . energy dissipated in the magnetic limiter windings,
E8 . . . energy dissipated by chamber current 15,

E9 . . . energy dissipated by chamber current 16’

E]0 . . energy dissipated by chamber current I7.

We normalize the energies E] to E10 according to the following scheme:
7 Z
Es "‘ﬁ; /<k“f;b'jrﬁp )]

A Z
Z'ZJ’o Loy 5

(108 )
ez -

& (109 )
s =5 /F 2ty T »

(110)
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"4"5/1}:?1;?3 P (111)
fa-éi—/fzﬁ?ﬂz 7 (112)
Co =L /Ty % %% 5
€; = E'-./.Z‘,f "‘74?5/
ep‘é/r‘;- ?6'?'3)

(113)
(114)
(115)

A
ef - 59/'73'0 27‘?.6) (116)

z
ef&‘é-@/f‘-ﬂ ?;e‘\‘ . (117)

The normalized energies are determined from the following equations,
which represent the normalized powers de/dt*:

Adeq 1 2%,
AL¥ Ly Zf

AL, , (118)

,d&z_ ¥ L‘Z"u

sl X5 T (119)
HE* gzt i

Adey _ Z'ZZ,’- % (120)
deg 7 Ch .2 (121)
g A

f_e;-"- E‘: z (122)
aL¥ 2-3 z )

aleg T , 2

7o 7 . (123)
ey e, , 2

i :z_:-?f, ’ (124)
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Ay | Tyt

dey Ry (126)
at¥ T g

Lerp . & ?“ (127)
ae¥ ¢ V7

The differential equations (118) to (127) are integrated numerically
with the initial conditions

e‘./éo*‘/-a ; €= ... 70 (128)

which means that we count the energies from the starting time t; of
the calculation.

In practice, the energy equations (128) to (127) are solved
simultaneously with the current equations (101) to (107), which
provide the values of y and y necessary for evaluating the right-hand
sides of the energy equations. The y's enter the calculation via the
voltages Up to Ug according to (47), (48), and (49).

5. Determination of the magnetic circuit parameters

To calculate the currents and voltages according to the scheme
shown in Fig. 6, we have to know the self-inductances Lj, the
mutual inductances Mjk and the vertical field parameters v, intro-
duced by (63), of the various coils systems.

The basis for these calculations are the magnetic flux functions
of the coils and the distribution of currents in the coils. The

latter are the sources of the flux function fields, as is shown by
3] .

To arrive at results which are reasonably simple, as are necessary
for systems studies work of whole plants, we shall introduce some
idealizations which will be presented in the next section.
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5.1 Concept of the calculation

We start with the treatment of the following coils:
transformer, vertical field, plasma
chamber.

For an approximate calculation of the flux functions we use the
procedure used in /4/. It mainly consists in idealizing a coil "a"
as a toroidal shell with a circular minor cross-section (radius r,)
with infinitely thin wall (see Fig. 7). Within this wall the toroidal
currents flow in the @-direction. Because of the infinitely thin
walls we have to treat the toroidal currents as surface currents i'ra
which, in general, are functions of the poloidal angle n’t A current
I.12 flowing across the sector between nﬁ& and aﬂé in the {p-direction
is thus given by

¥
Zar =% p 4pa (H)AF (129

We assume the surface current density i,Pa(np) to be so smooth
a function ofa"that it may be represented by a Fourier series
truncated after the third term:

Cpe (D)=, £ ¢, losPrv &y Cos 2 (130

This expansion contains only cosine terms because we assume symmetry
of the coil currents with respect to z = 0 (corresponding to P 0,
and 4}L= U respectively).

The toroidal current carrying shell separates the two regions
"1 and "2" from each other (see Fig. 7). Because in 1 and 2 no
toroidal currents flow, the flux functions v, and Va2 pertaining

to these regions have to obey (13) with jy = O:

?ig‘._l _.a_?‘ + iz_?" -.0
IRt R IR Fet ' (131)

For the calculations to follow it is appropriate to transform equation
(131) for y, to the (r,n’? coordinate system. The result is
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9‘¢é.+4 W, 1 3% (o /_5’(‘& Sk 9% o,
art A In  re gpe 2147%4-.'— » 34/ (13)

It follows from (9) that the r and n?Eomponents of Bp01 are
E?' A 4 é?g%i
”-_z__m.;. 7 (133)
G- L. 2%
4” 27R I (134)

(here we have omitted the index "pol").

The existence of the surface current ilpa reflects in the fact that

the poloidal magnetic induction Bn’(ﬂ}d jumps according to

zig}((%t) ‘fa)'_zié?‘ﬁa;; J€5)=7Aﬁ” ‘fﬁﬂﬁ»(ﬁff;) {2239

if one goes from 1 to 2.

. This equation is a ¢ d1rect
T i(9) consequence of rotH J and

B _'PO

The next step of approxima-
\ tion is the most restrictive.

0 ﬂ?‘% N It consists in assuming for each

1 coil the ratio ra/Ra of the

(;“:>¢ minor radius and the major radius
to be a small parameter of

Fig. 7 order €. Furthermore, it is

assumed that for any two coils
"a" and "b" the ratio (Ry- Ry)/ra is also of order e, which means that
(Ra-Ry)/Ra is of order €2.

In the case of the "plasma" we shall not assume surface currents
but allow an arbitrary radial current distribution which does not depend

onrﬁl. Toroidicity is again allowed for to first order in €.

The magnetic 1imiter coils shall be treated as
strongly localized in space so that they are virtually toroidal current
filaments.
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The flux functions and current distributions together with
y = 2rRAy and (34) yield the inductances Lj = ij and Mjk'

The vertical field parameters V3 are determined from the field
Bz(Rp1’ z = 0) derived from the flux functions by using the defining
equation (63).

5.2 Determination of the flux function for the thin shell
approximation

We now return to the differential equation (132) for the flux
function v, . We introduce the normalized radial coordinate

§ =r/ry. (136)

By treating e, = ra/Ra as small and truncating after first-order
terms we get from (132)

dp-é, [(a.w" ?¢ 4“‘»/’ / 0 (137)

with ?', ‘, 7 > 32,
4= S * ST 7.4 138)
7ec’ P ¢ Pt IF” (
and
€4= 7"4,/?4_
(139)
(the index "a" of ¥ has been omitted).

We now make the ansatz

( 1<
p=gq 0)‘/' w 4 (140)

with

@ p? = Oles).




If we introduce (140) into (137) and again restrict the result to
zero and first-order terms, we get

(i
4y 9=0 > (141)

7)) (o)
447 = & [cosF 5o~ o' ;fk»/’%’-) -

Equation (142) can be solved by making the separation ansatz

Z
CI/(’) = z E (S’) los nﬂ’ (143)

=0

which already takes into account the mathematical form of
our surface current distribution (130).

Substituting (143) in (141) yields

2/0/_‘ 44, '/'4., 3 cos#-4 4, 9060: 2.5 3 (144)

%/0)"—" /4'4 1"/4‘9& ["\,g#l’ ﬁdcﬂlﬂﬂ'q‘%s’“fo; Z‘ﬂr (145)

The solution (144), (145) already takes into account the necessary
nonsingular behaviour at =0 and @ => & (except for the weak
logarithmic singularity in (145)) and for continuity of w on the
boundary @ = 1. The latter is necessary because of div B-o.

The logarithmic term in (145) can be tolerated because from the
exact solution for the flux function of a ring carrying a uniform
current it is known to be correct in the vicinity of @= 1. For
@->opthe exact flux function ¥ vanishes. But this region obviously
cannot be described by our small € expansion.

The constant Aol will be determined by using formula (20) for
the poloidal flux ¢p01 and Maxwell's formula giving the ex ter nal

inductance L of a ring with minor radius r_ carrying a uniform

a
current:
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L, %0 (b PXa /7 - 2). (146)

From 1,,50) + 0 for @ »=, ¢o1 = L(2ryig), L from (146, and
formula (20) we get

A= 2’;«,7;2 ¢ (n "?“/g_——z). (147)

The constant A,, follows from Ampére's law (Zer(o) = jPOZT’raio) to
be

- 2% 5
o= 0 7% €4 %o - (138)

The constants Al and A2 are determined from the surface condition

%:0)(ﬁ‘1‘9-?ﬂ(0)lp.4[ '97‘0 (c‘o,l-c', [0:}*&; &:Ztﬁ, (149)

The constant AOZ already determined obviously also meets (149). The
results for Al and A, are

[Zz§7ﬁdfat:;2¢)tif >

(150)
(151)

Substituting the values of Agys Agos Ags and A, (144) and (145)
finally yields the zero-order flux functions wl(O) and wZ(O):

%@/ﬁ' 0% o = |
£, (bu ’a/g‘k-—Z)J-fé; (; fvuﬂ%fé s’&a‘ 24, (152)
G 2amy %=
VLA ’?ﬁ/m,-z)%ge; 12 2«&4—;—’@ Fw2F s

Introducing the zero-order flux functions (152) and (153) into the
differential equation (142) for the first-order flux function
yields, respectively,



=33
&, ; ;
dﬁ? ) c‘;!i;«, ta (fq, J—Z'—' saua), (154)

d&— 24/',7‘? (C'Pa:/'ff—f--‘zg Costy (155)

The solutions of (154) and (155) can be obtained analytically.
The integration constants are determined from the continuity of
w(l) at @=1 and from the surface condition

@) & -
Y., /r=z»f7’—gi)(r=¢p‘ﬂ =9 (156)
to be met by the first-order contribution to B

The latter condition is necessary because our surface current con-
dition (130) is already taken into account by the zero-order equation
(149). In this context it is important that the zero-order flux
functions (152) and (153) produce first-order magnetic inductions
because of the factor 1/R = 1/(Ry + r cosaf) in (134). The jump of

this contribution to Bnﬁ, on §=1 has to be cancelled by the B 's
(1).
derived from y

The results for wI(z) and wz(l) are

G rmrRm
Z { Cr 36 C-DHG 426,002 04 %, [otos -
+4‘.4 yzfas 20& (157)

¢(’/2%7~%
&y [C’ -7, &94—[229-—4 9&94_,7.%

1/—;‘;]‘? Couﬁ'-/-/}t'y,l-’z—(f,]P ax&ﬁf (158)

As was the case for the integration constant AOl in connection with
the zero-order flux function, the constants C; and C, occurring in

(157) and (158) can only be found by a comparison with an exact
solution. They are given by




7

014'-‘54; (&,‘7@/{-5 ™ (159)
Q‘f‘b(&lia'/?;-”) . | (160 )

The total flux functions ¥y and b, are obtained by substituting
wl(o), wz(O) (152, 153°), wl(l), wz(l)( 157,158 ), and Cy, C2 (159,
160) in (140). The result is

%/‘%’:{Z'
(bt p-2)+ 5 P&r-ﬁv—;—' ., pltn 2
+£’4ch; (b Y% n -2 +7e, )
56 (b, - D)+ (P73
J—fd,]faup’ J—"—“‘f ¢, pltos zoc’; y

(161)

4

3

G /2% %, =
éy(ln CHfrs 0 -D+¥e, feos# -/—fd‘, g-"(o, 2+
AR
-/-;7(}. + ft}]p"’c”‘ﬂ.

-#[ft;rt’{_”-;&,]y—&(osz}f .
(162)

The formulae (161) and (162) are identical with the results given
in /4/ (eqs. 11' and 12'), as can be seen after some ordering and
the introduction of €, and our normalized coordinate instead of
the (4 used in /4/. ‘




|
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5.3 Flux function of the plasma

The determination of the plasma flux function y 1 has to take
into account a toroidal current density distribution. Furthermore,
the pressure balance

;'x 5;‘ ?'-“‘/’ (163)

has to be met. For a circular minor plasma cross-section with radius
rp] the result up to first-order terms in € is given in /3/. Trans-
scription to our nomenclature and coordinate system leads to the flux
function outside the plasma:

G o B Dy = Ya f&%s’ el
464 zl' Z&"[&. ’%9 - 'f)+/ﬂ4+f[/§"'co:ro.'

(164)

The parameter Al is given by (61); €p1 = rp]/Rp] is the analogon to
Ey° The current distribution is assumed to be independent ofnJLf

5.4 Self-inductances

In the following we shall calculate the self-inductances of the
plasma ring, transformer primary winding, vertical field coils,
magnetic limiter coils, and plasma chamber.

The self-inductance L1 of the plasma ring is given by the sum
of the internal and external inductances:

Z,,=Z4£ J—Z;e . (165)
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From (62) we get

a=digc=r%pe b /2. (166)

From (34) and (6) we get
227,

tﬁﬂ;=* 4'¢.== "":;/:g/r ;;;:ﬁg#:;éa}

,( dﬂd? (167)

Substituting wp1 from ( 164) in (166) yields upon integration
Z .=./¢o?/,¢/ﬂ. ;% -2). (168)
Te wl

Equation (165) together with (166) and (168) gives

£, =40 /L /& Z+/[g) (169)

e o T

To minimize the disturbance of the plasma by the field of
the primary winding, we impose the condition

—

=0 , £<7 (170)

which means wl,tr = const for @ < 1. Up to order Egp = rtr/Rtr
this can be achieved by

G =%~ /ﬁt J?ﬁ}'"‘)f VL (171)

Equation (171) follows from the condition that the terms containing
(X cosa¥ , and cos2¢* in (161) have to vanish. The surface current

density io is related to the transformer current 12 and to the number

of turns Ntr by

I8
S ndt M T M T, . 072)
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Equation (172) expresses the condition that the ampere turns of the
real transformer coil have to be identical with those of our
continuous model. The result for ig is

g, = /V,,, Iﬁ,/z‘o\'g;” . (173)

The corresponding flux function inside the transformer coil is given

G, oo R .2, (6%, - 2). (174)

By analogy with (167) the transformer inductance L2 is given by
7 2%
botn ol rnas o
g

where the integration over {p has already been performed. By inserting
Y ¢, from (174) and i, . from (171), (173) we get from (175)
x:

Zg-'-/"oz,’%f[ﬁ: fz‘/@-i). (176)

5.4.3 Self-inductance of the vertical field coil_system

"

In accordance with /4/ we use the following surface current
distribution in the vertical field coil system:

<, =<, Co,r.va-/—o(é,, cos 2% (177)

This current distribution Teads to a dipole magnetic field with a
quadrupole correction ifa # 0. The latter is necessary because axial
and radial stability of the plasma equilibrium position is only
assured if the decay index n, of the vertical field

(178)
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meets the condition /3, p. 610/

o< 4 < 3L . (179)

The value of n, can be adjusted by varying a

The current distribution (177) is shown schematically in Fig. 8.
The current flows within the two

regions —n." N n" and
t\" n"‘ 21T-'ﬂ" The net

toro1da1 current in the vertical
field coils is zero. We define
the vertical field current

NV is the number of turns
belonging to one of the two
regions of current flow mentioned

above.

Fig. 8

By inserting 1V from (177) into (180) we get upon integration

4y = M2, /26 (181)
with
4oclq + Vs bat |2 /74 bt — 2
,ég/ o ) 7+—¢ ) (182)

By means of (181 ) we can rewrite iv from (177) in the following
form:

= zwv W, T, (cos P 4o coc 246). (183)

The corresponding flux function ¥, i follows upon replacing in (161 )
T by 0 and 11,12 by the corresponding currents read from (183).
The result is
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g;/r =4, %‘_ Mz, [ P cos 4 4ot9 cos 2%

+£,Z2/fa q'0'?"/,', -E—”),Lz(y‘f'_y
+ 35 cos 2271 (184)

with g, = rV/RV. In the derivation of (184) we have already used

the fact that o is of order Es S will be demonstrated in the

following.

The vertical field produced by the flux function 2] ” in the symmetry
plane z = 0 is given by

2 % 7 e%,./
2¥R IR '2=9p 2Z2%9R T¢

1§§f£’@3)‘=

Whether we have to use aﬂ% 0O or&/= w in (185) depends on R
being greater or smaller than Rv'

Inserting ¥, | from (184) into (185) yields

UL M faeige) RR]

From (186) we can calculate n
The result is

y @s a function of Rp] using (178).

(éoct Ev) Zjoy
GER AR R )V TR

Q, = (187)

If some stability criterion such as (179) is used to prescribe
the value of nys the corresponding value of a is found from (187) to
be

_ & Kot + 44 R vy (Gt -5y

X T Btailg-m)

(188)

Because of our assumption (Rpl'Rv)/Rv = 0@:2) equation (188)
reduces in first order to
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(=-&, (ar + 74). (189)

Equation (188) shows that o is of order €y 35 already used in
deriving the flux function (184). Equation (189) coincides with
the result for Rp1 = R, given in /4, p. 13/, whereas the general
formula (188) does not.

From

(190)

2%
4 :
zﬁ, = ;Ei??‘/rqa;"CC§L=‘%‘J§)" Z:tﬂfbﬂ
o
we get with 1v from (177) and by restriction to terms up to order ey
P P
Ly =0 by 4 (191)

This formula coincides with the result given in /4, p. 21/.

5.4.4 Self-inductances of the plasma_chamber_components

We assume the following surface current distribution in the
chamber wall:

&, =C, 4C, CosdPt by Cos 2P (192)

Equation (192) is a Fourier expansion of the surface current distribu-
tion induced in the chamber wall, truncated after the third term.
This distribution is shown schematically in Fig. 9. The terms in (192)

Fig. 9




correspond to the mean toroidal chamber current and to dipole and

quadrupole toroidal current distributions. The mean current can be
suppressed by a poloidal slit in the chamber wall.

=)=

The three chamber currents ICO’ ICl’ and IC2 are defined by

28
=7;{c'c, a4 , (193)
e
7:"./“}:-, Cor ok ol 2 (194)
“%‘m
e [ £, Cos 2% ‘ﬂ
Lee ‘_/3-74“ d A (195)

From (193) to (195) we get the iCO’ iCl' and 162’ which when inserted
in (192) yield

<, =7, /85"7:— +Z, [L7. Co.rp",;—.Z;L/?g. Gos 26% (19%)

By introducing ico> iCl’ and icp into the flux function (161) we get
for the chamber flux function ¥y ¢t

QJ “Geo *Gor #Ges (197)
Q’ "/"o? [Z&t 'ﬂ?/” 2}""

c‘ZZ"[@, 'PPA.. —'y,/--’:'/,p Cou:‘7 (198)
Qfa "/'o‘ TR, Ia[:’ya:/q. ry [;/4%’5_;)

F (-P-")J— 7% 3‘60:2'@__7/ (199)
Ger = 20 Ty [F5%0os 254 6. 35900548 LasB], (200)

The three self-inductances Lg, Lg, and L; corresponding to the
three chamber current components ICO’ Icl’ and IC2 are given by

~ .Z" f?’c,(? »9’4 d/ya' (201)




-42- ﬂ

2e 28
4 .I.Z"’_ /%'a (9=1 »94'6, cosnb- &, (202)

28
% :
Z_? ‘j—cg[qfrﬁl (P- 4/‘9‘6& las z,ﬂr,(,ﬂ: (203)

With i.5s 1¢ps and i, read from (196) we get from (201) to
(203)

£
Z;‘/"a?c[zl c/7z "z)) ( 204)
oz
Z; =/"0¢L ZXe » (205)

?,&
/; =M g Xe - ( 206)

These formulae coincide with the results given in /4, p. 20/.

5.4.5 Self-inductance of a _magnetic_limiter coil_system.

o o - - = o B e e S ==

It is assumed that one magnetic limiter coil system consists
of a triple of current carrying rings such as is schematically shown
in Fig. 10. The sum of the ampere turns of the two excentric coils
is equal to the ampere turns of the central coil but opposite in
sign. We assume that the current in each turn is the same for all
coils and is the current
Iy = I
the circuit equations (46) to
(52).

which occurs in

The net current in one
triple is zero. In actual toka-
mak devices there may exist
two triples arranged symmetrically %
with respect to z=0 (i.e. '
ASDEX, PDX) or one triple at,
for instance, 69% 0 (i.e. g
JT-60).
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Within our accuracy requirements the inductance of a ring
carrying a uniform current is given by the well-known formula

4% (b fa/’; -%4). (207)

R; is the major ring radius, rq is the radius of the minor cross-
-section, which is assumed to be circular. Equation (207) emerges
from a formula already given by Maxwell for rq/R-<<1. By the way,
eq. (207) is the same formula as the plasma inductance (169) for
11 = 0.5, which is the normalized internal inductance of a uni-
form toroidal current distribution.

If the minor cross-section is not circular, an equivalent
minor radius can be calculated from the cross-sectional area Aq by

N'?/z.
r/)

?,;.-'/44// - (208)

This radius reqintroduced in (207 gives results for L which are
completely sufficient within our accuracy requirements. This can

be seen from, for example, the formula valid for a rectangular
minor cross-section with cross-sectional lengths a and b /5, p. 13/:

P2,

Z-=/',z?¢-/£za+6 -2 601).

(209)

For a square cross-section (a = b) the formulae (208) and (209)
lead to

1%02-(4: &?7’&'9'7"2‘(6) (210)

which is sufficiently close to (207).

The mutual inductance M of two rings with major radii R;
and Rj can be calculated with sufficient accuracy by indealizing
the rings to circular current filaments located at the centres of
the two rings. The result for M 1is /6, p. 364)
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M =, (fq.e)ﬂ[(_ -R)F( Ve, %)-2h.-E (e, 4)] (211)

with
4% % z &
" “44&4(21@’ - T -7_/‘2—'&?/ = [
« e -7
’r(%“/'of(f'éc'r‘“ W Ao’ (213)

X e e "y
£(«,ﬁ=f[¢-k o) Ao .
o

(214)

E and F are the (incomplete) elliptical integrals of the first and
second kinds. The geometrical arrangement is shown in Fig. 11.

A series expansion of the
elliptical integrals occurring
Tz in (211) leads to the following
_'F'_'“'**:::Z:i::Ri . formula for M, which is
J especially suitable for coaxial
rings placed closely together

(5, p.6):

Fig. 11

7 @
1o (R R) (é,%—g; -4 6137). (215)

The self-inducatance Lm1 of one magnetic limiter coil triple
is given by the double sum over all coupling inductances between the
three coils:

S 3
/A.! ‘.Z Z M‘( . (216)
7=7 €=
With
L. =M




o

and because of Mij = Mji we get from (216)

Lpg =4ty #ly +2( Pyt Mgyt Mg) . (217)
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The self-inductances Ly, L2, L3 and the mutual inductances M12, M23 :
M13 follow from (210) and (216) respectively by multiplication by the
appropriate number of turns and by introducing the appropriate geo-

metrical data (Ri’ Rj, rq? dij eij)' The numbers of turns are given
by

= "?26-’¢554: 2

"/"m)

- ""4/8./{/‘,,@ v

X

Nmz is the number of turns of the central coil of the triple.

The distances between the three limiter coils projected onto
a plane = const (i.e. the plane shown by Fig. 10) normalized to
the major radius Ry1 are of the order

(218)

with
Enz = 7’:9 /?"e > (219)
Eue = Thg [ %t - (220)

Obviously, Ac is of the order of the angle Anﬂa (see Fig. 10). In

the evaluation of (207) and (215) we treat Aﬂ’; as a small para-
meter which is only taken into account up to first order. In contrast
and ¢__ as

mz me
small parameters because this would not Tead to a significant simpli-

to the preceding calculation we shall not treat ¢
fication of the calculations.

After lengthy computation the magnetic limiter self-inductance
L4 = Lm1 is found to be




e 7

14 .z/‘, ?‘,‘ ”“_‘, /47‘&.,.; donﬂ ) «
2 77, f&@‘é}., C?:néﬁq)lr‘£2~i"£5~¢)1‘£;4i6. ‘Qd&;ilJZ
Taz [+ (Cug+ Ewe ) Cosif, J*

*‘é?fcff'élug.Cb(ﬁﬁz)Jéit, ’5;Zm{t¢aHL£ﬁu..Ckun94L)
%3 Eve 4%,

+@ 2224 E, 3 +0,6932 Eue ) Cosdk - 15‘342]_ (221)

5.5 Mutual inductances between components with currents distributed

over volume or surface

In this section we calculate the mutual inductances between
all coils except the magnetic Timiter coil system. A1l the remaining
coil systems are characterized by the fact that the interacting
magnetic fields are produced by currents flowing in the volume or on
the surface of the components considered.

A current Ij flowing in a component produces a flux function
wj(sa,}). According to the truncated Fourier expansion which we
have used for the current densities the general form of wj is given
by

QJ/ < 27‘0 /5:(.9#7" (&)enHF (s )m!-_’] (222)

Examples are the flux function (164) of the plasma and those for the
thin-shell approximation (161, 162). In the latter one has to insert
the relations between the surface currents ij and the total currents
Ij, which are given in Sections 5.4.2 to 5.4.4. The flux function

v interacts with a surface current distribution i,, which we write

in the general form

BT (f +£ cosF 4 cos2 ). (223)

The constants f fl, and f2 for an actual distribution 1k(n9 can

be read from the distributions 1tr(n9‘), 1V(n9', and i npj given
in Sections 5.4.2 to 5.4.4.
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The geometrical arrangement of the component j producing wj and
the component k which carries the current density ik_is shown in
Fig. 12.

Because the currents ik flow
across the circle r = re (as
shown in Fig. 7 for i(a¥)

with = ra) it is convenient

Ryt Reric i to normalize the radii r to
rie The current thus flows
across the c1rc1{=_-§tk 1:.To

be consistent with this normali-

zation, we have to replace the
Fig. 12 coordinate 9 occurring in the
flux functions of Sections 5.3
and 5.4.2 to 5.4.4 according to

%
$ =8 > (224)
d

The relation between the normalized coordinates P,j and 9« is given
by

e

= % “+ (% - ?)/7‘ -/—ZJ} )/ 7 Cocd¥ . (225)

As already mentioned, we shall assume in the following that
d=(%-%)/%
is of order € . Up to first order in € we get from (225)

.% =& +d Cos (226)

To the same order we approximate the flux function ¢5(9==gjrk/rj)
by the truncated Taylor expansion

i X )ulrfosok f_% =p%& . (227)
7E57/ %’#?)*,PKP R/l el =
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The mutual inductance Mjk follows from (34) and (6) to be

/‘9 = f(k( ,.,,459 ¢ (B2 S (228)

where we have replaced J"dv by i, 2mr, P 4

We now insert wj from (222) in the Taylor expansion (227) and
introduce the result together with ik from (223) in (228). The
resulting 1ntegrals can easily be performed and yield for Mgk

Jl'/ 27 "/'o
ZLEHE +/r¢4#r+/r 1%+ %) o)

with
7'
{"EZ-P‘PA'% ’ (230)
drh.
Zoo = ( -&”) h=72,4. (231)

Formula (230) shows that the displacement Rk—Rj = A.ry of the two

coil centres contributes to the mutual inductance.

5.5.1 Plasma-transfarmer inductance

——— -

The Fn and F are calculated by using the plasma flux
function (164), while the f are yielded by the transformer
current distribution (171). Insertion of these values in (229)
yields

Far = et /40 Ko Y4 (b ’%—9- (232)

if terms of second order in € are neglected. In this connection
it is important that all major radii R differ from each other only
to second order because A is treated as a first order term in €.
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5.5.2 Plasma-vertical field inductance

- S S S e e o m

The Fn and F,e @re calculated by using the plasma flux function
(164), while the f, are yielded by the vertical field current
distribution (183). By accounting for the fact that a is of the order

e, we get the result

Yo = LYot = "'/“o'\'?v”y[z [(‘\ /"’
Gel ”77://%*’4)*‘/?;-/ ?/vl'?rZ/ . (23)

Because’poRkNJ-Nk gives the zeroth order of a mutual inductance Mjk

one can see from (233) that M is only a first-order quantity.

pl,v
This means that the magnetic interaction energy between plasma and
vertical field is due to toroidal curvature, to the relative dis-
placement of the coil centers, and to the dipole character of the

vertical field.

5.5.3 Plasma-chamber inductances

The calculation of the mutual inductances between the plasma
and the chamber current components IcO’ Icl’ and Ic2 is again based
on the plasma flux function (164).

For calculating Mig = M c> One has to identify ik from (233)

pl,
with the first term (Icl/anC) of the chamber current distribution

(196). We thus get L 1/21rr'c,f1 = f, = 0. The result for M5 is

P ~Fipg o <0 R, (o FeSs - 2). (234)

The analogous procedure for the current components ICl and IIC2
leads to

2124 = Pagen = VR, 6 (i «"'7«';2_74—
et [P )t %)+ 5% (B X)) > (29

Mp1 c1 1s a first-order quantity, while M
order.

pl,c2 is zero in first
3 —
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5.5.4 Transformer-vertical field inductance

For ease of calculation we identify V3 in (228) with the
flux function wl,tr (174), which is valid inside the transformer
coils. The vertical field current distribution iv(n9) according to
(183) contains only terms proportional to cosa# and costa’. This
leads to M = 0 - as can immediately be seen from the integral (228) -
because wl,tr= const:

Klge 3’91";7 =0, (237)

5.5.5 Transformer-chamber inductances

———

The calculation is again based on the constant flux function
wl,tr' Because of this constancy the integral (228) can be
directly evaluated by inserting the three components of ic(a})
according to (196). The resulting mutual inductances are

“15 = P co 10 K My (o 'P&/z_y AL
A% = P00 = 0 e

/‘Zﬁ; ==./‘Z¥%;¢;g = 0. (240)

The mutual inductance M is a zero-order quantity.

tr,co

5.5.6 Vertical field-chamber inductances

The Fn and Fn are calculated from the flux function wl,v
which is valid inside the vertical field coils. The components of
the chamber current distribution are read from ic(nﬂj according to
(196) and yield the fn' The mutual inductances resulting from (229)
are

s =My eo ‘4{/07%/%'[2# (Y f?'/;; = y-/-
Fel%)" () (B2, o
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A~ 2
/QJ‘ =/4‘;(4=4%/‘0'&?’/Vy/‘/)"/) (242)
Hsz = Myee = 2 g R, Ny (%)
(58 ra-(7%)(% -R. )/

The mutual inductance MV c1 is of zeroth order. The remaining

(243)

inductances MV o and MV cp are of order € and are due to coupling by
toroidal curvature and relative displacement.

e . - - - —

These mutual inductances can again be calculated directly from
the integral (228). By inserting ¥1.c0 according to (198) and the
second term of i (n’) from (196) we get

c

2,
My -/%0’“ "f/"o"\?c £ (b ‘/75 -7) . (om

In an analogous way we get MCO c2 from 21 <0 and the third term of
1c(ﬂ91 as well as Mcl,cz from wlpl according to (199) together with
the same component of ic( )3

Moy = Meyer = 9 (245)
b 4 z
ez = Mg ce =7 o ¥ A &, . (246)

Again, as in previous cases, the coupling is due to toroidal curvature
and is thus of order € at the most.

= e = ———

For systems studies work computing time may play an important
role. We therefore represent the order of the various inductances in
matrix form to facilitate a quick assessment of useful accuracy. In
most cases the first-order inductances are given sufficiently
accurately by the procedure used. Zero-order inductances may in some
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cases call for higher precision and then have to be calculated by a
better analysis or by a computer code based on the evaluation of
elliptic integrals. If the order of an inductance is at the most of
2 s ;
order €~ it is marked by 0 in

com- 1121 3lals|e |7 Table 1. The results involving
poneat component "4" (magnetic limiter
1 1 coils) are collected from
Sections 5.6.1 to 5.6.4.
2 111
3 clol In passing we note
that all inductances for distri-
= el0fefl buted currents coincide with
5 1=| - 1-Fe-fF-e|-1 those given in /4/ except for
6 o b gepstila e i two cases. These are Msg and
. LEVE The last term of Msg in
/ 0 l 0|lefe]0}e |1} " ourcase is a factor of 2

larger than in /4/. In M37 we
Table 1
get a term proportional to

(RV-RC), which is missing in /4/.

5 6 Mutual inductances between one set of magnetic 1imiter coils

and the components with distributed currents

The geometrical arrangement of one magnetic limiter coil triple
already been shown in Fig. 10. For calculating the mutual inductances
between the limiter coils and the other components we neglect the
radial extents of the limiter coil cross-sections by treating them
as line currents. The corresponding distribution of the current
density J is given by

Jue (7 = Zue Y, [; % %a) IS
. f/av—m/qr(oz-«%wrﬁ )=
2;,’,; J[’I‘%}Jfﬂ’cfrlfvﬁ// {247)

(ry and(ug' are the coordinates with respect to R = R4, 2 = 0,
as shown in Fig. 13).
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From (34) and (6) we get for the mutual inductance Mj m] Detween a
coil system j and the magnetic limiter triple

= 4 7 ¥
Gt Z Tug Yz’ at. e

wj is the flux function produced by the current Ij flowing in the
coil system j. By inserting jm] from (247) in (248) and using

{4 Z’/}"’/?di;.?‘,"dn% (249)

we get for M,

J.ml /tﬁu ,
"’5‘,*‘ - #[%faé/ ‘2‘)_2'3-/ ﬁc/'%'d‘f)

"jgriﬁf(/bz;e) ‘4£f*L51°£Ef¢)7.

(250)

Formula (250) can also be found by using the fact that Mj m] des-
cribes the amount of flux produced by the coil j and interlinked

with the triple coils and using the relation (20) between the magnetic
L% ¢p01 and the flux function wj.

The flux functions wj. which we have given in Sections 5.3
and 5.4.1 to 5.4.4, are centred at R = Rj’ z =0, which may be
shifted with respect to R = RmT’ z = 0. This leads to the differences
between rk,n}t and r,n}Lshown in Kig.:;13.

We again treat AR/ry = (Rm1'Rj)rk as

a quantity or order e. By analogy with
(226) this leads to

I 7‘=Z;J—J?C‘Wo%~ (251)

The difference of angles

0 I 2 R,,,lm — 4 ""'"%""L (252)

Fig. 13 is given to first order by
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4:[2,‘—?‘,;}/;". (253)

In Sections 5.3 and 5.4.1 to 5.4.4 the flux functions wj are given

as functions of the normalized coordinate @ and the angular coordinate
nﬂ'. For the present calculations it is conventient to onn'tj: by

using (136), thus introducing the radial coordinate r and the minor
radius rs (replace ry by r; in (136)). To evaluate (250) we have to
proceed according to the following scheme:

Ul 8= (% £ R o5}, F=5-4).

By Taylor expansions around r, and aﬂi and restriction to terms up
to first order in € we get the result

Ayt = G o, o) Yy )+

ar/ ?-;;7 %a, 4 /—}Z%’(?;& )Mf; ) Co.rn/;: -
d}/}—?}(‘?[& , .&)-g(rz‘) ,,é )_]/ (254)

The flux function ¢b1 outside the plasma is given by (164).
Upon inserting @ = r/rp1 in wp] we can evaluate (254). The result

E, &
/7"44-.( = "y 5 % Z.(/t/“f% Zt?“"”f‘:‘ b E_::—
- & ”
#5agbas 5ot (b TP )-8 (0,4D)
< %
eyl ok /.

is

(255)

Because Ae = ¢ is of order ¢, as already mentioned in

=€
mz me
Section 5.4.5, the formula (255) contains second-order terms. Restric-

tion to first order leads to

Ehe Ebe
APyt Vo G oy (1 T2k )l 2=

256 )
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It is assumed that the magnetic Timiter coils are placed inside

the transformer coils. Because the transformer flux function wl e
according to (174) is constant in this region the mutual inductance

M 1 vanishes:

tr,m

24 = sne =9

- o B o o o  — —— — — — — — — ———

It is again assumed that the magnetic limiter coils are
situated inside the vertical field coils. The appropriate flux
function ¥; | is given by (184). From (254) we get

Eung -
%% = Myut - zf,«,rqu,qa ._qu_‘-_z x
4 .
[ o # Gl Ty = D e o

Stz — Elne
75, Co.rftﬂ::_].

Restriction to first order in & leads to

g i Euz-E
34 = yout ‘z‘i/‘o'a(”’rﬁe ‘%, e fﬂ“’i-

(257)

( 258)

( 259)

The magnetic limiter coils are assumed to lie inside the plasma

chamber. The appropriate flux functions ¥1.co’ Y1.c1° and by cp are

given by (198) to (200). The first order results for the inductances

are

R

/‘g;a:/f,,(’roaf,a, ?h( /K? /e.e- é}..,)/& -z Cou%’,,( 260)
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y -
/44( "’"b.t, G = 0/ 0 M Ad/bé £’,“2a Eiue

[Pl b lby tbna )4 Zcad )]

(261)
& ok
Ptz =g et = 5 /o0 Tt g el
[ 4 Lttt lan 0 f 4
Eaz #Euz Eue +Eute +ZE€c

5.7 The vertical field parameters v

In general, the current flowing in a poloidal coil a produces
a vertical component BZa of the magnetic induction at the plasma
centre R = Rp], z = 0. This vertical field follows from the correspon-
ding flux function wj by using (8):

7 7% _
,;?34, = 2T % IR (?:P/‘, 2=0). ( 263)

Because the flux functions given in Sections 5.3 and 5.4.2 to 5.4.4
are written in temms of @= r/r_ andn9'1’t is more convenient . to use
(134). This is possible because B, = Q,.for z = 0. In the actual
calculation the normalization.p==r1ra and a possible shift Rpl'Ra
have to be taken into account.

For the Timiter coils we directly calculate the magnetic induc-
tion produced by one coil and then sum the result over the three coils
of the system. The magnetic inductions are calculated to zero order
in rqz/ra, which is a good approximation because the cross-sectional
dimension Fqz is small compared with Py 30d o

The calculations for both the coils with distributed currents and
the limiter coils are easily performed and yield the following results
which contain terms up to first order in e:



=B

o NV
V,m Y, = 9 (265)
d 7%

fro Mz , Eina
PP 5w ol ot i) (266)
A T N Vi ik

d, 7

Y=V = % &e //h. /é‘c— /z) y (267)

el (268)

N Y TV, AR

5.8 The magnetic field at the inner edge of the transformer coil

In general, the magnetic field acting on a coil must not
exceed certain limiting values in order to meet technological con-
straints. These may be due either to limitations of stress and
strain or to the conditions a superconductor needs for safe performance.
An important Timitation of this kind is the so-called "core constraint"
in connection with tokamak reactor designs: the flux bipe through the
inner bore (see Fig. 14) of the
transformer must not exceed an
upper 1imit in order to prevent
a s.c. transformer coil from
going normal because of too

high a magnetic field at the
inner edge.

A1l poloidal coil systems
contribute to the flux ¢tr and

hence to the magnetic field B,
at R = Ri’ z= 0. As in the case

of the vertical field produced
at the plasma centre, we intro-

duce a parameter v which relates
Fig. 14 the magnetic induction produced
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to the corresponding current. The total induction at R =R,, Z =0
is given by

\?3_//?- 2=0)= Z (270)
77
The Vtj for the coils with distributed current can be calculated
from the corresponding flux functions, as already described in

Section 5.7. Obviously this is only a reasonable approximation if
Ri does not become too small relative to the components' major radii.

For the calculation of v (contribution of the magnetic

t .ml
limiter current 14) we shall only use a rough approximation because
the contribution is small anyway owing to the multipole character

of the limiter coil triple. We determine the field produced at R = R; -

= 0 by the current I from the formula

/o L, Pne
?34‘ 2 (?af*‘?h)”& (271)

which is exact for R; = 0. The relative error introduced is of the
order (R, /Rm . By 1dentifying Im and R, with the magnetic 1imiter
ampere turns and radii and summing over the three coils we can
easily calculate Viomle

The results for the vt up to order e are given by

%pt = zm[ e ?/é‘ 25 z(& =) ﬂ'ﬁ/]

(272)
_ 2%;‘44; 75,
'ﬁ-{';t' B2 [ [é' '2) *‘rz(&-g ) )]
(273)
/*o oy 4 0(7“" 7
Y inz: R [Ezc‘%-?) 2(%, —2)'- F"m—@ (&‘72 ‘*mf)];
(274)

- 22 7EL i%'fi?
Yoo mm (& ) 6‘-4(9-?) -
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Ze 7
‘QEC? .5;;. A A ‘&(:?;z;) °4f(=i_i%;)(%%' 1‘;7)L‘ (:;;zz)t »

(276)
Ze. <
Y = f— = - e e 77
Iﬁ‘l- za_ ::;_i& [:;iLJi%)t' ‘s;1f(735435):] > (277)
&
%“--é‘?‘ul /Ka_ (é‘q_-éu)fas& . (278)

5.9 The relation between plasma current and magnetic limiter current

In Section 3.3 we introduced a factor f of proprotionality
between the plasma current and the magnetic limiter current by
equation (66):

Zat = # Lot . (279)

This factor f depends on the plasma and magnetic 1imiter geometries
as well as on the position of the stagnation point S (see Fig. 15).

The stagnation point is defined
as that location where the

rz nﬂkcomponents of the magnetic
inductions produced by the

' Rs plasma and the magnetic Timiter
f coil triple just cancel each
other:

l W Gpre* &gy =0. (%)

Because of the short range
_ of the multipole field we can
Fiigs 85 neglect the contribution of a
second multipole triple, which may be situated symmetrically with

respect to the plane z =0 ifnﬂ; is not close to zero.
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Bn’ipl follows from

o o o
Al T2y, (281)

with Up1 given by (164). We assume here that the plasma is centred
at R = Rp] =R, and z = 0.

The field B“’,m] is calculated by treating the multipole rings
as straight conductors. This is possible owing to the large aspect
ratio of the rings and because we only need the field in the
vicinity of the conductors.

The determination of both fields is straightforward and
yields the Bg as products of the respective currents with
functions which mainly depend on geometry. By using (280) and (279)
we get

. 7. L4 YR Y. 4
f Moz 75 (1475 Rt "“g./f Z /Z?ue/ l
% %, %e A
(R (4 -0)-(FN A+ Sl
O AN AT L e 7% Con 444, (282)
Toe (a7 Cod Bt Tia (% - G 005

The geometrical parameters rpz, rpe» and Anﬁ'm have already been
introduced in Fig. 10.

Equation (282 ) shows that f may vary with time if rp], A], and e

do so. The minor stagnation point radius rg has a strong bearing on f:
if rg is not close to r ., and r.. but if S is shifted towards the plasma
centre, a strong increase of f results. The reason is the short

range of the multipole field already mentioned.



5.10 A heuristic correction to the zero-order inductances

A toroidal surface current component i, which is independent of o
produces a contribution to the inductances which up to first order
in €, is given by

L7 =4, %(&m/z:—i) (283)

We found this result in the calculation of plasma, transformer, and
chamber inductances.

To infer a second-order correction to this relation, one can use the
exact result for L given in /7/.

The relative difference

ae/t 9= (¢ é')"z)/é i (284)

can easily be calculated by means of the tabulated values of L

given in /7/. The result is shown in Fig. 16 as a function of

E% = ra/Ra in a double Togarithmic representation. Indeed, the

correction AL/L(Y) in this Togarithmic plot is very close to the
straight Tine corresponding to

aLfeP= &k .

AL

By using (285), (284), and (283)
we get

L= (r-E)MP, (&‘-’;’.—f‘-&). (297)

In the logarithmic term we have

01

not replaced R, /r, by 1/£a because
83 is a measure of toroidicity,
whereas the occurrence of 1n(Ra/ra)

is not due to toroidicity but to

Uﬂb] i ""1 the 1/r-variation of the magnetic
' €q —» field strength in the proximity of
any line current. The factor 8 is

Fig. 16 characteristic of the geometry and




L7 .

may be changed if one treats the case of minor cross-sections other
than circular.

To correct our results, we only have to substitute in the formulae
for Ly, Ly, L5, M12’ Migs and M25 according to

A &?4_1/_;/4_;&)(& ) (288)

6. A sample calculation using ASDEX parameters

6.1 Inductances

The self and mutual inductances-of the ASDEX coils have been calculated
numerically /8/ and can therefore be used for comparison with our
analytical results. The geometrical arrangement of each individual

turn of a coil and the cross-sectional dimension were taken into
account. The numbers of turns in our nomenclature are:

N, = 100, N3 =8, Ng= 8.

The ASDEX coils have minor cross-sections which are elongated in the
z-direction. We characterize them by s (a = pl, tr, v, ml, c0, cl, c2),
which is half the radial extension, and zZ, which is half the extension
in the z-direction. From these dimensions we calculate an equivalent
radius

/e
A (q Aa‘!-a)" (288)

which we use instead of s in all logarithmic terms of the form (283).
The parameter €4 used in the inductance formulae and in the
correction (285) is a measure of toroidicity and will therefore only

be based on Fai

%/%

(289)
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as was done throughout this report. If minor radii occur in the first-
order contributions to the inductances, we identify them with the
corresponding radial extensions r_ and hence neglect the effect of
axial elongation.

a

In Table 2 we present the numerically calculated ASDEX inductances
and the corresponding values calculated with the formulae presented
in this report. Because it is convenient in practical applications
to use ampereturns and voltages per turn instead of currents and
voltages, we use the adequate form of inductances:

2
L =N La (290)
Mo = 7///4//" ”at (291)
3 g Because the ampereturns of
numerical analytic

inductance value [uH] value [uH] the various coils are of

similar magnitude, it is pos-

Pl (1) 3.703 3.439 sible to access the relative
pl-tr (1-2) 0.843 0.928 inportance of the inductances
pl-v  (1-3) 0.895 0.904 on the basis of the 1, and
pl-m1 (1-4) 0.356 0.403 m,p- Table 2 shows that
tr (2) 0.841 0.928 all mutual inductances which
tr-v  (2-3) 0.001 0 involve at least one dipole
tr-ml (2-4) 0.001 0 or multipole coil are of
¥ (3) 5.083 4.360 minor importance.
v-ml (3-4) 0.002 0.009
ml (4) 4.363 4.328

Table 2

The comparison of the numerical ASDEX results with our analytical
approximations shows that the deviations remain of moderate size
(up to 10 - 15 %) despite the Targe e-values (up to 0.45 in the
case of the transformer).
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In all cases where ]1 and BpoT had to be specified we used

11 = 0.5 (square current profile) and Bpo] = 1. The inductances
involving the chamber components are not given because no numerical
values are available for comparison. This is due to the fact

that the complicated ASDEX vessel was treated numerically by
subdividing it into a lTarge number (about 100) of inductively

coupled circular coils /9/.

6.2 A circuit calculation

For a typical circuit calculation we adopted the following input
functions:

Ly(8) = 1p(8) = Iy, . (1-e “t% (292)
ro1 () = r0 e (0.1 +0.9 /7). (293)
Rp](t) = %10= const, (294)
BpOT(t) = Bpo = const, (295)
Ri(E) = Ry, + [(F,-1) e ¥F a1y, (296)
with
T -107%s, rote = 04 M, Rigoe 107°40,

o -0, Rijo = 1-65m  fy = 108

1o =5 10° A Bo =1 ;

Further data are:

6, =0.95-10° 1/fn
d. =1 mm (chamber wall thickness)
n, =1 (vertical field index),

e

= 100° (see Fig. 10),
20°  (see Fig. 10),

o
Ze
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rs =0.47 m (minor stagnation point radius; see Fig. 15),
1,.(0) = Ip(0) = 0, R, = 1.27 x 107202,
Io(0) = I(0) = 0, Ry = 2.25 X 1030,

|
o
X

1}

I.4(0) = I5(0) = 4= 1.33x1030.

1.,(0) = 1;(0) =

I
o

The vessel was assumed to have a poloidal slit leading to ICS = 15 2 0.

Figure 17 shows some results of the computer program PCOILS,
which was set up on the basis of the material presented in this report:

The magnetic limiter current Im1(t) essentially follows the prescribed
plasma current Ip](t). Strict proportionality of the two currents
is prevented because rp], and hence f, depends on t.

The necessary transformer current Itr passes a minimum and then
rises again, which leads to a reversal of the power delivered by
the transformer power supply, which has to supply the voltage Utr'
The power reversal is due to the decrease of the plasma inductance
Ll’ which is produced by the Tinear increase of rp] with t.

The vertical field current Iv,which is necessary to keep the plasma
centre at its equilibrium position Rp] = 1.65 m, z = 0,behaves
similarly to Itr' The reason is again the variation of rp] with t,
which now mainly acts via the vertical field parameter ? given by (60).

The chamber current I reaches a maximum value of about 20 kA,

cl
whereas ICz is virtually zero. This means that the chamber current

density i_ given by (196) varies as cosn9L along the minor circum-
ference (Ico = 0 because of the slit assumed). The L/R time of the
vessel is of the order of a few 1077 s,which means that the time

variation of Icl is essentially determined by [ ftr’ and Iv'

pl’
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Fig. 17
I & Concluding remarks

The analytical formulae for the circuit parameters and the circuit
equations presented in this report we used to set up the computer
model PCOILS (pulsed coils), which describes the pulsed coil systems
of tokamak reactors. After coupling with numerical plasma models
such as NUDIPLAS /2/ or WHIST, the model PCOILS forms part of the
tokamak power plant model SISYFUS elaborated by the IPP project
systems studies. The computer program PCOILS will be described in

a separate report.
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