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Abstract

The global stability of stationary equilibria of
dissipative MHD is studied using the direct Liapunov
method. Sufficient and necessary conditions for sta-
bility of the linearized Euler-Lagrangian system with
the full dissipative operators are given. The case of

the two-fluid isentropic flow is discussed.




There has been a considerable amount of work con-
cerning the stability of static and stationary magneto-
hydrodynamic equilibria in the framework of the so-
-called Energy Principles based on the Lagrangian for-
mulation Kl, 21. It was recently demonstrated for a
large class of such equilibria that linearized equations

of motion in the Euler-Lagrangian description take the

form
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where (t) is the n-dimensional vector of Lagrange dis-
placements from the equilibrium state { = 0. The time
independent operators A, B, C, D and E, the vector f (t)
and the corresponding inner product < () ’7 > =de Z(I* 73
are defined in the complex Hilbert space L2 withathe
norm | * | . The operators A, B and D are Hermitian and

A is non-negative. The operators C and E are anti-

-Hermitian. The parameter te€ T.

Equation (1) encompasses several limiting cases. For
B=C=E-=0 egq. (1) corresponds to the static equi-
librium of ideal MHD [ 3] and for B, C # O and E = O we
have the case with static equilibrium including viscosity
and resistivity, e.g. [4, 54 B 7]. However, the most
interesting case of stationary flow in the dissipative

MHD is characterized by E # O.
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In the previous studies |3,4,5,6,7,8,9,10] necessary
and sufficient conditions for exponential stability of
the system (1) were given for E = O. It was also de-
monstrated [10, 11] that in order to keep in eq. (1)
all essential dissipative effects in the operators B
and C and simultaneously neglect the operator E, one

has to accept several restrictions on the validity of

eq. (1).

In this note we demonstrate sufficient and necessary
conditions for stability in the sense of Liapunov for

the full system (1).

The stability of the system (1) may be studied using
the Liapunov direct method. Let us deng;e [12] a posi=-
tive definite Liapunov functioqglzr‘((utj, continu-
ously differentiable in t and ( and satisfying the

following conditions:

zr(( t) is defined in a set._O. O.. “f\ a for all t= O,

U‘(o t) =0 for t = O, ( t) dominates a certain Uffj
U(( )= 'Uu(( t) for all f J.n\.D., and all t = 0.
Moreover, it is assumed that QI]O t) = 0 for t = 0. Then if

the time derivative on[kf t) taken along the trajectories (1)



~

is negative semi-definite, the null solution § =0

of the system (1) is stable; if the derivative is
negative definite, the null solution is asymptotically
stable. Owing to the validity of the converse theorem

[13] these conditions are sufficient and necessary.

~
A suitable functional‘yﬂkf,t) for the system (1)
with E % O has not yet been found. If A is invertible
it is convenient,although not necessary, to rewrite

eqg. (1) in the form

f”+[M+N'\ [p+Qlf =0 (2)
.f

e
_ , : ”)g <
using the mapping K, g = i ( = Kf , K AK = I,
* »* -veq >
M =KBK, N=KCK, P=KDK, Q=K EK. Let us further

define a time dependent linear unitary transform L(t)

f(t) = L(t) AZ (£) » (3)

Let L(t) be bounded in the time interval [O,°°>, have a
bounded continuous derivative L (t) and have a lower
bound 04m< |[L(t) || for t = 0. We seek the isometry L(t)

such that eq. (2) is transformed into

(4)
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Let us impose the following constraints on T{E) &
“ " A 1 Ay A* A
P L@ =LOLO=1 M=M P=P N==N% @=0. (5

Then the compatibility conditions lead to a differential

equation for L(t):

L (¢)= {-&Mmf (QeH)+]T- (M+N\T(M+NHR}L&) =TL(¢)

where (M+N)T is in the general case the Moore-Penrose
generalized inverse, which is unique and is defined in
the corresponding subspace of L2. The arbitrary operators
H and R are defined from the conditions (5), H being

Hermitian. The transformed operators in eq. (4) are then
* e
G- ML, K= B @TeNIL, Pl (PrTT+S)L

SE:;_(MT—TM) +% (NT+TN) -

Having specified the system (4) we can construct the
Hermitian functionaqu,(q,t) e.g. in the form as given
in {141. Then the sufficient and necessary conditions for
stability (asymptotic stability) of the system (4) and

at the same time of the system (1) are

T(a 4,4)= <A L (PeTTES LD+ L4y 42 70

(7)
d - C o
w(’\,ﬂlﬂaa@ﬂ(mq,%ﬁ—2<AI,LMLA1>+
v <A, lf[(P+S)T-T(P+53]LA]> )
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The conditions (7) are verified also if ﬂ (f;) = 0 for

n](-éd) £ 0 if

< f, KP+TT+5)€> 70 < f} {T(?+5)-(?+5)ﬂf>:«:0

<l Mg 20

The stabilizing or destabilizing influence of dissipative
effects cannot be estimated without a detailed analysis
from eq. (7) owing to the rather complicated structure

of the operator T. In a particular case when the operator
T commutes simultaneously with M, N and P the system (1)
becomes reducible and all transformed operators (6) are
time independent. This condition represents additional
constraints to eg. (5). However, these conditions can

only be satisfied for some particular cases, e.g. for some
mechanical systems with matrix coefficients [151. In

the case E = 0 (static equilibrium or nondissipative fluid)

in eq. (1), L(t) =L¥t) =1, T = o,’U—='U'(€, {') and

the stability conditions (7) read

<€/-PE>70 } <E-/ME.>20_ (9)

These conditions correspond to earlier results. In contrast
to the conditions (7) the operator N is here irrelevant

for stability. If, furthermore, M = O, as is the case of




ideal MHD, dt ? g ) = 0 and the system (1) cannot
be asymptotically stable in the sense of Liapunov. Owing
to the definition of the inner product, the conditions

(7), (8) and (9) define the stability in the large.

We give an example of the Euler-Lagrange equations (2)
in the case of dissipative two-fluid MHD. This model
respects dissipative effects such as viscosity and re-
sistivity hq) as well as Hall and finite Larmor radius
effects. The corresponding MHD equations (¢ , 8 mean

particle species) are

a

md\“& Z{:

i =g (E+aad) - -vp - v ]
Il
d

[)
‘ﬂ“&-\-v. W =0
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Assuming stationary equilibrium isentropic flow, @a=+ 0,
using in the corresponding Maxwell equations the gauge

$ = 0 and introducing the Lagrangian displacements

[2, 3, 16]
1/2

{= L (w “i\—*/zf ) , 1) g "/2 i f

~ ~q

we obtain for the operators M, N, P and Q in eq. (2)

(operators A, B, C and partly D are given in [10])
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Here, we have separated the dominant non-dissipative
terms into the Hermitian operator PN and dissipative
terms, Hermitian and anti-Hermitian are collected in the
operators PD+Q. The term ’Q.T,E (? ) was also

~ A A
divided into the Hermitian and anti-Hermitian parts {17\.

We assume a perfectly conductive wall at the plasma

boundary.

The demonstrated criteria for stability are valid for
any continuous medium with is described by the Lagrangian
system (1). The criteria (7) represent the first step
towards elaboration of practically useful stability con-
ditions. Nevertheless the use of test functions, suitable
for a given geometry will lead to conditions accessible

for numerical analysis.

It should be stressed that the conditions (7) are
valid for a subclass of square integrable accessible dis-
placements of the linearized system (1). The Lagrangian

formulation is also limited to isentropic flow.

The author wishes to acknowledge the hospitality of

Max-Planck-Institut fiir Plasmaphysik, Garching




AEEendix

It is possible to demonstrate directly the converse
theorem in the case when the Liapunov functional vr(717f£)
and its derivativezd_(ql7,£)are quadratic forms in

variables 7 and 7 . Taking the identity
¢

Ty 0 d) -y k) s godt Wiy, 4,
and using eq. (7) we have
<,1)13Al> + 4»1',»]'7 = <~],TA>A]>£D x <’1""i7£° =
¢

(gt § 2¢m, FiR> 4, LT (PeTTLY> }
?

D

Then, in analogy to the case E = O [181, we conclude:
if the second condition (7) is satisfied and if for some

t = t1 the following holds

<HyAq2¢ =0 ) <f1,P»,>£i<0

then for any t 7 t,|

<n‘,$q>£ <0 ) <4, Par +0

and the system (4) cannot return to the equilibrium state.
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The solution to the system (7) with respect to the

functional 1f (1) ﬁ, %)

<f, [Pes +TT1E +<[?'—T§]} [¢-Tel =

[ ] L] = .é w(% E.)
3 CE [PeaTT £ +<LE-TEL TE-TEIS] exp (ot ’

illustrates the growth of the Lagrangian displacements

f(t) in case of instability.

The conditions (7) do not include the particular
case M + N = O and the case when A is singular. This

case will be discussed elsewhere.
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