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Abstract

Prescribing, in addition to the total poloidal magnetic
flux, the toroidal flux and the plasma pressure as
functions of the poloidal flux leads to a critical value
of the plasma beta above which the tokamak equilibrium
problem becomes unphysical: A degenerate separatrix
(i.e. a flux surface across which the magnetic field
reverses) emerges from the magnetic axis, the entropy
density diverges on this separatrix, and the flux
attains values outside its prescribed range. This
difficulty disappears if one prescribes, instead of

the pressure, the plasma adiabate, as is appropriate
for simulating the temporal evolution of an equilibrium

due to plasma heating.



In axial symmetry [B/B@ = (0 , where (‘T, @,- 2)
are cylindrical coordinatesj, the magnetohydrostatic

equations,

Y

<B=VP, JecurlB, divB=o,

(E is the magnetic field, j the current density, and

e

P the plasma pressure) are solved with
B=VOxVw +[VE (2)
if the equation

’Tldﬁv(f:__:vw)-‘_g&e— + 1 i_L—:-{ =Q (3)

Ay At

is satisfied, where F> and I' are functions of AF

(2T is the poloidal magnetic flux, and 2w L is

the poloidal current). To specify a unique solution of
Eg. (3), one must impose constraints. The purpose of this
note is to discuss various possible constraints and their
relation to the problem of determining a sequence of

equilibria through which the plasma passes a result of

heating.

The conventional approach to Eg. (3) is to impose
the boundary condition ﬂk;:o at the boundary of a

toroidal domain and to adopt the constraint of given



functions Pﬁyﬁ and-Ifﬂp) . Even though the resulting
gquasilinear elliptic problem is mathematically well-
posed in many cases, it is unphysical for several
reasons: Firstly, since the range of the solution
qr(dj‘z) is not known a priori, it is also not known
in what domain the functions pﬂﬂﬂ and I{ﬂp) must be
given. Secondly, there is no simple correspondence to
actual experimental situations in which a parameter is
varied; for instance, heating of the plasma, besides
increasing FD , changes ]: in such a complex manner
that it is not useful to prescribe this quantity.
Thirdly, there is no guarantee that the flux surfaces
AY = const form singly nested toroids; for instance, if
one starts from an equilibrium with this desired pro-
perty and then increases P(4y) keeping I(dy) fixed,
a separatrix eventually occurs so that the plasma beta

is limited to undesirably low values.

The concept of flux conserving equilibrium

families was introduced ! to avoid these disadvantages.

The crucial idea is to prescribe, instead of the poloidal

current, the toroidal magnetic flux (p as a function of
QV . From Eq. (2), this flux is related to the poloidal

current through

T-k 49 ¢
a5 I I<,AM4{J.

(4)




Here, the dot denotes the derivative with respect to

V , the volume of the interior of a flux surface, and
-1
N 5 1>

where

(- 2@ A*S "--/W\/l (6)

is the usual flux surface average. Combining Egs. (3)

and (4) yields

dvdy) A0+ K A0 de gy oo o)
& a&“f QTT d.\f A
Owing to the presence of the variable \/ , this is a

generalized differential equation 2

In most previous studies of flux conserving equi-
libria 1,344 , Eg. (7) was considered with given funct-
ions fD(Af) and Cp(“#) . The following arguments indi-
cate why this constraint is superior to the conventional

one: Firstly, the average of Egq. (7),
(Kl'“l’) t «P*“—Q'(K ’\f“S =0 (8)

with

= I/

(9)



being a second order ordinary differential equation

for \F(\/) , requires that two values of Af be
prescribed (e.g.ﬂf{O)t 0O and «y(bg) = Yo , where
\/s is the total volume). Iterating between Egs. (7)
and (8) then suggests that the problem is well posed 2 .
Thus, the functions FV”?) and QDPQQ may be given in
the prescribed domain O 5-_1( < Af"e , at least as

long as the solutionry/(\’) is monotonic. Secondly,
generating a family of equilibria by letting P be an
increasing function of time while keeping (p(Ap) fixed,
one hopes to describe situations in which the plasma is
heated fast enough for its resistivity to be ignored
(this implies conservation of flux, and hence of ¢M4f) ),
and at the same time slowly enough for its inertia to be
ignored (this implies that it passes through a sequence
of equilibria). Thirdly, since the inverse rotation

number

AT o)

q S ‘—%i
diverges at an "ordinary separatrix" (i.e. a flux surface
which crosses itself) unless it is identically zero (we
exclude this exceptional case of a purely poloidal mag-
netic field because it does not correspond to a tokamak),
such a separatrix cannot occur as long as the function
(p(ﬂf) is smooth and not a constant. This suggests that
the plasma beta can be raised to arbitrarily high values

without causing a change of topology.




In this note we show that there is, nevertheless,
a limitation upon beta, but that no such limitation

occurs if the plasma adiabate

=PyTE (5 =5/ (1)

(which is closely related to the entropy density) is given

instead of the pressure. In other words,o{(Ap) may be

prescribed arbitrarily, but F>(1F) may not. Specifically,
assuming that ‘P(’\{/)'—‘ P(@)/P(O) is fixed with A_P/Az\f/ < (3 |
and p(4p) = , we show that «P(\/) increases mono-
tonically if P(0) is sufficiently small, but that &f(\/)
drops to negative values away from the axis before it
increases to Yo towards the boundary if f>(o) is too
big. In the latter case, the range of ﬂf(\/) , and hence
also the domain of pWA¢) and.(ﬁ(ﬂy) , is a priori un-
known (as it is in the conventional approach), the
pressure attains its maximum where attains its mini-
mum (implying a change of topology because some pressure
surfaces are disconnected), the magnetic field reverses
across the minimum of AW , and the entropy, along with
the adiabate, diverges there. Clearly, vh¥) vanishes
identically at the flux surface of minimum-HJ . Therefore,
by analogy with an ordinary separatrix at which VHV
vanishes only along a curve, we call this surface a
"degenerate separatrix". Thus, the constraint of flux
conservation fails to prevent the presence of a separa-

trix; it merely forces a separatrix to be degenerate.



To substantiate our claim, we put the averaged

equation (8) into Lagrangian form,
(BL/B*}Y*QL/\‘W =8 (12)
with Lagrangian

Ly Y = ELg = Pl a3)

. A >
M(’l{/,\/): Kz(V)T KI(V)(“‘{W) . (14)

Thus, the boundary-value problem for Eg. (8) is equi-
valent to determining the trajectory of a particle with
mass P4 (depending on the position «V and the time V’)
which moves in a potentialib(dy) , and which starts
from the position 4y =0 at time V=0 and reaches the
position Ay =1, at time V=V, . Since ip/f"\{/ <0y
the particle goes downhill, with F>(o) measuring the
steepness of the slope. If FD(oD is small, the particle
must be pushed initially towards its final position in
order not to reach this too late; hence AF(\/) increases
monotonically. If, on the other hand, FD(Q) is too big,
the particle reaches its final position too early unless
it is pushed initially in the opposite direction; hence
ﬂy(\f) has a negative minimum. The only exception occurs
if 0“3/£4fJ =0 for ’\‘/:—O (the pressure profile is flat
on axis) because then the particle stays at its initial
position forever if its initial velocity is zero, regard-

less of the value of P(o) .




In order actually to calculate the critical value
of P(0) , one needs the quantity M . Since this depends
upon the geometry of the flux surfaces, determining it
requires consideration of the full equilibrium equation
(7) rather than just its average (8). However, this
problem simplifies in the limit of large aspect ratio.
Thus, introducing the major radius R such that Vo‘—-l?rR A
where /\ is the area of the poloidal cross-section of the
domain, and assuming that the inverse aspect ratio
£ ~ AVI/R is small, we note that K,_/K\ =C(¢?)

and that |<1 o= (}fﬁ-R\l . Hence, for small &,
M-x(‘—iTﬁR?)l (15)

and the Lagrangian (13) has no explicit dependence upon
“~\

\/ , implying that the Hamiltonian, H =-1F?ﬂ_/’04; "L-)

is a constant. Introducing, instead of qy(\/) , the un-

known function (p(\/) , we then have

H=2m2 R3¢+ P(@). e

Upon integration,

¢ .
v =or R [AQA 2(H=P(})) (a7

&

where the constant H must be determined from the boundary

condition at V =-\/o)




) .
5 = 2T RSACP/\/z(H - P(¢Y) (18)

with Cﬁo =:(b(4p03 . The critical pressure is now
obtained by putting (b(o) = O . Equation (16) then

yields H = F’(oﬁ , and Eq. (18), when solved for F>(C),

becomes
B 7 >
Plo) = —2@;?3( é \/—I—_—-(;(—\a)) (19)

where kf :.Cp//q}o. The corresponding critical value

of the volume-averaged pressure turns out to be

. Si\/p @o 8 A\P Sl A‘(“ P(-\‘O)
\43@ sVi= P INVi-pled) o

Since, from Schwarz' inequality, qf)oz//\ifjo‘&\/ Bz/\fo

Eq. (20) imposes an upper bound upon B, the ratio of the

volume=-averaged thermal and magnetic pressures. This bound
depends solely upon the profile P(\P) , and it may take
any values between zero and infinity. To give an example,

we put P(\p\:(i--— \P)Q with A >0 to find

3o 24 (/0 (14 1/2)]° -
s a2 (2/ay (24 2/a)
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For A —> 0 (flat pressure profile) this tends to e
finity, as we have already seen in more generality; for
a—» 0O (peaked pressure profile) it tends to zero
like I/ ; for @ =1 (linear pressure profile) it
equals 4/3. Thus, the critical B appears to be rather
high for simple profiles. This is the reason why no

, , . , : . . 3
difficulties were incountered in numerical calculations .

The preceding discussion shows that prescribing
F>(A+) is not adequate for solving the equilibrium
problem at high beta. As one would expect, a more ad-
equate constraint is that suggested by the actual physic-
al problem. Thus, considering the evolution of an equi-
librium due to heating, we introduce an energy source
with power density GL . Assuming an ideal gas, we then

write the energy balance of ideal magnetohydrodynamics as

AT (500,
where Sf is the mass density, and d/ﬁ(t is the
Lagrangian time derivative following the fluid motion.
Assuming that the plasma is in an axially symmetric
equilibrium at every instant of time now implies that

g and () , along with P, are functions of y and T,
and that ci/((t is the derivative at fixed ’\f/ . Using
Eg. (11) to eliminate P in favor of o< , and using the

mass conservation




_ll_

iér 3)/’9’ =0, (23)
we then write Eqg. (22) as

ﬁ{_OE‘ t(}g—ty\?}“x@\. (24)

This equation (which was already used in Refs. 5 and 6)
is now coupled to Eg. (7), with E> eliminated in favor

of od :

dLvG—VAp>+—{o¢1f/5) Ly ( )

‘A"LP

We note that « is a natural variable because it is
conserved if Gl vanishes and because introducing any
other variable one would also introduce the time deriva-

tive of «%

Equations (24) and (25) govern the evolution of
a plasma which is heated either by the source GQ or
by adiabatic compression. In the first case, one must
solve them With¢X(4F) given initially; numerically,
this can be done by alternating between Eq. (25)[Fto
compute 4{/{4‘,'2') for given o([f\{/')j and Eq. (24)Fto
advance o{(ap\ in time]. In the second case, (! is zero
but the domain is a given function of time such that \/6

decreases; Egq. (24) then implies that ajﬂp) is fixed,

(25)
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and it remains to solve Eqg. (25) at every instant of
time. Since Eq.(25) must be solved with given of(4)
in either case, prescribing the adiabate appears to be
the natural approach to the equilibrium problem. The
constraint of given o((df) is crucially different from
that of given P(A}) because in the former case o

is kept finite (as it must be because the entropy re-
mains finite in reality), while in the latter case X
diverges at a degenerate separatrix. However, this does
no?prove by itself that a degenerate separatrix cannot
occur; we can merely conclude that F’ vanishes at such
a separatrix and becomes negative in its interior. Since
P must not be negative, it is important to show that
4#(\/) is monotonic. This amounts to showing that the

solution of the average of Eq. (25),
a\° \ / ° L
(Kanp) T (LG )Y (K ’H’) (26)
AT
is monotonic.

We conjecture that this is so because Eg. (26)
implies that {€'= ® wherever 4% = O , but we have
not succeeded in giving a proof, except in the two
limiting cases of large aspect ratio (this describes
the final state of a compressionally heated plasma) or

large ol (this describes the final state of a source-




~heated plasma). In these limits, the Lagrangian of
Eg. (26)

_'M"f’ +_—l—-o( s (27)

has no explicit dependence upon V (as before, M be-
comes independent of V for large aspect ratio; for
large o , the term proportional to M may be neglected).

Hence the Hamiltonian

H_____M TOL«{/ (28)

is a constant. For ’\P"_?Q ’ H is an increasing funct-
ion of '\?J which vanishes for '\PT‘-O , and which tends
to infinity for AP~%> oo , thus having a monotonic
inverse '\7}= P(H,’\P) with ?=0 for H = © and

@_;‘DJ for H—> ¢2 . upon integration,

=?MU/Q(H,A{/) , (29)
0

where H . because of the monotonicity of ﬂ-,

uniquely determined by the boundary condition
Yo

\/0=80(A(//P(H,'Y). (30)
(¢

Hence the boundary-value problem has a unique solution
whose monotonicity is obvious. In the case of large o4

a further conclusion is possible because P can be
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written down explicitly. Equations (29), (30) and (11)

then yield

- o i\
P-=(v;8¢(4+o< ) (31)

Thus, the pressure becomes a large constant, this being
consistent with our previous finding that P may become
large without causing a separatrix only if the pressure
profile is flat on axis. We note that Egs. (28) - (31)
in general, are invalid in a small boundary layer. For
instance, P vanishes at the boundary if ol does, in
contradiction with Eq. (31); the formal reason is that
the term proportional to M in Egq. (27) may not be

neglected where o vanishes.

Finally, as an illustration, we consider the
evolution due to a constant energy source of a large
aspect ratio shearless equilibrium with zero temperature
( Gl and q are constants, and o vanishes initially).
Since M is approximately constant in this case,

Egs. (24) and (26) imply that 4% is an approximate
constant, too, while o remains approximately independent
of’V/ but increases linearly in time. To determine the
flux surfaces, one must consider Eq. (25). If q =-C)(U

the first term is ()(gz) relative to the other two terms.
As long as o is small, the second term does not enter the

lowest order, and the solution dyf—r,iz) can be ob-
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tained by a regular expansion in powers of § , there-
fore not exhibiting any remarkable behaviour (for
instance, the flux surfaces have approximately concentric-
ally circular cross-sections if the boundary is circular).
However, once ¢of has become big enough for the second
term to be comparable to the third term,f¥f becomes, to
lowest order in £ , a function of T only. Hence the
boundary condition cannot be satisfied, and the expansion
fails. As a consequence, a boundary layer must be intro-
duced, and the poloidal cross-sections assume the shapes
indicated in Fig. 1. Thus, the various profiles remain
essentially unchanged, but the flux surfaces undergo a
dramatic change in that the magnetic axis moves towards

the wall as the pressurelincreaseaand the temperaturel

along with X . Needless to say, this effect, being due

to the toroidal curvature, is not present in cylindrical
equilibria > , but is well visible in computer plots

of tokamak calculations 6 .
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Figure 1: Poloidal cross-sections at large aspect

ratio and high beta




