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Abstract

In an equilibrium with all magnetic field lines
closed, every such line gives rise to part of the continu-
ous spectrum, depending on the orientation of the singu-
larity in the eigenfunction, and given by the eigenvalues
of a fourth-order ordinary differential operator. Unlike
the Alfven- and Cusp continua which correspond to the
special orientation given by the pressure gradient,
these new continua may be unstable. The criterion for
their stability is identical with that for stability to
the so-called "ballooning modes". Therefore, the growth
rates of these modes, being in the continuum, are ob-

tainable from a fourth (rather than second)-order problem.




1. Introduction

The spectrum of ideal magnetohydrodynamics unifies
various aspects of the problem of magnetic plasma con-
finement, such as heating, stability, bifurcation, islation,
diffusion, and other non-ideal effects. The continuous
part of this spectrum is of particular interest to the
stability problem. Stable continua (viz., the Alfven-

1 1, 4, 5

and Cusp continua - 3) are related to stability

in that unstable point eigenvalues accumulate at their
edge (viz., the origin) whenever the criterion 8 &AL
for stability to perturbations localized at a pressure
surface is violated. The corresponding growth rates are
small, and the eigenfﬁnctions have many radial nodes. Un-
stable continua arising from dense sets of point eigenvalues
were shown e to be possible in closed-line equilibria.

The corresponding growth rates are finite, and the eigen-
functions have many azimuthal nodes. In the special case

of axial symmetry and purely poloidal magnetic fields the
criterion for the stability of these continua was shown >

to be identical with the so-called "ballooning mode
criterion" (which happens to be the criterion for absolute

stability in this case 5

).
In the present paper we show that the same is true
in arbitrary closed-line equilibria. Thus, we derive the

equations governing the continua corresponding to



arbitrarily oriented singularities in the eigenfunctions.
These equations constitute an eigenvalue problem with a
fourth-order ordinary differential operator. The cri-
terion for the stability of these continua is then shown
to be identical with the closed-line version o of the
"ballooning mode criterion". Therefore, the determination

of the corresponding growth rates requires solving a

fourth-order system of ordinary differential equations.

We anticipate that a similar relationship exists
between the continuous spectrum and "ballooning modes"

in sheared systems 15,.16

. In particular, we anticipate
that the determination of ballooning mode growth rates
in sheared systems also requires solving a fourth-order
problem (rather than the second-order problem which was
obtained A2 by neglecting the longitudinal kinetic
energy, and approximation which, although not affecting

stability, severely distorts the spectrum).




2. Equations of motion

When linearized about a static equilibrium,
- e
VP&Bwa&_g‘;O, AL BzO, (l)

4
where B and P are the magnetic field and the plasma
pressure, and when Fourier decomposed in time, the
equations of ideal magnetohydrodynamics can be written

17 in the particularly useful form

5/B2 +M()=0, ~MUR)+ SE@H=wg K. (2)

Here, I: is the perturbing velocity, 5T' is the per-
turbing total pressure, Bi =Bl‘l‘“6_P (where B=r§l)
and *6' is the ratio of the specific heats), ? is the
equilibrium mass density, and (O 1is the frequency.

' 3
The operators.fs ) P4 , and P4 are given by

S(RY = (AR +(BV)ZR, (3)

M(R)= div X +(RXVP+BT)/Bx (4)
M* ()= — Vst + 2(5t/B3) (BB (£)

(Bvst/B3)E,



where

€= (ZVBE-(BVA, ()

With the boundary condition that Z be tangential, M”
is the adjoint of the operator M , and fS is selfad-
joint, provided —g is tangential, too. As usually, the
discrete spectrum consists of those values of @) for
which the system (2) has square-integrable solutions II '

and the continuous spectrum corresponds to singular

solutions.

In arbitrary curvilinear coordinates (X',Xa, ><3)
- iy =Sy
we write LL'-:MAGL , wWhere ei is a covariant basis
vector, and the summation convention is used. The system

(2) then takes the form
T(’/B,z,. + MiMi =0, = Mfﬂ' t -S;s ud= ‘*}8%1&"@) (B)
2= T ST, M= MAE), MIA=EMTX)

‘_? is the metric tensor.

d




Explicitly,

S Bv[—» (-ar B +B’gK_PJA03"B)

_((3 BB >BV]1-(°—Z +€; XCuA'Q ﬁi&\)?)

B:z Pt Pho
[;( 1'/';:5' B B (Qb B}B>BV]

’ —
-y 3y
where B;=e,-_-[§, P/4=‘)P/b><“ , and o(‘;':-am-e(BX e;)_
—y

Assuming now that all field lines of B are closed,

we can choose the coordinates X% such that both X‘ and
2
X
and such that physical quantities have simple periodicity

are constant along the field lines while X3 increases,

properties. Specifically, we choose Hamada's coordinates
18, 9, 13 relative to a poloidal cut surface which is not
intersected by field lines. Thus, we put (X',X?)X3)=(V,e,'§))
where V is the volume of a pressure surface, 9 and z; are
angle-like variables with period unity (each pressure

surface is mapped onto a unit square in the (6,() plane),

== - | —my
the Jacobian is unity, and B = q 'Q.r; , where

CI(V) -"—“@AQ/B . The quantities © and C are




unique only within additive functions of V correspond-
ing to the arbitrariness of the choice of the origin in
each pressure surface. This is significant because it
enables us to give the surfaces 69==const (which form a
family of magnetic surfaces different from the pressure
surfaces) any orientation relative to the pressure gradient.
We now have div-é?"-L =0 , and ;ZV = -(é/q)§,

;?9 =—§§ =0 (dots denote derivatives with respect
to\f ) . Therefore, the system (8) becomes particularly

simple in these coordinates,




3. Continuous spectrum

Only the operators MV and Mt contain derivatives
with respect to \/, and only the operators Me and M;
contain derivatives with respect to @ . This leads us to
write the system (8) such that either of the derivatives
/N or 9/ 08 is isolated. The first possibility
yields the familiar Alfven- and Cusp continua; the second
possibility yields the new continua which we aré inter-
ested in (and which correspond to the dense sets of point
eigenvalues which one obtains if one assumes a e-dependence

in the form e)tPLmSie‘P with large m).
Thus, we group the unknowns ST and Me into a

2-vector ? , and the remaining unknowns ;oLV and M-g

into a 2-vector ? . The system (8) then becomes

DN o 2. T

< +T)X + =0, YX+GC VY =0 12
where

e o | ([3>

(14)
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-M S —w’“g‘ | |
i : VO ) 4ve (16)
—Mg  Sze-w4ge/,

6= ST 38w SvsmwBRvs (1%)

Stvm088ry  Str-wig gy / -

Both ‘T and B are ordinary differential operators in the co-
ordinate '< ;/b\ and % also contain derivates with respect
to V . Elimination of—)./, from the system (12) now yields an
equation for_)z which is singular whenever the operator (&
has no bounded inverse. Therefore, the solution has a singu-
=y

larity wherever the subsystem E?/ =@ has a non-trivial
periodic solution, and the eigenvalues ooz of this equation

belong to the continuous spectrum.

When written out, the sub-system G_V. =0 isg
sy = w34V (1¢)
where
2y =~ .
_BVe, BV+F -(B°V€vg+6>8v (19)

5= —2y - 4 o
—B‘V(egv B-V- G) = B've'g‘g B-V )




_ 4w Qvy
gy 8x ),

with @ = %‘B*B“BB/B: , and
. - -
_3PEYT. PE LB VB

Baq™ q Bﬁ—]
= 1B, /%P1 . ¢
"B‘V[‘g;v‘-(i?‘ "Pﬂ;
- _ %P (,P_R%
G &f(q q).
2

Since S any % are self-adjoint, the eigenvalues WO

are real. They depend upon the field line (through the

parameters V anda ©) , and also upon the orientation of

(20)

the singularity (through the choice of the coordinatetg )i s

We remark that for \6'=-0 ( isobaric motions),

6=0)F=.PA , with |

- —=
A:-——2€V'K

—=p
( ) is the curvature vector of a field line), and
e W A S X
Therefore, the fourth-order system (18) reduces to the

second-order equation

((BIIE ¢ PAYuS g G

2

in this case.

(23)

(24)
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4. Stability

The stability of the continuum ((,02‘_? 0 ) is

equivalent to the positivity of S , or explicitly

<va (WY (SW; tSey YW + Szx (5 > Z0

where <-> =Si'§--- = q"éiﬂ—---/B is the

usual field line average. Minimizing the functional (25)

with respect to AAS leads to the wuler equation
=4 v oo,V =g "S) -
BV(Gu-e, BVt e BVS) =0,

which can be solved to yield

]g;i?AJ:;.g(fc;zivl-{5V§J§:x7iiy:><%}$3

(25)

(26)

- —(6u* evz_g'v‘*v 4 e?§>(e‘5§<’eg—%‘ >)~'. (27)

Upon substitution into (25), we find

9O Brw Ve PAWY Y+

9*B? 1+xP<B™?*Y

The criterion (28) is identical with the closed-line

14

version of the ballooning mode criterion.

fP<A"“V>Z}o.

(28)
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