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Abstract

For arbitrary toroidal magnetohydrostatic equi-
libria, a sufficient stability criterion is derived whose
evaluation requires no more than solving a one-dimensional
problem at every magnetic field line. This criterion
reduces to a previously known one in the presence of
shear, but is less restrictive if all field lines are
closed. Comparison with a necessary criterion shows
that the stability threshold is discontinuous in the
limit of zero shear, low-order rational values of the
rotation number being more favorable than neighboring
irrational ones.




Magnetohydrodynamic stability, although one of the
most extensively studied subjects in the theory of mag-
netic plasma confinement, is not yet fully understood.
One of its.puzzles arises in the low shear limit: It
is well-known that the criteria for local stability take
different forms depending on the topology of the mag-
netic field lines, being more optimistic for closed-line
equilibria than they are for neighboring ones with small

shearl’2

. The question which requirement is relevant

in practice for low-shear systems, that of low-shear
stability or that of closed-line stability, has been
decided in favor of the latterl. However, this question
itself is not vital as long as one has not shown that
the stability threshold is discontinuous. Since local
stability need not be sufficient for stability, this
requires considering sufficient criteria along with the
necessary ones. In the present paper we derive a suffi-
cient criterion which is stronger than previously

known onesB’4 and which shows that the stability threshold

indeed behaves discontinuously in the limit of a constant

rational rotation number.

The equations of ideal magnetohydrodynamics,

when linearized about a static equilibrium subject to
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take the form
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if a time dependence exp wot is assumed. Here, P
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and B are the unperturbed plasma pressure and mag-

netic field while the corresponding little letters

denote perturbing quantities, (g is the unperturbed

mass density, 22_ is the perturbing velocity, and YY

is the ratio of the specific heats. (The equation for

the perturbing mass density is not included because it

decouples from Egs. (3) - (5)).

The energy principles’6 for exponential stability
arises from the system (3) - (5) if one eliminates F>

e
and b to obtain
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where



F(R)= - 9(R-VP+ xPhivK)
(7)
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With the boundary condition AL, =0 (appropriate
to a toroidal, perfectly conducting, rigid wall at
which BM = (@ ) the operator F is self-adjoint.
Therefore, its spectrum is real and exponential sta-

bility (viz., (O~ o ) is equivalent to

(K,-_F?(ZZ)) Zzo, (8)

N
where (Zf, ) 22'2) :j‘“ l(% AL - ﬁz is the usual

scalar product in the Hilbert-space of square-integrable

vector fields (an asterisk denotes the complex conjugate).

—t

We now split the operator F into two parts,

G —n B -
?: S+ P , such that is positive while
has a simpler structure than F . This splitting

arises in a natural way from the equations of motion
in their primitive form (3) - (5) [rather than from
Eqgq. (6)] if one writes these as a system for the un-
knowns :1 and ﬁT=iw(P‘!§'_b?) . Thus,
replacing P by St ; We rewrite these equations

as
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Next, we dot Eg. (10) with B , and substitute the

result into Eq. (9) to obtain
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where B; :{_é’l?.‘.BP . Then, solving Eq. (12)
for Aix121. , and substituting this into Eq. (10),

we find
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The system (3)-(5) is equivalent to the system (11)-(13).
=
If f) is eliminated substituting Eg. (13) into

Eg. (11), this system takes the form

—
M(R)+ /B; =0, SE)-Hom) = wiok)  ay
PV
where S is a self-adjoint operator, and M~ is
the adjoint of the operator |¥| . Finally, eliminating
AT vyields Eq. (6) with _[?'-'-gf_fg and "F'S',: _M’*B: M.
since (2, B(AN) =l|Bs M(ZD||2 =0,



(ZI, §'(zi>) 20 (15)

is a sufficient criterion for stability.

The operator EZ is given by
— =ty
( ) =(3'V>B +(B'V)K, (16)

T —(BR+2VPB/B,

e
S
O =~

T < (RVE-BNX, 18)

thus being an ordinary differential operator with
derivatives onl)ralong magnetic field llnes. To exploit
this, we write (IJL §(LL7> SAV@AN; A - S(M>/IVV|2
where V is the volume enclosed by a pressure surface
while 4(25’ is a surface element, and conclude that

the criterion (15) is satisfied if, and only if

€A% & RS(RY/WIE =0 55

at every pressure surface. To further evaluate this, we
now assume that there are closed field lines, thus
ignoring the case of a constant irrational rotation
number. This leaves us with two cases: Either the
rotation number depends on \/ , and there is a dense

set of rational surfaces at which the field lines are




closed; or the rotation number is a rational constant,
and all surfaces are rational. In either case the
condilion (19) is satisfied at every surface if, and

only if, it is satisfied at every rational surface. At

such a surfaceLhwe write@izs H*§(Z)/IVV[1
= (AOR"S(RY,

where Ga is a coordinate labeling the field lines, and

N/

is the usual field line average. As a consequence, our

sufficient criterion is satisfied if, and only if
w3
<M- (X>> =06 (21)

at every closed field line. The evaluation of this
condition amounts to solving a sixth-order system
of ordinary differential equations at every closed

field line.

A more illuminating version of the criterion (21)
is obtained by minimizing the functional <&“§(ﬁ)>
with respect to the components of AA in a pressure sur-
face, thus expressing it in terms of the normal compo-
nent. This calculation, though rather tedious, is

straightforward and yields
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Here, X= MVP is the only remaining test function,
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where 3-"-' (:un-Q B is the current density. The

evaluation of the condition (22) amounts to
solving a second-order ordinary integro-differential

equation at every closed field line.

—=p
For constant test functions ) Bvx = 0)

the condition (22) reduces to

G+ P2 bIX O teday)
<:Q> P( N > (26)
a+ yPlac- h2)




Being necessary for a sufficient criterion to be
satisfied, this condition, in general, is neither
necessary nor sufficient for stability. However, it

turns out to be identical with the necessary and
sufficient criterion for stability to perturbations which
are localized at a pressure surface2 if all field lines
are closed, thus being necessary for stability in this
case. (In the presence of shear, it is not related to

any known necessary stability criterion.)

To compare the criterion (30) with previously
known sufficient criteria, we note that the second term
is greater than \SPI<P><>IE/(I*\GPC>)
which, in turn, is positive. Therefore, either of the

two conditions

R
IBV><|2 > 5Pl<\0><>|
< IVPI2 PIXI F 1+ xPc

20 (@21

and
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is sufficient for stability, but the condition (28)
(which was previously derived in Ref. 3) is more
pessimistic than the condition (27), and the latter
(which was previously derived in Ref. 4) is more

pessimistic than our new condition (22). However, our



condition reduces to the condition (27) in equilibria
with reflection symmetry7 (in which all field lines
are closed), and it even reduces to the condition (28)
in equilibria with shear, so that a genuine improve-
ment has been achieved only for closed-line equilibria

without reflection symmetry.

To substantiate our claim regarding reflection
F> 2
symmetry, we note that both and IV ‘ are even.
Therefore, the condition (27) is violated for some even
test function >< if it can be violated at all. Since

% is odd,<%>(> =0 for this test function,

and the condition (22) is also violated because b =0

(38 s odd).

We do not give here a general proof of our claim
regarding shear, but merely demonstrate it for topo-
logically toroidal circular cylinders. Thus, we assume
that scalar equilibrium quantities are functions of ¥,
but not of \.P and 2 , where ('T', T,Z) are
cylindrical coordinates, and consider test functions
of the form X -.:)((f'r) -expi(mv-i MY/R))
where wa_. and /MU are integers, and Qﬂ‘R is
the length of the cylinder. Then, _g\?x = A HX)
where M = NVLBY/‘T' /VLB?/,2 ) and <><>=><
ifH:O,but<><>=0 if H<$ o . There-
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fore, our criterion (22) requires that

R a2+ 5Pl fi2bq1cq™)
a + \GP(QC'—51>

Z0 (29)

and
#_* HZ/IVPI2 20 (30)

for }4 =# 0 ; while the criterion (28) requires

that (30) holds for all values of [ . At the rational
surface with rotation number fa_= RB\{,/’I" Bz o K/L
( P( and L. are integers with no common divisor),
H:(m K*ML)BE/RL , SO that H takes on
all multiples of the quantity B?/RL . Hence our
criterion (22) is equivalent to (29) and (30) with

H = B?/RL  While the criterion (28) is equi-
valent to P?O . If the equilibrium has shear, we
consider an arbitrary irrational surface = N5, along
with a sequence of rational surfaces ﬂ'::’fz such that
g~ T as e——'} 09 . Since L-—-‘-7 60  as
Q_,_; 0O , the criterion (22) thus requires that P?o
at every irrational surface, and hence everywhere, as
does the criterion (28). In contrast, L_ has the same
value on all surfaces if /LL. is a rational constant, and
the criterion (22) retains the form (29) and (30),

thus being more optimistic than the criterion (28).
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Let us finally demonstrate that the stability
threshold is discontinuous in the low-shear limit. We
consider again circular cylinders, but assume now that
/OL is a constant. If/A is irrational, G(P/A'T‘}o
is necessary for stabilityl. (The same is true in the
limit A/«/t"f = O , no matter whether /A
approaches an irrational value or not). If /L~ is

rational, our sufficient criterion, from (29) and (30)

with H = B’Z /RL ,» takes the form

4P 2}5P/~ ~ B2
i~ BERE

and

dP | J
e B?_ K}-r R2L2

= 0 (31)

—4)-0

(32)

From this, a family of equilibria depending on the
parameter/}*_ can be constructed such that irrational
/b\ implies instability while /A_ K/L- with
sufficiently small k: and L_ implies stability. In
other words, the stability threshold, when viewed as

a bound upon some parameter (e.g., the plasma beta)

is a function of /p\ which is discontinuous at every

rational value of/ﬁ«_

Extrapolating from the cylindrical case, we con-
clude that a closed-line equilibrium can be stable even

if neighboring low-shear equilibria are unstable, that
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necessary stability criteria which were derived
assuming shear indeed need not be relevant in practice
for low-shear systems, and that it is worthwhile to
evaluate our new criterion even for unstable low-shear
systems, provided their rotation number is close to a

low-order rational number.
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