MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

Combined n = 0 and n # O MHD Stability

Analysis of Surface Current Model Tokamaks

and Spheromaks

E. Rebhan+), A. Salat

IPP 6/190 November 1979

%)
Institut fir Theoretische Physik,

Universitdt Diisseldorf, 4000 Diisseldorf

Die nachstehende Arbeit wurde im Rabmen desVertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europiischen Atomgemeinschaf? iiber die
Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiibrt.



6/190 E. Rebhan, A. Salat Combined n = 0 and n # O
MHD Stability Analysis of
Surface Current Model

Tokamaks and Spheromaks

November 1979
(in English)

Abstract

For a surface current model of axisymmetric equilibria
with constant plasma pressure, the energy principle is
used to perform a combined stability analysis of axi-
symmetric and nonaxisymmetric MHD modes. An improper
treatment of the n # O modes at low aspect ratio

found in the literature is pointed out and corrected.
In the tokamak regime, for fixed values of the aspect
ratio and B poloidal, B is maximized by optimizing

the plasma shape, while the requirements of full MHD
stability are observed. In the spheromak regime, the
dependence of B on the aspect ratio and B poloidal

is considered for circular and D-shaped configurations,

full MHD stability again being observed.



1. INTRODUCTION

For the surface current model (SCM) of tokamaks with
constant plasma pressure, the stability with respect to
ideal MHD modes has been extensively studied. A list of
representative papers is given in Refs. /1-15/. Further
references are available in Ref. /11/. In all of these,
either only axisymmetric modes (n = 0O) or only nonaxi-

symmetric modes (n # 0O) have been considered.

In Ref. /16/ we pointed out a decisive qualitative
difference between n = 0 and n # O modes; the critical
shape of the plasma cross-section is essentially determined
by n = O instabilities, n # O modes being of little im-
portance, while the critical B is essentially determined
by n # O instabilities, n = O modes having almost no in-
fluence. Unfortunately, in search of large -8 configurations
the requirement for n # O stability leads to n = O unstable
plasma shapes. For clarity, we again bring in Fig. 1 the
illustrative example of Ref. /16/. There, for elliptical
plasma cross-sections the stability boundaries for n = O
and n # O modes (the latter being corrected according to
Section 3) are shown in a diagram B versus elongation e
(see eq. (2.8) for definition). For each type of mode the
stable domain is shaded. Complete stability prevails only
in the doubly shaded area. The largest critical B com-

patible with full stability is obtained at the intersection



between the two stability boundaries and is significantly
smaller than the largest critical B obtained from a pure

n # O analysis,

If one wants to manage without great technical outlay
such as feedback stabilization, one is thus forced to
regard both n = 0 and n # O modes. Owing to the rather
rough approximation to realistic experiments which is
provided by the SCM, the use of SCM stability analysis
lies less in its application to a specific single situation,
but consists rather in the possibility of doing extensive
parameter studies in order to find out qualitative trends.
The purposes of this paper are therefore a study in para-
meter space, looking for completely MHD stable configur-
ations which have as large as possible B values, and
comparison of these with more simple standard configur-
ations. Since many instabilities occuring in more real-
istic plasma models are, in principle, absent in the
sharp boundary model, it is tempting to consider the
8 values thus obtained as upper bounds for realistic con-

figurations.

In Section 2, we give a short review of SCM equilibrium
properties and definitions as far as is necessary in this
paper. For more details and for a description of our n = 0O
mode analysis we refer to our previous work on SCM equi-

libria /13-16/.




For the n # O modes we adopted a method essentially
due to Martensen /7, 17/. The main steps of this method
consist in reducing the energy principle to a variational
principle on the plasma boundary and making this problem
one-dimensional by Fourier analysis with respect to the
toroidal angle ©. The remaining numerical problem is
made complicated by the fact that some quantities enter-
ing the variational problem are determined by integral
equations with singular kernels. Martensen overcame this
complication by extraction and analytical treatment of
the kernel singularities. A very compact and elegant
representation of this method may be found in Ref. /11/.
For discretization of the numerical problem we preferred
a Fourier-analysis with respect to a poloidal coordinate
on the plasma surface like Freidberg et al. rather than
using trigonometric interpolation like Martensen. The
poloidal coordinate we used is the "adapted coordinate"

described in Ref. /16/.

In redoing the n # O mode analysis we found that some
of the results published in the fusion-oriented literature
/11-12/ are not quite correct. To a certain degree, this
necessitated a revision of the n # O stability results
since, on the other hand, the work of Martensen et al.
/7-8, 17/ contains only very few numerical results.

This revision is carried out in Section 3.




In Section 4, we present results of a B maximization
in the tokamak regime. This was done for fixed A and B
by optimization of the plasma shape while observing the

requirements of full MHD stability.

Finally, in Section 5 we consider configqurations of

the spheromak type, again observing the requirements of

full MHD stability.




2. SCM EQUILIBRIUM PROPERTIES AND DEFINITIONS

In the following, R is the perpendicular distance
of a point from the axis of rotational symmetry, Eé is
a toroidal unit vector and 3; is a poloidal unit vector
tangential to the plasma surface. With the dimensionless

units of Ref. /13/, the magnetic fields inside and out-

side the plasma respectively are

g 4% = A
BPQ_ = —F 5’9 ; Bv = —V—-E,’G + BEE;, , (2.1)
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The safety factor g is given by
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I S T

daL being the arc length along a poloidal cut of the

plasma surface. With the definition



P = P/(P +-;-B§]_ \R='\ ) = .’Z, vo); (2.5)

where Bvo is the vacuum field strength on the plasma

surface at R = 1, we have

B= b/ 1+ AL) (2.6)

Our definition of the aspect ratio A is

& = (Rmax * Rmin)/(Rmax - Rmin)' (2.7)

where Rmax( mln) is the largest (smallest) distance of the

plasma surface from the axis of symmetry. With z being a

coordinate along this (z = O on the equatorial plane),

our definition of elongation isl)
== (Zmax - zmin)/(Rmax - Rmin)’ (2.8)
where z = =z . 1is the largest distance of the plasma
max min

surface from the equatorial plane. The D-shapes we shall

consider are given by

e*(R-1* + [1- 2A(R=1) T, +T}2 ]z* = e¥/A%, (2.9)

t'3 being a measure of the triangularity. Finally, in
Section 4 we shall consider very general plasma shapes

represented by

s =c1+ icmm«m], (2.10)
where ;“ v, .
= [(R-1Y*+ 2% ] u=a/rci'3,(-§;—4).
1)

As for the definition of e, Fig. 1 in Ref. /13/ contains
a mistake,



3. REVISION OF THE n # O MODES
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Among the papers on n # O mode MHD stability for SCM
tokamaks, Ref. /11/ contains by far the most and most
general results and was therefore most suitable for testing
our n # O mode code. We find rather good agreement of
results at large A which, however, deteriorates as A
decreases. Typical relative deviations are a3 % at
A =10 and =~ 15 % at A = 2, a difference in the definitions
of Bp and B being taken into account. Closer inspection
showed that Ref. /11/ contains an improper treatment of the
boundary condition between the plasma and vacuum. Since it
appears that this boundary condition is a pitfull into
which one frequently stumbles, we give a short derivation
of the proper condition. Its original form is well known

and reads
—-> o s
ixA = - (%-®)B, |, (1 ]
where
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Multiplying eq. (3.1) by V¥ and taking its divergence,

we get




VY- SB, = B, T(E-T¥). (3.3)

Using eqs. (2.1), (3.2) and QP-V =9/ , we

finally get

== 3 —_ gl &
;f?-ng = /\’”’ _(?nn) + _i_B_[RB(Efn)] . {3.4)
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Instead of the last term in eq. (3.4), Ref. /11/ has

-
% [B(ER)] , which becomes correct for A - oo ,

b) Consideration of the n > 1 modes

It is claimed in Ref. /11/ that n = 1 is the worst
among the n # O modes. Analytic results for A = eo
/9-10/ are given as a reason for this, where n enters
only in the combinations B/nz, gn and B/n and may thus
be scaled out completely in the marginal case. Obvious-
ly, this argument does not hold for A <e (e.g. see
formula (A2) in Ref. /11/), and we therefore also did

calculations for n > 1.

A difficulty met in these calculations should be
pointed out. Certain quantities entering the kernels of
the integral equations mentioned in the introduction are
defined by a trinomial linear recursion with respect to n

(see formulae (167)-(168) in Ref. /17/). It is just the



- T =
minimal solution of this recursion which is needed and
this is unstable, A numerically stable but arkward
method of calculations consist in breaking off a repre-
sentation of the solution which uses continued fractions
/18/. In our code, we evaluated a representation by means

of the hypergeometric function. Specifically, we used /19/

r n
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s [4-lzunw+z?]“ m!l M)
Since the claim of Ref. /11/ is correct for A =0, a
different result could only be expected at low aspect
ratio. However, for all low A cases which we have cal-
culated, it was confirmed that marginal stability is de-
termined by the n = 1 mode. Representative examples are
given in Figs. 2 and 3. For elliptical cross-sections,

A = 2 and BP = 1, Fig. 2 shows the critical q as a
function of elongation for n =1, 2, 3. For a specific
elongation, Fig. 3 shows the critical q as a function of
the mode number n. Further calculations for circular,
D-shaped and doublet-shaped cross-sections as well as all
situations met in Sections 4 and 5 showed the same be-
haviour. However, we cannot exclude that there may exist
regioné in parameter space where modes with n> 1 take
over. Moreover, our investigation is limited to n < 30.
Considering situations beyond the boundary of marginal
stability, we found that higher n-modes may well become
more unstable than the n = 1 mode in the sense that §*W

becomes more negative. n > 1 calculations at low aspect



ratio are also presented in Ref. /12/ for circular shapes.
We found agreement with our results only for n = 1, For

n > 1 we could not track down a reason for the dis-
crepancies since Ref. /12/ contains too many misprints

and inconsistencies.

In view of the hidden pitfalls in the problem under
consideration, it was important to find conclusive tests
for our code. Since our method of testing can also be
applied in treating the perturbational vacuum field of
diffused current model (DCM) equilibria, we give a short

outline of it here.

The trivial comparison with analytical results for
A = needs no further explanation. Considering low A
cases, by far the most extensive part of all calculations
consists in solving the integral equations mentioned in
the Introduction. After discretization, they may be

put in the form

ve = 3 AL, (nTy), (3.5)

where Vﬁ:= 8B is a vacuum field which has no singularities

either inside or outside the plasma, and where ?! and (qu?)ﬁ
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are the poloidal Fourier components off? and (%;Fy)
respectively. This problem is met for both the plasma
and the vacuum contribution to SZW. Calculating the

én) for the plasma and vacuum contributions,

coefficients A!
respectively, is the key problem of the n # O stability

analysis.

Any vacuum potential v = qro(R,z)eine which has no
singularities inside (outside) the plasma as far as the
plasma (vacuum) contribution to 52W is concerned must
satisfy the corresponding equation (3.5). One can there-
fore test the coefficients A;;) by inserting known solut-
ions v into eg. (3.5). Simple known solutions, e.g. for
the vacuum contribution which we have used, may be found
in Ref. /20/. A last test (only for n = 1) consisted in

a temporary use of the improper boundary condition of

Ref. /11/ and led to complete agreement of results.




4. B-MAXIMIZATION BY SHAPE OPTIMIZATION IN THE TOKAMAK REGIME

For comparison we first consider circular and elliptical
plasma cross-sections. For both Fig. 4 shows with fixed B8
the largest B compatible with complete MHD stability as a
function of 1/A. The curve for elliptical cross-sections
was obtained according to Fig. 1. The corresponding g values

are given in Fig. 5.

We now come to this optimization problem. In a pre-
vious paper /16/ we considered plasma shapes represented
by eq. (2.10) for N <€ 12. Employing a modification of the
method of steepest descent, we determined the coefficients
ch for fixed values of A and Bp such that B became as large
as possible while stability with respect to n = O modes
was still observed. n # O modes were rather crudely
treated by requiring that q = 1. We had some arguments
for the assumption that this way the optimum shape is de-
termined rather accurately while the maximum B value
necessarily remains largely undetermined. Increasing N
beyond N & 10 brought no more visible change of the

optimum shape.

As a last step prior to full optimization we now cal-
culated the formerly undetermined value of critical B for
the shapes previously obtained, using now our n # O code.
The result of this calculation is represented by the solid

curve in Fig. 4.



For complete optimization, g must be added to the
list of variable parameters while n = 0 and n ¥ O mode
stability must be simultaneously observed during the
optimization procedure described in Ref. /16/. Since this
full optimization is rather time-consuming, we did it only
for two A values. The result is given by the crosses in
Fig. 4. For A = 4, the result is imperceptibly above
the solid curve, while the corresponding optimum shape
(Fig. 6a) differs imperceptibly from the optimum shape
obtained for fixed q = 1. For A = 3.8, in the process of
optimization a constriction of the plasma boundary de-
velops, forming a doublet-like plasma shape as in the
q = 1 case. This constriction becomes more and more pro-
nounced until the large curvature at the centre of the
constriction causes numerical problems and the optimization
procedure must be stopped before it comes to an end. The
cross at A = 3.8 in Fig. 4 belongs to the intermediate
stable shape shown in Fig. 6b. The B gain due to the plasma
constriction is much less than it is in the g = 1 opti-
mization since g rises from 1.55 to 1.79 when going from

the unconstricted to the constricted shape.

These results confirm to an almost unexpected de-
gree our previous assumption about the optimization with
fixed q = 1, and we may consider practically the whole

of the solid curve as the result of a complete optimization.



5. MHD STABILITY BOUNDARIES IN THE SPHEROMAK REGIME

In Ref. /21/, the first theoretical study of mag-
netic vacuum confinement of tokamaks at the lower limit i
of the aspect ratio is found, allowing of pure poloidal
field confinement. For the latter case there has recently
been a revival of interest, and for corresponding configu-
rations the name "Spheromak" has been proposed (see

/22-23/, where a list of further references is found).

Let us first consider the concept of an "ideal
spheromak" in the frame work of the SCM. Since the con-

fining vacuum field should be purely poloidal, from egs.

(2.1) and (2.3) - (2.6) we get the requirements

A‘D’ = 0} PP £ 4 q= O (5.1)

and

K

]
-
)

(5.2)

Numerical calculations show that there exists no MHD
stable ideal SCM spheromak. We may look, however, for
configurations which come close to the ideal spheromak,
expecting that ideal DCM spheromaks of similar shape

will show qualitatively similar stability behaviour as far
as the most dangerous external MHD gross modes are con-
cerned. To a certain degree this expectations will be

confirmed by a comparison with DCM calculations (see below).



Let us first consider circular plasma cross-sections.
Figure 7 shows the critical B as a function of Bp for se-
veral fixed values of A, Coming from large A, with de-
creasing A we first get increasingly better approximation
to the ideal spheromak line 8 = Bp' For fixed low A > 1.05,
from B = O up to the maximal B this approximation is re-
latively uniform and of acceptable quality, deteriorating
appreciably after Bp is increased above the value which
corresponds to the maximal B. Below A ® 1.05 the approxi-
mation gets worse with further decreasing A as is de-
monstrated by A = 1.01. For some A values between 1.3 and
1.01 the corresponding marginal curves are shown in Fig.8,
being restricted to the neighbourhood of their maximum
in order not to destroy the clearness of the figure. The
position of these maxima is shown in addition, A =~ 1.05
. A discussion of

P
the deterioration below A = 1.05 will be given later.

having the closest approach to B = B

In a similar diagram (Fig. 9) we consider D shaped

cross—-sections ( T 3 = -0.6, see eq. (2.9)) with differ-

ent elongation, all having the same aspect ratio A = 1.1.
For comparison, also the corresponding curve for a circle

( r3 = 0, e = 1) is taken over from Fig. 7. Beyond B_ = 0.3,

P
of all cases shown the D-shape with largest elongation is

most favourable;for Bp < 0.3 circular shape is equivalent.

For e = 1, a circular shape is more favourable than the




corresponding D-shape. It is interesting to note that
the relative deviation (Bp--B)/Bp from the ideal spheromak
is smallest close to the maximal B for almost all curves

shown.

We shall now try a rough qualitative comparison of
our results with MHD-stability results obtained in Ref./22/
for DCM spheromaks, although this comparison appears
problematic owing to an almost opposite approach. Since
our calculations violate the condition for an ideal
spheromak, they may be considered as a zero-order approxi-
mation, and a glance at Fig. 9 shows that for given A
characteristic distinguishing features appear only at
large B values. The DCM calculations of Ref. /22/ are
certainly a better approximation. However, since an ex-
pansion about B = O is employed, this approach is best

just for low B values.

According to these DCM calculations, elongated
D-shapes (e > 1) are ruled out owing to internal tilting
modes which are, in principle, absent in a SCM spheromak,
A configuration with D-shaped plasma boundary and

b/a = 0.5 according to definition /22/ (corresponding

to values e = 1 and Ty x -0.6 according to our de-

finitions) is considered most favourable, yielding values
x _ 25 12,1 2
of B >coil ={pP"> /(5 B”edge) between 13 % and 25 %,

if plasma currents are excluded from a central hole.



Comparison with eq. (1.5) shows that<(B*> coil Mmay be

1

identified with our B.

Comparing DCM and SCM shapes, it appears reason-
able not to take the DCM plasma boundary but an internal
flux surface which contains the bulk of the plasma. The
e = 1 configuration, favoured in Ref. /22/, thus
corresponds approximately to a SCM configuration with
e = 1 and T 5 somewhere between O and -0.6. According to
Figs. 8 and 9 this corresponds to a maximal B somewhere
between 14 % and 21,5 %, which is in quite good agreement

with the DCM results.

The B gain which according to Ref. /22/ is obtained
by exclusion of the plasma currents from a central hole
has a SCM counterpart in the fact that, according to
Fig. 7, for fixed Bp the critical B appreciably increases
when a central hole is left open by raising A from A =~ 1

to A = 1.1. Also, according to Fig. 8 the largest possib-

le B is obtained with A slightly above A = 1.




6. CONCLUSIONS

For a SCM model of axisymmetric equilibria with constant
plasma pressure we carried out a combined n = O and n # 0
MHD stability analysis in the tokamak and spheromak re-
gimes. For a wide range of parameters, we proved numerically
that the boundary of marginal stability is determined
only by n = O and n = 1 modes, a fact which has so far
only been regarded as plausible by extrapolation from its

validity at A =,

In the tokamak regime, we maximized B by optimizing

the plasma shape with A and B_ kept fixed. For A 2 6,

P
the maximum B8 thus obtained is insignificantly larger than
the maximum B of elongated elliptical shapes. In the range
3.8 A X 6, the optimum shape looks like a combination

of racetrack and D-shape, yielding an absolute B of

5.6 % and a relative B gain of & 20 % (as compared with
elliptical shape) at A = 4. Below A = 3.8, a rather small
further increase of 8 can be achieved by transition from a

racetrack/D-shape combination to deeply notched doublet-

-type shapes.

In the spheromak regime it is found that an ideal
SCM spheromak with zero external toroidal field is never
stable. The best approximation to an ideal spheromak which

at the same time allows for the largest B is provided by




configurations with a small central hole (A 2 1.05). For
oblate spheromaks of plasma elongation e = 1, which are
optimum according to DCM calculations, we obtained

B8 values in the range of 14 % to 21.5 %.
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FIGURE

CAPTIONS

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

n =0 and n # 0 stability boundaries in an e-8

plane, stable regions shaded

Critical g versus elongation e of elliptical

plasma cross-sections for n = 1,2,3

Critical g versus toroidal mode number n for an

elliptical cross-section

Maximum B versus inverse aspect ratio for circular
(dotted) , elliptical (dashed) and optimized
shape (solid)

Critical g versus inverse aspect ratio, as in Fig.4

Optimum shape (A = 5, Fig.a) and intermediate
doublet-type shape (A = 3.8, Fig. b)

Critical B versus B for circular shape and differ-
ent values of A, B = BP representing the "ideal
spheromak"

Critical 8 versus B_, close to maxima, and

B maxima versus Bp' for small A

Critical B versus Bp for the circle and various
D-shapes at A = 1.1, shape qualitatively in-
dicated for each curve.
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