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Abstract

For Hill's equation

i
y" o+ (u+¥) y = 0 with %(x+l) = Ekx) and é ¥dx= 0,

the lowest eigenvalue @ of the boundary value problem y(x+1) = y(x)
is considered.

Introducing Lp norms of the function ?(x), lower bounds for o which
depend only on this norm are derived for p = 1,2 and = by solving a
variational principle. For these lower bounds analytical expressions
are obtained. The quality of the approximations thus obtained is

discussed for Mathieu's equation.
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l. Introduction

In the stability theory for magnetohydrostatic equilibria the following
mathematical problem is encountered in the search for sufficient
stability criteria [ l:|: what conditions must be imposed on a function
f(x) in order that the Riccati differential equation z'=22 + f have
real, continuously differentiable solutions =z of period 1 for real,

continuous f(x) of period I,

According to standard theorems the Riccati equation has periodic
1
solutions if, and only if, é f(x) d x ¢ a s where a is the lowest

eigenvalue of the following eigenvalue problem for Hill's equation:
(1.1) ¥+ (a+f) y = 0, y(x+1) = y(x),

with

Hhe
n

-
1

l_‘

f(x) d x .

This is because the solutions of Riccati's equation are the logarithmic
derivatives of those of Hill's equation.
Problem (1.1) is a Sturm-Liouville eigenvalue problem and has a finite,

non—degenerate, lowest eigenvalue [ 2:|

(1.2) a = - a2 (a real),

. : ; . 1
which, however can in general only be determined numerically. If a( )
o
1
is a lower bound for o s then é fix) dx < aglks sufficient for the
Riccati equation to have periodic solutions. Therefore, it is of

interest to determine analytical expressions for such lower bounds.

A problem closely related to ours has been treated by Borg [13]:

in deriving so-called regions of absolute stability Borg constructed




upper bounds for the eigenvalues U s 025 Quy es and lower bounds
for the eigenvalues @;, o3, ... . Unfortunately, Borg's formulae

for oy, a3 ... cannot be extended to @ s mor can the details of

his derivation be directly extended to our case, since Borg
explicitly uses the existence of zeroes of the higher eigenfunctions.
However, it was possible to apply Borg's general idea to construct

such bounds by employing a variational principle.

Accordingly, we introduce the Lp norm in the space of the functions %

1 % L
Vs = | |¥ =[I Pd]"
(1.3 6t = |H11, = [ 7 1P ax
and set
(1.4) gp: = ——%i—-
I
Then 1
(1.5) [|gp|| =1, [gx) dx=o0.
Suppose Y is a solution of problem (1.1) belonging to al = ~-a?,
Since v, $+ 0, we may consider
- T
ZO = YO /yo s

which according to (1.1) - (1.5) satisfies

= LI, 2 2

(1.6) Bp gp zg zg + a .
(1.7) zo(x*l) = zo(x) .

1
(1.8) [z (x) dx=0,

1

2 S 4

(1.9) é z (x) d x=a .



Because of ||gp!|p =1, eq. (1.6) implies independently of the choice

of gp(x) that

(1.10) Bp > ¥, (a) ,
where
(1.11) Y,(a) = inf F_ [z,a | ,
zeC
(1.12) Fp [ z,a:] = ||z' - z2 4 a2||p

and C consists of all functions in C! , which satisfy the conditions

(1.7) = (1.9) with z replaced by z .

In this paper the variational problem (1.11) = (1.12) is solved for
the cases p = 1,2 and », yielding analytical functions Yp(a) which are
monotonically increasing (see Fig. 1). Let Ap(yp) be the inverse
function of Yp(a). Then, because of this monotonicity, inequality
(1.10) and eq. (1.2), the required lower bound for the lowest eigen-

value is given by

_ 2
(1.13) o > [Ap(rsp)]

Conversely, if for specified values of p and a the solution
zo(x) of the corresponding variational problem is substituted in

the right-hand side of eq. (1.6), an admissible coefficient function
% is defined. For this the conditions (1.7) - (1.8) guarantee the
existence of an eigenfunction - with eigenvalue ao= -a?, Hence, the
lower bounds thus obtained are the best possible.

For the sake of clearness we shall first reformulate our problem

and set out the results in theorems 1-3. Then, the proofs will be



given in Sections 2-5. In Section 6 an application to Mathieu's
equation will be presented.

We write Hill's equation in the form
y'+ (@ + B g(x)y=0,
where admissible coefficient functions g(x) satisfy
1
g(x + 1) = g(x) , ! gx) dx=0 .

The lowest eigenvalue ao(B) is defined by the boundary value problem
yx+ 1) =y .

Lower bounds are given by the following theorems:

Theorem 1I:

For all admissible functions g(x) with i!g |d x = 1 the best lower

bound of aO(B) is given by

M) - _ R2
o R</16 .
Theorem 2:
. 1, 1/2
For all admissible functions g(x) with ( g g d x ) = | the best

lower bound df (B) of ao(B) is given by

dg’ 16 K(E-K),

a? '_l; )2 [ e? - o (14k?) ] - G



where E = E(k) and K = K(k) are complete elliptic integrals.

Theorem 3:
For all admissible functions g(x) with max [g(x)| = | the best

(c0) . .
lower bound ao (B) of ao(ﬁ) is given by

0, 'b/ <0, I/ ¥ (=]
"B+ a( ) tg i B+ a( * = B - ar ) tgh & B - a( ) .
o) 4 o 4 o

2. The class of functions to be varied

It will be shown in this section that it is possible to replace C
with a more suitable class of functions in our variational problem
(1.11) = (1.12).

Firstly, the condition (1.8) enforces at least two zeros of z(x)

in [(),1]. Since Fp[ z,a:| and the conditions (1.7) = (1.9) are
invariant with respect to a translation in x, we may assume z(0) = O

and consequently z(1) = O.We shall see that instead of (1.7)-(1.9)

it suffices to consider the weaker conditions




(2.1) z(0) = z(1) =0 ,

(2.2) Z z(x) d x=0 |,
: 2 2

(2.3) é z¢dx = a

for which inequality (1.10) holds all the more.
According to the Weierstrass approximation theorem every continuously
differentiable function can be uniformly approximated by a polynomial

of m-th degree p_(x) in the entire interval [CLI ], so that

(2.4) lp, ()-z(x)| < e, [p 'x)-z' )| < em)

where e(m) + O for m + =, It is readily seen that the approximating
polynomial sequences can be chosen such that all pm(x) satisfy the
conditions (2.1) - (2.3). Furthermore, it can be proved as a

consequence of (2.4) that

Vi 202 -
[2'-22+a2|| = ||p_

-p 2+ a? || | <emc,
C being a given constant. Thus, the infimum (1.11) can already be found

within the class P of all polynomials p(x) which satisfy (2.1) - (2.3).

For any given p(x) € P there exists a function § (x) with

2.5) B $0 in 0gx < x¥ ,x =x(px)

> 0 in x < x <1

such that between each two successive zeros p(x) is identical with
p(x), apart from a translation in x and vice versa.

a A G . . R . .

p(x) satisfies (2.1)-(2.3) and is continuous; p(x) is continuous apart

from finitely many jumps and hence is Rieman integrable. Obviously




we have

[1p' - 8% + a?||=1] p' - p? + a?||

and therefore the class C may be replaced by the class P of all

functions p(x).

3. The case p = 1

We require the infimum

Yl(a) = inf F1 I:z,a:| .

~

zeP
where

- 1
(3..1) F1 [:z,a_| = g |z'-z2 +a? |d x .
From eq. (2.3) it follows that either z >a orz. < - aor both

max — min
are correct.
a) Case =z ¥ od g Boe K= HE,
max — min —

From eqs. {(2.1) and (2.3) it follows that

(3.2) S (z'-z2+ a?) d x = 0.
(o]

If Ep [(3,1] is the union of all intervals from [(L] ] in which

"-z2+ is positive (for every z € P this involves a finite number

Z ~Z 3.2



of intervals), then it follows from eq. (3.2) that

1
o2, a2 _ 124 a2
(3.3) £|z z2+ a%2 | d x ZE;EO,I_—FZ z%+ a®) d x .

Between the minimum and maximum of z(x) there is an interval
I:xl, xzj with lz(x)| < afor x@& (xl, x2) and - z(xl) = z(xz) = a,

We now have Ep [xl, xzjc Ep [O,l :|and hence

1 xz
S |z'-22+ a2| d x 22 (2'-z%+ a2 ) d x> 2/ (z'-2%+ a?) d x =
0 E, ()0 %, ¥

*2

2 [z(xz)-z(xl)+ S (a2-22) d x| > 2 [z(xz)-—z(x])] &k 8
X
1

For later purposes it should be noted here that condition (2.2) was
not used to prove this inequality.

We now consider the piecewise continuously differentiable function

- ég—{ for x e‘[O,e:I
1 -
= .4 forxe[e,-z—-s_!
¥ _ ax a 1 1
(3.4) z (e,x) = : 5> forxe [=-e, 5]

-z* (e, 1-x) for x € [l 5 1:]

with € > 0.



This function yields

% -
lim Fl[z (E,x),a_| =4 a

>0
. ; + : : 3
Since for any € > O the function z (e,x) can be approximated arbitrarily

closely by functions z € P , 4 a is the required infimum for the

functions considered in this sub-section.
For later purposes we note that the function

* . %
z (x): = 1lim z (e,z)
e>+0

jumps from -a to +a at x = %n If we define
+ +e >+ e
Slz* ' = 22422 d x = lim [/ |z2*'(e,x)-z*2(e,x)+a2|dx = 2 a ,

3 -c e

lim
>0
the contribution to F][:zt {| due to the jump point is given by the
magnitude of the jump of z‘(x). Using an analogous limiting process
for definition, we shall consider in section b) test functions z(x)
with jumps. The contribution of a jump to F] [:z,a:l will again be

given by the magnitude of the jump of z.

b) Case z >aand z , > - a.
max min ;

The case z € gy 2 < —a 1is completely analogous and does not need
max min

separate consideration.

Let XI/;3 be the smallest/largest value of x for which z(x) - a = 0.

Then, we may construct a continuous, piecewise continuously differentiable

~ ~

v a _
function p(x) with p(x) > a only for X £ X < Xg X such that p(x) = z(x)

3 3




m . .
in the intervals [O,xl___] and [x3,l :l, and that in the interval
QY . A A
E<], x3:], between each two consecutive zeros of f(x)-a, P is
identical with z, apart from a translation in x and vice versa.

Obviously, we have Fl(ﬁ,a) = Fl(z,a). Let p(x) again be denoted

by z(x).

For every such z(x) we now construct a function z](x) with the

property

(3.5) Fi [z2,0,a] <F [z(),a] .

For this purpose we consider the functions

(3.6) u(x=-n)=-atgha (x-n)
and
(3.7) v x = %) =-atgh_] a (x = x),

which are solutions of the differential equation

(3.8) ' -2 +a%2 = o0,

n and y being parameters. It holds that
(3.9) lux = n)| < a,| vix - )| > a for all x;n;X:

Since — a < z(x) £ 0 in [:O,x*:], an n, may be found such that for all

1

¥ 2
x € [O,X j we have u(x-—ni) < z(x), and that for a certain xoe [O,x

* -
|

we get u(xo - nl) = z(xo). With this we define
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(x - ny) for x e (O,X*)

u
(3.10) z;(x) = 4 a for x € (x2,x3)
z (x) else
The point x, € [:xl, X3:| introduced in (3.10) is fixed by the condition
1 1
(3.11) J zlz(x) dx= [ 22(x) dx=a2 .
o )

Since lu(x - nl)\ < a and since z(x) > a only in ['xl, X3_{, it is
always possible to find a (unique) point x; such that eq. (3.11) is

satisfied. Because of z; < z we have

1
(3.12) J zy(x) dx < 0,

o
We shall now show that z; (x) satisfies the inequality (3.5). As z](x)
differs from z(x) only in the intervals (O,xf) and (%o, x3), all that

matters are the contributions to the integral (3.1) from these intervals.

We have the inequalities

5 X3
(3.13) Jolz'=2%2+ a2 | dx + J | z'-z2 + a2?| d x >
o X2
4
Xo X X3
>= [ (z'-22 + a?2) dx+ [ (z2'-z2 + a?) dx - [ (z'-z%+ a?) d x >
o X X2
o
4—
Xo X X3
3= 1 (=) -gf+a2) dx+ /S (21 - ;3+a2) dx-/ (z1 -gf+ a?) d x =
0 XO X2

*

x X3
=/ |z] - ;$+ a?| dx+/ |z} - z2+ a% | d x .
0 X2



In the second inequality use has been made of the fact, firstly, that

a o«
X X r X ; x i
- S z'"dx+/ =z dzx==2 z(xo) =-2 zl(x ) = - 2 z, d x + J z, d x
0 X, © o X

and, secondly, that as a result of eq. (3.11)

¥

[~

Xo X3 5 X3 X XO X3
/% z22d x + [ z2d x = z2dx +/ z2dx +J'(zf—zz) d x> /%2%dx+/ z%dx.
1

(o] X2 (o] X2 1 XO o] 1 X2 1

Furthermore, because z; = u(x-ny)<z< 0 in [xo, X

it holds that

# 'S
X x
-/ z%d x k=T | z?2 d x .
X X 1
o o

The equality sign of the last step in (3.13) is valid for the following
reason: z]; satisfies eq. (3.8) inside the integration limits and hence
only makes contributions in the jumppoints x = 0, x‘, and X On both
sides these contributions are the magnitudes of the jumps of z;. The

inequality (3.5) follows direct from (3.13).

Construction of z(x,%) with 4a < F, E z(x,;), a:] < Fl[:zl(x),a:|

We shall now consider a set of functions z(x,x) defined by

u(x-n(x) ) for x € (0,¥%)

(3.14) z(x,x) = B "
v(x-yx) for x € E:{ (EZi—l, 521)

zl(x) else .

The gi’ gl < €y < i< &2y are the zeros of the function v(x—x)- zj(x)
in whose vicinity this function changes sign. As zj(x) is represented by

polynomials for z;(x) > a, the number of Ei is finite and even. For y < ;,
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% being defined below, the function n(y) uniquely determined by the

condition

1 1
(3.15) S 22(x,x) d x =/ 22(x) d x = a2 ,

o o |1
as is explained in the following. Let the largest yx for which no Ei
exist be denoted by x; (according to (3.7) we have y; > x;). Thus,

for x < x1 we must put n=n; in order to satisfy equation (3.15). As

X2

¥ ilncreases over X1, J z2(x,x) d x decreases monotonically with
xy; x*

¥. On the other hand, J u?2(x-n) d x increases monotonically

)
with-n, which may thus uniquely be chosen such that eq. (3.15) is

satisfied. Since for y =+ « we have z(x,x)*> a in [:xl, xi], the only
interval where |z(x,x)|2,a, there is a ; < = which we get z(x,;) = - a
in (O,X*) (i.e. n=«) from (3.15). z(x,x) is a continuous and piecewise
continuously differentiable function of both x and x. Because of

z(x,x) < z1(x) and (3.12) it obeys

1
(3.16) fz(x,x) dx< O
o

o
Since z(x,;) = - a in (0,x ) and z(x,;) > a 1in ['xl, xz:], z(x,;)

belongs to the functions considered in a) and from there we obtain

(3.17) Fi [2(x,X), a_| > 4a .

In view of (3.16) if may be recalled that (2.2) was not used in

deriving (3.17).

In the remaining part of this section it will be proved that
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(3.18) -a-g- Fl[z(x,x),aj < 0

is valid. Assuming the validity of (3.18) for the moment, it follows

together with (3.17) and (3.5) that

Flz@,a ] > 2,2 ] =F [ z&xx1),a ] > [ 2(x,%),a] > 4 a.

It remains to prove the inequality (3.18). First we define

éﬁ 5

(3.19) qp (n(x)) =/ 2z (x,x)d x
0
X2

(3.20) q () =/ z2(x,¥) d x.

x]

v
As z(x,x) only varies with x in the intervals (0,x ) and [:xl, xz:],

differentiation of (3.15) with respect to yx yields the relation

49, gn 9o

(3.2]) an dx +EX—=

In accordance with (3.19), (3.14) and since u (x-n) satisfies eq. (3.8),

d
E%l is given by

dq d * #
= — 1 2 = = {] - u L)
(3.22) Eﬁl = i (u'+a“)d x G (x-n)+u (-n)

where ' denotes the derivative with respect to x and the derivative

with respect to the whole argument.
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Irrespective of the shape of zi(x) it can be shown that
dg, _ 3
(3.23) el A CYES VR SOV I

This is also valid when the function v(x—x)-z](x) vanishes to higher

order at the points Ei'

From (3.21) - (3.23) it follows that

n
: e o
(3.24) an _ _ %) Locey;_ 1) = %5y -0 ]
. dx ) a4 (-n) - 4 (X-n)

We now introduce further definitions:

P
X
(3.25) Fi(n()) =/ |2' (x,x)-22(x,%x) + a?| d x ,
(e}
X2
(3.26) Fo(x) =/ |z'(x,x)-2%(x,x) + a?| d x .
X1
We have
4 . OF i dF,
(3.27) e Fl[:z(x,x),a:] & @ + T

In accordance with the definition (3.14) and since u(x-n) satisfies

dF
eq. (3.8) we get for Eﬁl

d
(3.28) EEL = -(f—n [-u(-n)-U(x*-n)]= a(-n)+a(x -n)

Irrespective of the shape of zi(x) and irrespective of whether the
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function v(x-x)-z)(x) vanishes to higher order in the zeros Ei we

dF
£
get for T
(3.29 -c}fl——;[' ) + ¥ (&, =) ]
20y == LY (Egqmp ™) + V {5y X :

i=1

From (3.24) and (3.27) - (3.29) it follows that

) =1 n
(3.30) g—XFl[z(x,x),a:[= 2[a¢m-ax -n) ] { = [{f(EZi-x)ﬁ(x*-n) -
i=1
= V(£ 7080 1.
&

Because k > 0 we find according to (3.6)
; R -1
(3.31) [u(-n) -u (x “n)] < 0.

We now make use of the relation (3.16). As z(x,¥) is only negative in

the interval [:0, QT], it follows from the definition (3.14) that, in

particular,
* f21
X
(3.32) J u(x-n) d x + [ vix-x)dx £ 0, i=1,2,00s, 0
© £
2i-1
According to (3.6) we get
g +
X
_ _ cosh a(x -n)
(3.33) g u(x-n) d x = —h i)
and according to (3.7)
E2i ) sinh a(g2i - x)
(3.34) i v(x-y)d x = T B i=1,2, i g
Ezi_] 21=1

and hence with (3.32)




(3.35) cosh?a (i*;n)sinhza(g .= x)-cosh?a(-n)sinh?a(g,, ,-x) > O.
21 21-1

1 = ]2 T

From (3.6) and 3.7) in conjunction with (3.35) it follows that

(3.36) ¥ (E,m0) & (Fm)-¥(E,,_m)a(m) 20

and (3.30) in conjunction with (3.31) and (3.36) yields the assertion

(3.18)

c) Final result

Summarizing the results of subsections a) and b), we have the final
result
(3:37) yi1(a) = 4a
The infimizing function is given by

. 0 for x =0,1/2,1
(3.38) z(x) = -a for x € (0,1/2)
2_ a forxe (1/2,1)

4. The case p = 2

We require the infimum

vo(a) = inf Fz[z,a] .
z €P
where
2 I 2
(4.1) F, [:z,a:] = [ (z'-z2+a?) d x
(s}

We note that for any continuous and piecewise continuously differen-
tiable function z(x) which satisfies the conditions (2.1) and (2.3) we

have

2 1 2
(4.2) Fo [z,a | =/ [2'2+(a2-22) | d x
o



and
2 2 2
(4.3) F, [z,a] =F, [z0] - (@®=a®)

where o is an arbitrary real auxiliary parameter.

Starting with a function z € P, we shall now construct a function Z

with the properties (2.1), (2.3),

(4.4) [ Z,0 ] =F[z,a ],

and
(< 0 forxel[0,1/2]
= 0 for x 1/2

> 0 forx([:]/Z,]]

N2

(4.5)

3
It can be assumed that x [:z:] > 1/2 because otherwise we may consider
the function z(x) = - z(1-x), which satisfies z € P, Fz[?E,a:] = Fz[:z,a:l

and X' [(z] = ]-x*[z:[ .

Let us first introduce the function

(4.6) g(x) = - z(x - x + 1/2).

*
In [ x , 1 | both g(x) and z(x) are non-negative. According to (4.6)

* 2
and (2.2), in view of the definition of x , and since x > 1/2 it follows

that
*
] Co1/2 X ]
Jg)dx =/, [fzx) Jdx </ [-2(x) Jdx = / z(x) d x .
x" X =1/2 o x*

From this and because of z(x*) = z(1) = 0 it follows that there is an

xsétx* ,1 ] with

(4.7) g (xs) =z (xs).
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We now set - #

g(x), x G[:I/Z + x - X xs:]
(4.8) Z(x) =

z(x) else

v : ; *

Because of (4.7) z(x) is continuous at 1/2 + x - Xy and at X,
The validity of the relations (2.1), (2.3), (4.4) and (4.5) for ;
. . . T #
1s easily derived from the definitions of ;(x), g x [:z:] and

from (4.2).

Estimate of F, [},a ___| using the Hilbert integral

FZE:;,é] is now estimated with the Hilbert integral of the variational
calculus. For this purpose we consider the Euler equation corresponding
to the integral (4.2)

(4.9) y' - 2y3 4+ 22y =0

and its solutions passing through the point x = 0, y = 0, with y' (o) <O.
After integration (4.9) yields

(4.10) y'2 = y* - 242 y2 + 2

with the solution y(x,C), where

c=ly'(o)

For 0 < C < a? the required solutions can be expressed by means of the

1

Jacobian elliptiec function u = sn v

1) For the reader's convenience the known properties of u = sn v that
are used in the following are set out here:
02 = K2u*-(1+k?)u?+ 1, k € 0,1 | ,

sn(o) = sn(2K) = 0, sn v > 0 for v € (0,2K) ,

sn(K-v) = sn(K+v) = - sn(v-K) ,
m/
2 -
where K = K(k) = / (1-kZsin?¢) 1/2 do.
o
/o 1/2 :
With E = E(k) = /" (1-kZsin?¢) dé the integral formulae
o
K K 2
1 2 1+k K i
S sn2 vdvs= ) (K-E), [ sn* vdv= 3 5 (K-E) - SEE are valid.

o o]
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(4.11) y(x,C) = - Vk C sn /[Ej X
where
(4.12) k=%(a2—./a“—c2)

For C > a? the solutions y(x,C) go monotonically fromy = 0 to
y = — o , If we restrict the (periodic) solutions (4.11) to
K1 i
X e[:o, Min(2 K v/ T 5:1 the strip S: 0 < x < T T @<y <0 1is
simply covered by the set of all solutions with y'(0) < O passing

through the point (0,0). y(x,C) has the unique inverse function

c(x,y), x,y € S.

At every point x,y of S the direction

(4.13) PCLY) = = ¥ (6,C05))

lc
is uniquely defined by the curve y(x,C) passing through the point x,y.
Because of (4.9) and (4.13) the following relation holds for the

directional field

4 =93P L3P o9 39,2
(4.14) I p(x,y(x,0)) S + 3y ) Z y*=Zacy .

For all continuous and piecewise continuously differentiable functions
z(x) which are wholly in S and which satisfy

(4.15) z(0) = z(;_—) =0

we now define the Hilbert integral

1/2
(4.16) B 2] =/ [(a2-22)2 - p2(x,2) + 2 & p(x,2) | dx.
(o]

From (4.13) and (4.14) it follows that H[:z(x):] has the same value for

all z(x) considered here.
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The function ;(x) given by (4.8) is entirely in SU3 S and satisfies

"
(4.15). Thus, H[:z(x):l is well defined and it is found that

1/2
(4.17) f [Z2'2+ (2 -%22)2Jdx-u[z] = f [z -p(x,2(x)) |2d x> 0.

"]
In order to calculate H[:z(x):], we consider that function y(x,C) which
satisfies (4.15). According to footnote 1) it is given by
> ¥ % »*
(4.18) y (x, ) =-4Kksn&Kzx,
#
where ké[O,]j is arbitrary and

* ”®
(4.19) C=16K2k , K=&k,

if the auxiliary parameter o is utilized in such a way that eq. (4.12) or

(4.20) a2 =8 K2 (1 + K2

is wvalid.

According to the definition of H[:z:l we have

.21y u[z] =8 y&,cH].

. ¥, : oy
The undetermined value of k 1is now fixed by requiring that

1 ,, | ,
(4.22) S y2(x,C )d x = 16KT (K-E') = a2, B = E(.

o

(The first equality sign follows from the properties of sn v set out in
# *#

the footnote.) As K (K‘—E ) assumes all values between O and « for

£ - .. . . *
k E[:O,I:I monotonic in k , there is a unique value k for every a2,

With (4.10), (4.13), (4.16), (4.18), (4.19), (4.20), (4.22), and foot-

note 1) it is found that
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* 2 PN
I = 27 KDY (1402y2

X7 = Lot y2 3 -
4.23) B [yx,c)] =5 Gkk )2 [ - 1+

For the value of o fixed by (4.20) and (4.22) it follows from (4.17)

and (4.21) that

(4.24) ;o [32+ @282 ax> [ vx,c¥ )]

-
o

: 2 v v = i 1
For the contribution of z to Fz[:z, o | from the interval E}E, 1_| the same

) . . ; ; 15
estimate is obtained by transformation to the interval [ 0’§3J with

Y]
" n
z = -z (1-x). Thus we have

1 = =
(4.25) ;oL %2 @22 2] dx>2H [yxc)].
(o]

and from (4.2), (4.3), (4.4), (4.20), (4.23) and (4.25) it finally follows

that
2 -
(4.26) F, [z,a_ > -% (K2 [GK K™ 2+ (14K 2)a2 7| - a*,

The function (4.18) satisfies all subsidiary conditions (2.1) - (2.3)
when k¥ is given by (4.22). If z(x) = y(x,Cj') from the very outset,
the equality sign is valid for all inequalities in this section.
Consequently, the right-hand side of (4.26) yields a minimum for

F22 [z,a] .

Result:

To summarize, the result is

1/2
(4.27) v (a) ={‘§ w02 [@kR)" + (1+k2)a2 ]| -a“} ;

where k satisfies the equation

(4.28) 16 K(K-E) = a2 .
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The minimizing function is
(4.29) z=-4 Kk sn 4 K x.

For yp(a) the following approximations are valied:

2
(4.30) a =+ 0: yp(a) > 2ma (1 + 2

)s
1612
4 3/2
(4.31) a—>®! yy,(a) »— a S - .
/3
5. The case p = =
We require the infimum
Y, (a) = inf F_ [z,a] ,
z El‘;
where
(5.1) Fm[z,a] = max |z'-z2+a2]|
x € [ 0,]
Construction of z;(x) with F [ zz,a_| F Ezl,a]

. . - . *
We start with a function ZIEP and may again assume x (z!) > —é—

as
in Section 3. From this we construct a function z, with
(5.2) E. [zz,a] = W [21,a ]
by solving the differential equations

. 2 _chzl,aj, XEEO,I_E]U[E'IJ
{5.3) zhy -z, + a’l =

+F [z,a], xel2x%-¢,¢]
AN = 0, x € [ 1-8, 2 2 - ¢ ]
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and determining £ € [}: 1 ] so that z, is continuous, piecewise
continuously differentiable and satisfies
(5.4) 2,(0) = z,(% = z,(1) = 0.
A1l of these conditions are satisfied by

—qtghqxforxé[O,]-E]

- q tgh q (1-E) for x € [ 1-&, 2x-¢ |

(5.5) z5 = p bg plame’) EaE B & i 2;;5’ e
- q tgh q (x-1) for x € [£,1 ]
where
q = F_ [ z1,a | + a2
(5:6)
p = me Lz1,a] - &2

and £ is the solution of
* * -
(5.7) —qtghq(E-l)=ptgp(E-X),E£[x,l_|-

p is real because of

F_ (2,2 | 2 |zi(x*+ ) zf(x*) + a?| = |z} (x‘+ 0) + a2| > a?

Furthermore, we assert that the inequality

(5.8) lzo)| 2 |z1x) |, x e [0,1]

is valid. For the intervals [ O,l-£:|, [ 2x —E.€:| and [ Esl:l the

assertion follows from (5.3), (5.4), from

(5.9) |2} - 23 + a2 £ F_ [21,a]

(=]
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and from the fact that both z; and z, are < O in [:O,x*:] and > 0
in [:f*,l:]. If it were violated in [ 1+E, 2x*- £:|, there would

exist an X with - zl(xo) > zz(xo) = z,(£), and because of (5.9)

¥
B 1 1 1
we had - J zydx > J zpdx > [ z,dx or [ zjdx < 0, thus violating
o X* Xﬁ ] (o]

the condition (2.2).

The inequality (5.8) results in

1 1
(5.10) J z2 dx>7 z2 dx.
0 2 (o] 1

* . = | l
Construction of z3(x) with F_ [ z3,a | = FwE Zys8 |, é zadx = 0

From the function z, we then proceed to a function Zq

ptgp(x—-lz-) forxé[%-£+x*,%+£ —x*]

1 * =

(5.11) z3 = - q tgh q (§-1) for x € [ 5 + £ -x, £_|

zy else.
This obviously satisfies

1

S Z, dx =0

o
(5.12)

F [z ,a_l = F [z ,aj .

o 3~ @ 22
Furthermore, the property

1 1
(513) f 22 dx=1/2%dx

o 3 o 2
can be verified, e.g. geometrically.

- - 1

Construction of zj(x) with F_ [ zysa | Fm[:zg,a P é z2 dx > a2

If we determine n =n (p) as the solution of the equation
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I -
(5.14) -—qtghgn =ptgp (n73), n € [o, %_ ’
where
(5.15) & wp LT a

according to (5.6), we can finally define a function 2, =2, (x,p)

by
- q tgh q x for x € [O,nj
(5.16) z, = P tgp (x-%) for x € [ N, l-rlj
- q tgh q (x-1) for x € [ 1-n, 1:
z,, satisfies (2.1), (2.2),
(5.17) F_ [24,a:| = F_ Ez],a] = p? + a? ;
1
(5.18) ¥ zi dx=4 (p2 + a2 )n - p? )
0

and finally because LR zi(x,p) >0
3p

(5.19) LY J z2 d x> 0.
dp L

Because of |zy| > |23|, (5.13), (5.10), and (2.3) p is restricted so that

(5.20) J 22 d x> a%.
o L

According to (5.17) F_ ['z],a:| increases monotonically with p, and there-
fore it follows from (5.19) and (5.20) that we obtain a lower bound for

1
Fw [ z,a:l if we set [/ z2 d x = a2 or, according to (5.18), if we set

o
n = i. That this lower bound can be approximated as closely as desired
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i 1
follows from the fact that the function z = z,, (x,p“), n (p*) =7
which does not belong to P, can be uniformly approximated by functions

¢ ».

Result:

Inserting n(p*) = -

A, (5.15), and p“ = Vy;az from (5.6) in (5.14)

yields the implicit equation for v (a):

(5.21) Y;az tg /_ﬁ H- = V_y;a‘ tgh % v Y;az = 0.
The infimizing function is given by
- ' -
- My ra? tgh (Vv ra? o x) , xe[o, 7]
.22 = ]
G Ao (e eep ], el 7]

- fﬁz_— tgh [v Ym+az (x—l):l y XEEQg 1

From (5.21) the following approximations are obtained
(5.23) a-+ 0 : Yw(a) +4 V3 a

(5.24) a~>e: y_(a) > a?+4m?

6. An example of application

In this section we evaluate the eigenvalue bounds for the case of

Mathieu's equation

QEX_ + (A-2hZ%cos 2 t) y = 0, y(x) =y (x+7), h? real.
ae*
With
t=mxX
we have
¥ = - 272 n2 cos 2 mx,
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and
8y = 4n2|h2| , By = V2 w2|n2|, B_ = 2n2|n?|.

Thus, according to inequality (1.13), we have the bounds

(1) ;
o o=- 1 [a, w222,
(2) —0
A, = - 12 [ &, VZn2|n2] ]%,
(o) 1 -2
A, =2 [ A, @?|n?])_

for the lowest eigenvalue Ao = (h?) , which are shown in Fig. 2.

If the asymptotic formulae

I 7
a (h?) > - 3 h% + == h® , h~>o,

ao(hz) +=-2h2+2h , h o

are compared with

(2) , _ 1.4 1.8 (®) , _7m2 4
Ao T2 R o 32 b Ao 7T 12 s B = D0

(2) . _ 9 2¢p ¥ (=), _ 2 -
AO -+ ( 62 T<h%) AO -+ 2 hc + 4, h =

(%
it is seen that Ao yields a good approximation for small h, while

(c0)
o 1s good for large h.
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Figure captions

Fig. 1:

Fig. 2:
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Solutions y(a) of the variational problem for p = 1, 2,

and c,

Lowest eigenvalue ao(hz) of Mathieu's equation and lower

(1) Aéz) and A(m)

bounds X -
o o
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